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Abstract— Design of gain-scheduled controllers has at-
tracted wide attention in H∞ control. Within the framework
of �1-optimal control, a novel method for gain-scheduled
output-feedback control has been proposed recently using a
special control structure. This paper extends this method to
more general linear parameter-varying systems. Furthermore
an explicit way of constructing the resulting gain-scheduled
controllers is derived, and conditions for their existence are
given. Finally, state-space formulas for these controllers are
introduced. These formulas significantly facilitate an imple-
mentation and result in a relatively low complexity of the
controller’s parameter dependence.

Index Terms— Gain-scheduling, LPV systems, �1-optimal
control, Robust control.

I. INTRODUCTION

Linear parameter-varying (LPV) systems are a power-
ful system class encompassing linear differential equations
with parameter-depending coefficients. Common examples
are flight dynamics depending on velocity and height, or
robotic systems with varying mass or mass distribution.
Furthermore, nonlinear systems linearized around specific
trajectories can be cast into the LPV framework. Even
general input-affine nonlinear systems

ẋ = f(x) + g(x)u

may be seen as LPV systems. They are rewritten as ẋ =
A(x)x + B(x)u and treated as the LPV system

ẋ = A(ρ)x + B(ρ)u,

introducing the parameter vector ρ and some conservatism.
Gain-scheduling techniques for LPV systems with mea-

surable parameters have received widespread attention dur-
ing the 1990s. In particular, schemes for systematic design
of gain-scheduled controllers, guaranteeing overall stability
and performance, have been developed in contrast to the
ad-hoc controller-switching approaches of the 1960s and
70s. An overview is given in [9]. Fruitful developments
with respect to gain-scheduling have taken place within
the H∞ framework (see e.g. [1], [2], [7], [10], and the
references therein). However, H∞ control lacks certain
desirable properties such as specification of time-domain
performance criteria and consideration of persistent distur-
bances or actuator saturation. On the other hand, the �1
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control framework addresses these properties [3], [4]. Until
recently, little progress has been made with respect to LPV
gain-scheduling in the setup of �1 control. Except for a
state-feedback approach [11], the output-feedback approach
proposed in [8] is the only method existing in the �1 control
framework to the best of the authors’ knowledge.

In [8], a control structure is introduced, turning the LPV
gain-scheduling problem into a classical robust performance
problem. Its solution yields an LPV output-feedback con-
troller, which typically has superior performance over robust
controllers [8]. The method considers discrete-time LPV
systems, in which the parameter dependence is affine, poly-
nomial, or rational, and the rate of parameter variation may
be unbounded. The controller synthesis is based on linear
programs and achieves suboptimal solutions arbitrarily close
to the optimum.

The developments in [8] are restricted to a certain class
of plants, and implementation aspects of the controllers are
neglected. This paper provides three important extensions
to [8]. First, the results are made applicable to more
general LPV plants. Second, the explicit construction of the
resulting LPV controllers is derived, and conditions on the
implementability of the LPV controller are given. Third,
state-space formulas of the constructed LPV controllers
are introduced. These formulas result in a relatively low
complexity of the controller’s parameter dependence, and
thus an actual implementation is significantly facilitated.

As an additional feature, the proposed control structure
and the presented approach to LPV gain-scheduling are
likewise applicable to the framework of H∞ control. In
this context, the same control structure as in [8] has been
introduced independently in [12] for H∞ control, however
under very restrictive assumptions. These assumptions are
lifted by the developments of this paper. Although the
results of this paper are presented in discrete time, the
development remains the same also in continuous time.

The remainder of this article is organized as follows.
Section II contains some preliminaries and notation. Section
III reviews the problem setup and the control structure for its
solution. In Section IV, the construction of LPV controllers
is derived under certain plant conditions, whereas Section V
gives corresponding state-space formulas. The conclusions
are stated in Section VI.
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II. PRELIMINARIES

In this section, some properties and notations are defined.
Let |x| denote the absolute value of a real number x. The
space of vector-valued right-sided bounded real sequences
x = {x(k)}∞k=0 with x(k) = [x1(k), . . . , xn(k)]T is
denoted by �n

∞, with a norm defined by

‖x‖∞ := max
1≤i≤n

sup
k

|xi(k)|.

The space of matrix-valued right-sided absolutely summable
real sequences x with x(k) = (xij(k)) is denoted by �m×n

1 ,
equipped with the norm

‖x‖1 := max
1≤i≤m

n∑
j=1

∞∑
k=0

|xij(k)|.

