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Abstract— This paper addresses the construction of piece-
wise homogeneous polynomial Lyapunov functions (PHPLFs)
for piecewise affine (PWA) systems. Sufficient conditions for
the existence of PHPLFs of a given degree for both continuous-
time and discrete-time PWA systems are obtained in terms of
linear matrix inequalities (LMIs). The result contains existing
results based on piecewise quadratic Lyapunov functions as
special cases and provides a less conservative assertion of the
stability of PWA systems, which is supported by numerical
examples.

I. INTRODUCTION

Piecewise affine (PWA) systems have been receiving
much attention in control community because a large class
of nonlinear systems, such as systems with relay, saturation
or deadzone, can be modelled as PWA systems. Some
approximation of smooth nonlinear systems [14] and fuzzy
logic (neural) systems [14], [9] can be modelled as PWA
systems as well. Moreover, in [11], Heemels et. al. estab-
lished, under mild assumptions, an equivalence among five
classes of hybrid systems, namely, PWA systems, mixed
logical dynamical (MLD) systems, linear complementar-
ity (LC) systems, extended linear complementarity (ELC)
systems, and max-min-plusscaling (MMPS) systems. Thus
PWA systems provide a powerful means of analysis and
design for nonlinear systems.

Many results on stability analysis of piecewise linear sys-
tems with piecewise quadratic Lyapunov functions (PQLFs)
have appeared in recent years. In [14], Johansson gave an
inspiring idea on piecewise quadratic Lyapunov functions
and relaxation of conservatism for continuous-time PWA
systems. Further, discontinuous Lyapunov functions are
studied in [16] with the discrete-time counterpart being
given in [7], [17]. Other issues such as the well-posedness
and the controllability and observability of PWA systems
have also been investigated; see, for example, Imura and
Schaft [13], [12] and Bemporad et al. [1].

Recently, a more general class of Lyapunov func-
tions named homogeneous polynomial Lyapunov functions
(HPLFs) was employed for robust stability analysis of
uncertain linear systems; see, e.g., [4], [5]. In [4], Chesi et.
al. constructed HPLFs for continuous-time linear systems
with time-varying structured uncertainties and showed that
HPLFs is a powerful tool for robustness analysis. In [5],
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they applied homogeneous polynomial parameter-dependent
Lyapunov functions to linear systems with real parameter
uncertainties.

In this paper, inspired by HPLFs, we apply piecewise
homogeneous polynomial Lyapunov functions (PHPLFs)
for PWA systems. We show how PHPLFs can be applied
to analyze the stability of continuous-time piecewise linear
systems using the power transformation introduced in [4],
[3], [18]. A sufficient stability condition is given in terms of
the feasibility of a set of LMIs. We also extend the result for
discrete-time PWA systems with another kind of transfor-
mation. Simulation examples are given to demonstrate the
less conservatism of the proposed approach as compared
with existing works such as [14], [7].

The rest of this paper is organized as follows. In Sec-
tion II, we introduce some preliminaries on homogeneous
polynomial functions. Two types of transformations for a
given matrix to obtain homogeneous polynomial functions
are introduced. In Section III we discuss how to construct
PHPLFs for continuous-time PWA systems. In Section IV
we present the result for discrete-time PWA systems with a
different transformation technique. In Section V, we give
some numerical examples to illustrate the advantages of
the PHPLFs over existing approaches using PQLFs. Some
conclusions are drawn in the last section.

For convenience, we introduce the following notations:
A > 0 (A < 0) means that A is positive definite (negative
definite). A � 0 implies that A is copositive. R denotes the
real space, and N the set of all positive integers. We also

denote
(

n
m

)
= n!

m!(n−m)!
.

II. PRELIMINARIES

In this section, we provide some preliminaries on homo-
geneous polynomial functions. We also introduce two types
of transformations related to the homogeneous polynomial
functions, and some useful properties of these transforma-
tions.

Definition 1: [4], [3], [18](Power transformation of
degree m) Consider the vector x ∈ Rn, x = [x1, · · ·xn]T .
The power transformation of degree m is a nonlinear change
of coordinates that forms a new vector x [m] of all integer
powered monomials of degree m that can be made from the
original x vector,

x
[m]
l = clx

ml1
1 xml2

2 · · ·xmln
n , mlj ∈ {1, 2, ..., m},

n∑
j=1

mlj = m, l = 1, ..., dn,m, dn,m =
(

n + m − 1
m

)
(1)
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Usually we take cl = 1.
Definition 2: [4], [3], [18](Homogeneous polynomial)