The �∞-induced norm of an operator T : �n
∞ → �m

∞ is
defined by

‖T‖∞−ind := sup
0�=w∈�∞

‖Tw‖∞
‖w‖∞ .

For an LTI operator or transfer function, the �∞-induced
norm is the �1-norm of its impulse response matrix.

The Z-transform of a one-sided sequence x is defined
as X(z) :=

∑∞
k=0 x(k)z−k. A state-space realization of a

transfer matrix G(z) is written as[
A B
C D

]
:= C(zI − A)−1B + D = G(z).

Where it is not misleading, the dependence on z is some-
times left off for readability and brevity. The symbol I
denotes the identity matrix of appropriate dimension, having
ones on the diagonal and zeros elsewhere. The left-inverse
M† of an m×n-matrix M (m ≥ n) with full column rank
is defined by M †M = I .

Let M ∈ C
(m1+m2)×(n1+n2) be a matrix partitioned as

M =
[

M11 M12

M21 M22

]
,

and let ∆u ∈ C
n1×m1 and ∆l ∈ C

n2×m2 . Then upper
and lower Linear Fractional Transformations (LFTs) are
respectively defined as

Fu(M,∆u) := M22 + M21∆u(I − M11∆u)−1M12

Fl(M,∆l) := M11 + M12∆l(I − M22∆l)−1M21,

assuming that the inverses exist.

III. GAIN-SCHEDULING IN THE �1 FRAMEWORK

This section introduces the basic concepts and structures
of the gain-scheduling technique proposed in [8]. The
results in the subsequent sections build on this foundation.

yu
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K(ρ)
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w1 z1
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Fig. 1. (a) LPV control problem. (b) Modified problem.

A. LPV Systems and �1-Optimal Control

Given a discrete-time LPV system[
Z1(z)
Y (z)

]
= G(ρ, z)

[
W1(z)
U(z)

]
with state-space realization

G(ρ, z) =

⎡⎣ Ā(ρ) B̄1(ρ) B̄2(ρ)
C̄1(ρ) D̄11(ρ) D̄12(ρ)
C̄2(ρ) D̄21(ρ) D̄22(ρ)

⎤⎦ (1)

where u ∈ �nu∞ is the control input, y ∈ �
ny∞ is the measured

output, w1 ∈ �q
∞ represents exogenous inputs like distur-

bances or reference commands, and z1 ∈ �q
∞ represents

outputs for performance specifications (capital letters denote
Z-transformed signals). Equal dimensions of w1 and z1 can
be achieved by introducing “dummy” inputs/outputs with al-
most no influence on the plant. The matrices depend on the
time-varying parameter vector ρ(k) = [ρ1(k), . . . , ρp(k)]T .
The parameters ρ are assumed to be measurable in real-time
and to be contained in the set

Π = {ρ : ρi(k) ∈ [ρmin,i, ρmax,i] ∀k, i = 1, . . . , p} . (2)

In particular, the ρi need not be constant, and their rate of
variation may be unbounded. It is the goal of the proposed
controller design method to solve the following �1-synthesis
problem, see also Fig. 1(a).

Problem 1: Given an LPV system (1), find an LPV
output-feedback controller U(z) = K(ρ, z)Y (z) such that

1) the closed loop is internally stable in the presence of
time-varying ρ ∈ Π, and

2) the �∞-gain sup
ρ∈Π

sup
0�=w1∈�∞

‖z1‖∞
‖w1‖∞

is minimal. �

Note that the closed-loop mapping from w1 to z1 can be
written as

T (G(ρ, z),K(ρ, z)) = Fl(G(ρ, z),K(ρ, z)). (3)
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In [13], [8] it is shown that for several practically useful
types of parameter dependence, (1) can be converted into⎡⎣ Z0(z)

Z1(z)
Y (z)

⎤⎦ = P (z)

⎡⎣ W0(z)
W1(z)
U(z)

⎤⎦ (4)

W0(z) = ∆(ρ)Z0(z), (5)

with state-space realization

P (z) =

⎡⎣ P00(z) P01(z) P02(z)
P10(z) P11(z) P12(z)
P20(z) P21(z) P22(z)

⎤⎦ (6)

=

⎡⎢⎢⎣
A B0 B1 B2

C0 D00 D01 D02

C1 D10 D11 D12

C2 D20 D21 D22

⎤⎥⎥⎦ ,

where ∆ : Π → R
r×r is a possibly nonlinear function.