Let Pn,m be the set of all polynomials in n variables with
degree m, i.e. all terms of Pn,m are in the form of (1). If
a polynomial fn,m ∈ Pn,m and fn,m(λx) = λmfn,m(x),
then fn,m is a homogeneous polynomial. We define the set
of all homogeneous polynomials in n variables with degree
m as Hn,m. The square matricial representation (SMR) of

fn,2m ∈ Hn,2m is defined as fn,2m = x[m]T Cfx[m], where
x[m] ∈ Rdn,m is the base vector of homogeneous forms of
degree m in x, and Cf = CT

f ∈ Rdn,m × Rdn,m .
Remark 1: An important property of the SMR is that

the matrix Cf is not unique. In fact, we can identify some
identities of the form: x

[m]
i x

[m]
j − x

[m]
k x

[m]
h = 0, i, j, k, h ∈

{1, 2, ..., d}, which is easily translated into a symmetric
matrix C

(0)
� ∈ Rdn,m × Rdn,m with its (i, j) and (j, i)

entries being 1 (if i = j, then (i, i) = 2) and (k, h) and
(h, k) entries being -1, or some scalar multiple thereof,
and all other entries being zeros. Note that we can have
a total of Ln,m such identities, i.e. � = 1, 2..., Ln,m, where
Ln,m = 1

2dn,m(dn,m + 1) − dn,2m[4]. Thus fn,2m can

be represented as fn,2m = x[m]T (Cf +
Ln,m∑
�=1

γ�C
(0)
� )x[m],

where γ� ∈ R is scalar.
Firstly, we recall a transformation from matrix A to an

extended matrix A[m]. This type of transformation connects
Ax to homogeneous polynomials of a higher degree.

Lemma 1: [3], [18] Given A ∈ Rr×n, x ∈ Rn and m ∈
N , then under the power transform, there exists a A [m] ∈
Rdr,m×dn,m such that (Ax)[m] = A[m]x[m], ∀x ∈ Rn.

Remark 2: Note that the transformation in Lemma 1
under some constraint is unique, which means a given A
is corresponding to an unique A [m], for example, we force
the sequence of x

[m]
i to satisfy the lexigraphic ordering:

x[m] = [xm
1 xm−1

1 x2 xm−2
1 x2

2 xm−2
1 x2x3 · · · ;

xm
2 xm−1

2 x3 xm−2
2 x2

3 · · · ; · · · ; xm
n ]T

However, the reverse is not true.
Lemma 2: [3], [18] Given A, B ∈ Rn×n, A[m] and B[m]

satisfy
(AB)[m] = A[m]B[m], (2)

(Aq)[m] = (A[m])q, (3)

(AT )[m] = (A[m])
T

(4)

where q is an integer and Aq is well defined.
Lemma 3: If Ax ≥ 0, then A[m]x[m] ≥ 0. If Ax = 0,

then A[m]x[m] = 0.
Remark 3: Note that the transformation A [m] does not

possess linear properties, i.e., [αA + βB][m] �= αA[m] +
βB[m].

Next, we present the transformation from A to A [m].
This transformation is widely used in uncertain linear
systems, say, [4], [5]. It expands a differential equation to
a homogeneous polynomial of high degree.

Lemma 4: [19], [4] Given A ∈ Rn×n and m ∈ N ,
with the relation ẋ(t) = A(t)x(t), then there exists a

matrix A[m](t) ∈ R

(
n + m − 1

m

)
×
(

n + m − 1
m

)
such that

d
dt ((Ax)[m]) = A[m](t)x(t)[m].

Lemma 5: [19], [4] Letting α, β ∈ R and A, B ∈ Rn×n,

[αA + βB][m] = αA[m] + βB[m] (5)
Lemma 6: [19], [4] If A is Hurwitz, then A [m] is Hurwitz

as well.
In the next two sections, we will address how to apply

the above transformations and their properties to construct
corresponding Lyapunov functions for both continuous-
time and discrete-time PWA systems, and thus determine
conditions for stability of PWA systems.

III. CONTINUOUS-TIME PWA SYSTEMS

Consider the following continuous-time PWA system:

ẋ = Aix + ai, x ∈ Si, i ∈ I (6)

where x ∈ Rn is the system state vector,
{Si = {x|Eix + ei ≥ 0}}i∈I ⊆ Rn denotes a
partition of the state space into a set of polyhedral
partitions/subspaces/cells [14]. I is the index set of
discrete state i. ai and ei are the affine terms. S̄i is the
closure of Si. Moreover, we assume that if operating
regions S̄i ∩ S̄j �= 0 then there exist Fij and fij such that
Sij = S̄i ∩ S̄j = {x|x = Fijz + fij , z ∈ Rn−1} [10]. We
denote the set of all such index pairs i, j as Ωc and those
index sets with ai = ei = fi = 0, i.e., those partitions
containing the origin, as I0. Further, we define I1 = I\I0.
For the sake of compactness, we consider the case that all
partitions contain the origin, i.e. I = I0. An extension to
I1 will be discussed at the end of this section.