The resulting control structure is depicted in Fig. 1(b). In
particular, the matrices in (1) may depend on ρ in an affine,
polynomial or rational manner. Examples and procedures
on how to obtain (4)–(6) from (1) are given in [13], [8],
for example. Note that P is an LTI system, all parameter
dependence is shifted to the ∆ block, and ∆ typically is of
diagonal structure.

As is standard, in the following it is assumed that (A,B2)
is stabilizable and (A,C2) is detectable. Furthermore the
“uncertainty” block ∆(·) is viewed as an operator from �r

∞
to �r

∞ and assumed to belong to the set

Θ∆ =
{
∆=diag(∆1, . . . ,∆r) : ∆i(·) : �1∞ → �1∞ is causal

and ‖∆i‖∞−ind ≤ 1
}
,

which can be achieved by appropriate scalings included in
P . The proposed setting may be extended in a straight-
forward manner to include unknown bounded structured
uncertainties, which are not subject to measurement of any
kind, into the ∆ block, allowing for robust gain-scheduling.

B. An LPV Control Structure

To approach Problem 1, a control structure according to
Fig. 2(a) is proposed in [8]. The same control structure has
been introduced independently in [12], however under very
restrictive assumptions. These assumptions are lifted by the
developments of this paper.

A discrete-time LTI output-feedback controller

U(z) = K(z)
[

Y (z)
Ỹ (z)

]
(7)

with state-space representation

K(z) = [K1(z) K2(z)] =
[

AK BK1 BK2

CK DK1 DK2

]
(8)

is considered for control of the LPV system (4). The
controller has access to the parameter information by means
of the signal ỹ = w0, and thus changes its behavior along
with the plant.

∆
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z1

z0
w1
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(a)
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ỹ y

w1

(b)

Fig. 2. (a) LPV control structure. (b) Transformed control structure.

The interconnection of Fig. 2(a) is redrawn as in
Fig. 2(b). An augmented plant is formed from all parts of
the control structure except K and ∆, leading to⎡⎢⎢⎣

Z0(z)
Z1(z)
Y (z)
Ỹ (z)

⎤⎥⎥⎦ = Paug(z)

⎡⎣ W0(z)
W1(z)
U(z)

⎤⎦ (9)

W0(z) = ∆(ρ)Z0(z) (10)

and its general state-space realization

Paug(z) =

⎡⎢⎢⎢⎢⎣
A B0 B1 B2

C0 D00 D01 D02

C1 D10 D11 D12

C2 D20 D21 D22

0 I 0 0

⎤⎥⎥⎥⎥⎦ (11)

with appropriately dimensioned zero matrices. Still, Paug

and K are LTI. Note that the closed-loop mapping from w1

to z1 can be written as

T̃ (Paug(z),K(z),∆) = Fu (Fl(Paug(z),K(z)),∆) .
(12)

These steps lead from Problem 1 to the following classical
robust performance problem in face of structured uncer-
tainty.

Problem 2: Given the system (9), find an LTI output-
feedback controller K as in (7) such that

1) the closed loop is robustly internally stable ∀∆ ∈ Θ∆,
and

2) the closed-loop system achieves minimal �∞-gain and
robust performance:
γ := inf

K
sup

∆∈Θ∆

‖T̃ (Paug,K,∆)‖∞−ind < 1. �

To solve such a robust performance problem, several
steps are necessary. First, determine a Youla parameteriza-
tion Φ(Q) = H −V1QV2 of Fl(Paug,K) [13], [3]. Second,
find Q and L such that inf

L∈L
inf

Q∈�1
‖L−1Φ(Q)L‖1 < 1, where

L = {diag(l1, . . . , lr, lr+1Iq) : li > 0} [4]. (Sub)optimal

611



solutions to this infinite-dimensional non-convex optimiza-
tion problem are possible either by means of L-Q-iterations
[4] or via a branch-and-bound procedure [6]. In the end,
both approaches are based on computationally attractive
linear programs [4], [5], [6].

Note that in classical robust control, a pure LTI controller
of the form U(z) = K1(z)Y (z) is sought to solve such
a problem. This is a special case of (7) if the controller
dependence on the parameter information w0 is neglected.
Thus, such a classical robust LTI controller clearly is more
conservative in general than the proposed gain-scheduled
controller. Application examples in [8] show the usefulness
of the proposed gain-scheduling technique for LPV systems
and its performance enhancement over robust controllers.

In a final step, an LPV controller K has to be constructed
from the auxiliary LTI controller K, since the signal w0

is generally not available to the controller as it depends
on current parameter values and plant states. The next
sections give conditions for existence and implementability
of such LPV controllers, as well as state-space formulas
for facilitating the implementation. Note that [12] on the
contrary assumes w0 to be measurable, which in general is
not justified for practical application. Then of course, the
controller K could be directly implemented.

IV. CONSTRUCTION AND IMPLEMENTABILITY
OF GAIN-SCHEDULED CONTROLLERS

To construct an LPV controller K from the auxiliary LTI
controller K, equations (7)–(11) are taken into account such
that the signal w0 is expressed in terms of u and y. This
exposition is not restricted to the �1-framework, but rather
related to the proposed control structure of Fig. 2(a). It
can thus be directly applied to a corresponding approach
in a framework like H∞-optimal control. The general case
P01(z) �≡ 0 is dealt with first, whereas the reduction to the
frequently arising case P01(z) ≡ 0 is presented afterwards.

A. The case P01(z) �≡ 0

The following lemma gives a transfer function description
of the LPV controller K and conditions on when this
transfer function can be constructed.

Lemma 1: Consider the control structure in Fig. 2(b), a
controller K as in (7)–(8), and the augmented plant Paug as
in (9)–(11). Let

1) ny ≥ q,
2) D21 have full column rank,
3) M1 := I − ∆(ρ)(D00 − D01D

†
21D20) have full rank

∀∆(ρ), ρ ∈ Π, and
4) I−DK2M

−1
1 ∆(ρ)(D02−D01D

†
21D22) have full rank

∀∆(ρ), ρ ∈ Π.

Then an LPV controller K related to the structure in

Fig. 1(b) exists and is given by

K(ρ, z) =
(

I − K2

(
I − ∆(ρ)P̃00

)−1

∆(ρ)P̃02

)−1

·(
K1 + K2

(
I − ∆(ρ)P̃00

)−1

∆(ρ)P01P
†
21

)
,

(13)

where P̃00 := P00 − P01P
†
21P20

P̃02 := P02 − P01P
†
21P22.

Proof : From (9) we have

W1 = P †
21(Y − P20W0 − P22U).

The left-inverse of P21 exists and is proper if ny ≥ q and
D21 has full column rank [13]. The equations (9)–(11) give

W0 = ∆Z0 = ∆(P00W0 + P01W1 + P02U).

Inserting the above expression for W1 and solving for W0

yields

W0 =
(
I − ∆(P00 − P01P

†
21P20)

)−1

·
∆

(
P01P

†
21Y + (P02 − P01P

†
21P22)U

)
.

The inverse in this expression exists and is proper if and
only if M1 has full rank ∀∆(ρ), ρ ∈ Π. This is due to
the fact that the inverse of a transfer function exists and
is proper if and only if the direct feed-through matrix of
its corresponding state-space representation has an inverse
[13]. From (7)–(8) we have

U = K1Y + K2Ỹ = K1Y + K2W0.

Inserting the above expression for W0 and solving for U
results in (13). The outer inverse in (13) exists and is proper
if and only if I −DK2M

−1
1 ∆(ρ)(D02 −D01D

†
21D22) has

full rank ∀∆(ρ), ρ ∈ Π. �
Remark: The conditions of Lemma 1 can be influenced

by imposing conditions on the chosen plant description
or on the controller matrices. Appropriate modeling can
often lead to D00 = 0 and D01 = 0, trivially satisfying
condition 3. Moreover, imposing DK2 = 0 may also be
helpful, generally resulting in some performance loss. In the
most general case, the given controller construction makes it
necessary to internally reconstruct the external disturbance
w1 from the measurements y and the control input u. It is
not advisable to use the given construction in the presence
of unstable zeros of P21. In this case, P †

21 is an unstable
system, and the slightest numerical or modeling errors lead
to instability.

B. The case P01(z) ≡ 0
The conditions of Lemma 1 relax significantly for the

practically important case P01 ≡ 0.
Lemma 2: Consider the control structure in Fig. 2(b), a

controller K as in (7)–(8), and the augmented plant Paug as
in (9)–(11). Let

612



1) P01(z) ≡ 0,
2) the control problem be well-posed, that is

M2 := I − ∆(ρ)D00 have full rank ∀∆(ρ), ρ ∈ Π,
and

3) I−DK2M
−1
2 ∆(ρ)D02 have full rank ∀∆(ρ), ρ ∈ Π.

Then an LPV controller K related to the structure in
Fig. 1(b) exists and is given by

K(ρ, z) =
(

I − K2

(
I − ∆(ρ)P00

)−1

∆(ρ)P02

)−1

K1.

(14)

Proof : Using P01 ≡ 0, the equations (9)–(11) give

W0 = ∆Z0 = ∆(P00W0 + P02U).

Solving for W0 yields

W0 =(I − ∆P00)−1∆P02U.

The inverse in this expression exists and is proper if and
only if M2 has full rank ∀∆(ρ), ρ ∈ Π. This is the case
if and only if the problem and thus the plant (4)–(6) is
well-posed [13]. From (7)–(8) we have

U = K1Y + K2Ỹ = K1Y + K2W0.

Inserting the above expression for W0 and solving for U
results in (14). The outer inverse in (14) exists and is proper
if and only if I −DK2M

−1
2 ∆(ρ)D02 has full rank ∀∆(ρ),

ρ ∈ Π. �

V. STATE-SPACE FORMULAS OF
GAIN-SCHEDULED CONTROLLERS

In this section, state-space formulas for the controllers
(13) and (14) are derived. These descriptions exhibit a
minimal number of states and a relatively low parameter
complexity. The ease of implementation compared to the
use of the corresponding transfer functions is appealing.
Again, the cases P01 �≡ 0 and P01 ≡ 0 are dealt with
separately. A short discussion of controller complexity
concludes this section.

The following standard result from linear algebra, the
matrix inversion lemma, is useful in the derivation.

Lemma 3: [13, ch. 2.3] Suppose A and D are both
nonsingular matrices, then
(A−BD−1C)−1 = A−1 +A−1B(D−CA−1B)−1CA−1.

�

A. The case P01(z) �≡ 0
First, a modified transfer function of K is derived to

ultimately obtain controller descriptions with a relatively
low complexity of the parameter dependence.

Lemma 4: Under the conditions of Lemma 1, the transfer
function (13) is equivalent to

K(ρ, z) =
(

I+K2

(
I−∆(ρ)(P̃00 + P̃02K2)

)−1

∆(ρ)P̃02

)
·(

K1 + K2

(
I − ∆(ρ)P̃00

)−1

∆(ρ)P01P
†
21

)
.

(15)

Proof : Application of Lemma 3 to the first part of (13)
directly leads to (15). �

In a second step, state-space descriptions of the transfer
functions involved in (15) are taken into account and
combined to form a state-space description of (15). This
description is then analytically reduced to one with a
minimal number of states. In this context, a minimal number
of states means that all abundant states arising from state-
space operations are canceled. Further state reduction may
be achieved by minimal realizations of (6), (8), and the
resulting LPV controller, as well as by model reduction
techniques. However, due to the controller’s parameter
dependence, this is not pursued in this general and analytic
treatment.

Theorem 1: Under the conditions of Lemma 1, a state-
space description of the gain-scheduled controller K with
minimal number of states (in the above-mentioned sense)
is given by

K(ρ, z) =
[ A(ρ) B(ρ)

C(ρ) D(ρ)

]
, (16)

where

A(ρ) =

[
Ã + B̂D̃(ρ)C̃0 (B̃2 + B̂D̃(ρ)D̃02)CK

BK2D̃(ρ)C̃0 AK + BK2D̃(ρ)D̃02CK

]
(17)

B(ρ) =

[
B̂2 + B̂D̃(ρ)D̂02

BK1 + BK2D̃(ρ)D̂02

]
(18)

C(ρ) =
[

DK2D̃(ρ)C̃0 (I + DK2D̃(ρ)D̃02)CK

]
(19)

D(ρ) = (I + DK2D̃(ρ)D̃02)(DK1 + DK2D̂(ρ)D01D
†
21),
(20)

and

D̃(ρ) :=
(
I − ∆(ρ)(D̃00 + D̃02DK2)

)−1

∆(ρ)

D̂(ρ) := (I − ∆(ρ)D̃00)−1∆(ρ)

Ã := A − B1D
†
21C2

B̃0 := B0 − B1D
†
21D20

B̃2 := B2 − B1D
†
21D22

C̃0 := C0 − D01D
†
21C2

D̃00 := D00 − D01D
†
21D20

D̃02 := D02 − D01D
†
21D22

B̂ := B̃0 + B̃2DK2

B̂2 := B̃2DK1 + B1D
†
21

D̂02 := D̃02DK1 + D01D
†
21.

Proof : The transfer function (13) of the controller K follows
from Lemma 1. According to Lemma 4, (13) is equivalent
to (15). Basic state-space operations [13, ch. 3.6], followed
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by some tedious algebra and simplification steps, lead to
(16)–(20). The number of states is minimal (in the above-
mentioned sense), since the number of states is exactly the
number of states of A plus the number of states of AK . �
B. The case P01(z) ≡ 0

Consideration of the case P01(z) ≡ 0 yields strongly sim-
plified formulas. These formulas are obtained by canceling
terms with P01 in (15), as well as terms with D01 and/or
D†

21 in (16)–(20).
Lemma 5: Under the conditions of Lemma 2, the transfer

function (14) is equivalent to

K(ρ, z)=
(
I+K2

(
I−∆(ρ)(P00 + P02K2)

)−1

∆(ρ)P02

)
K1.

(21)

Proof : Application of Lemma 3 to the first part of (14)
directly leads to (21). �

Theorem 2: Under the conditions of Lemma 2, a state-
space description of the gain-scheduled controller K with
minimal number of states (in the above-mentioned sense)
is given by

K(ρ, z) =
[ A(ρ) B(ρ)

C(ρ) D(ρ)

]
, (22)

where

A(ρ) =
[

A + BD(ρ)C0 (B2 + BD(ρ)D02)CK

BK2D(ρ)C0 AK + BK2D(ρ)D02CK

]
(23)

B(ρ) =
[

(B2 + BD(ρ)D02)DK1

BK1 + BK2D(ρ)D02DK1

]
(24)

C(ρ) =
[

DK2D(ρ)C0 (I + DK2D(ρ)D02)CK

]
(25)

D(ρ) = (I + DK2D(ρ)D02)DK1, (26)

and

D(ρ) :=
(
I − ∆(ρ)(D00 + D02DK2)

)−1

∆(ρ)

B := B0 + B2DK2.
Proof : The derivation is analogous to the proof of Theorem
1, or follows directly as a special case of (16)–(20). �
C. Complexity of the Controller’s Parameter Dependence

Concerning the parameter dependence of the controller,
a short discussion is in order to give judgement about its
complexity and typical structure. This discussion is based
on the simpler case P01 ≡ 0 without loss of generality.

The state-space formulas (23)–(26) depend on the param-
eter ρ solely by means of the term

D(ρ) =
(
I − ∆(ρ)(D00 + D02DK2)

)−1

∆(ρ). (27)

On the other hand, it can be shown that a direct state-space
realization of (14) involves terms of the form

Dalt(ρ) =(I − ∆(ρ)D00)−1∆(ρ)D02· (28)(
I − DK2(I − ∆(ρ)D00)−1∆(ρ)D02

)−1

·
DK2(I − ∆(ρ)D00)−1∆(ρ).

Such a second state-space realization is also a valid one,
even with the same number of states. However, the con-
troller’s parameter dependence is more complex and in-
volves a larger number of computations. For example, if the
functional dependence of ∆(ρ) on ρ is affine, rational func-
tions in ρ with much higher polynomial order of numerator
and denominator arise from (28) than from (27). Thus it is
concluded that the achieved reduction in complexity justifies
the application of the matrix inversion lemma (Lemma 3) to
proceed from (14) to (21). Structurally equal observations
are made in the more general case P01 �≡ 0.

VI. CONCLUSIONS

This paper follows up on a novel design method for gain-
scheduled output-feedback controllers in the �1-optimal
control framework, introduced in [8]. Three major exten-
sions to the original method are presented: (i) The approach
is made applicable to more general linear parameter-varying
plants; (ii) a derivation of the explicit controller construction
and its conditions is given; (iii) a compact state-space
description of the resulting controllers yields convenient
implementation possibilities and a low complexity of the
parameter dependence. Additionally, restrictive assumptions
of the setup in [12] are lifted by the developments of this
paper, making the results applicable to other frameworks
like H∞ control.
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