Let us introduce the extended system corresponding to
(6) defined by

ẋ[m] = Ai[m]x
[m], x ∈ Si, i ∈ I (7)

The extended system (7) plays a key role in our stability
analysis, which in fact, has been applied to analyze the
stability of systems with structured uncertainties [4] and
uncertain polytopic systems [5].

Remark 4: The partition properties still hold after the
transformation. For ∀x ∈ Si, we have Eix ≥ 0. Thus
according to Lemma 1 and Lemma 3, we have E

[m]
i x[m] ≥

0. Similarly, for ∀x ∈ Sij , we can deduce x[m] = F
[m]
ij z[m]

from x = Fijz, z ∈ Rn−1.
Based on the Lyapunov stability theory, if we can find

a set of HPLFs of degree 2m, denoted by v
(2m)
i (x), such

that

v
(2m)
i (x) > 0, ∀x ∈ Si, x �= 0; (8)

v
(2m)
i (x) = v

(2m)
j (x), ∀x ∈ Sij ; (9)

v̇
(2m)
i (x) < 0, ∀x ∈ Si, x �= 0 (10)
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Then we can define a PHPLF candidate as

v(2m) =
∑

i

τiv
(2m)
i , τi =

{
1 if x ∈ Si

0 otherwise
(11)

which implies the asymptotic stability of the corresponding
system.

Theorem 3: The continuous-time PWA system (6) is
asymptotically stable, if there exists a solution (Pi =
PT

i , Ui � 0, Vi � 0, γil) such that

Pi − E
[m]
i

T
UiE

[m]
i > 0, ∀i ∈ I0 (12)

F
[m]
ij

T
(Pi − Pj)F

[m]
ij = 0, ∀i, j ∈ Ωc (13)

PiAi[m] + Ai[m]
T Pi +

∑
�

γi�P
(0)
i� + E

[m]
i

T
ViE

[m]
i < 0

∀i ∈ I0, � = 1, ..., Ln,m

(14)
where P

(0)
i� is such that x[m]T P

(0)
i� x[m] = 0 and E

[m]
i , F

[m]
ij

and Ai[m] are the corresponding transformations of E i, Fij

and Ai, respectively.
Proof: Define v

(2m)
i (x) = x[m]T Pix

[m]. Now we
prove that v

(2m)
i is a desired Lyapunov function. For each

region Si, we have Eix ≥ 0, ∀x ∈ Si. Thus E
[m]
i x[m] ≥ 0.

From (12), we have

v
(2m)
i = x[m]T Pix

[m]

> x[m]T E
[m]
i

T
UiE

[m]
i x[m] ≥ 0, x �= 0

Since x = Fijz, ∀x ∈ Sij , x[m] = F
[m]
ij z[m]. From (13), we

have

v
(2m)
i = x[m]T Pix

[m] = z[m]T F
[m]
ij

T
PiF

[m]
ij z[m]

= z[m]T F
[m]
ij

T
PjF

[m]
ij z[m] = x[m]T Pjx

[m] = v
(2m)
j

Further, it follows from (14) that

d
dtv

(2m)
i = x[m]T (PiAi[m] + Ai[m]

T Pi)x[m]

< −x[m]T (
∑
�

γilP
(0)
il + F

[m]
i

T
ViF

[m]
i )x[m]

= −x[m]T F
[m]
i

T
ViF

[m]
i x[m] ≤ 0, x �= 0

Observe that
d

dt
v
(2m)
i |ẋ[m]=Ai[m]x[m] =

d

dt
v
(2m)
i |ẋ=Aix

Thus we can conclude that the v
(2m)
i is a HPLF for system

(6) and the system is asymptotically stable.

Remark 5: In [14], Johansson constructed a type of so-
called continuity matrices to guarantee the continuity of
Lyapunov function. A matrix �Ei is a continuity matrix for
cell Si, if �Eix = �Ejx, for ∀x ∈ Sij . Thus we have:
�E

[m]
i x[m] = �E

[m]
j x[m]. An alternative approach to replace

(13) is to choose Pi = �E
[m]T
i T �E

[m]
i , where T = T T , such

that for x ∈ Sij ,

v
(2m)
i = x[m]T Pix

[m] = x[m]T �E
[m]T
i T �E

[m]
i x[m]

= x[m]T �E
[m]T
j T �E

[m]
j x[m] = x[m]T Pjx

[m] = v
(2m)
j

Remark 6: It is obvious that when m = 1, the result will
reduce to that of Johansson [14] or Hassibi and Boyd [10].

Remark 7: Some SDP solvers such as SDPSOL handle
equality constraints such as those given in (13). However,
other SDP solvers, say, LMI Toolbox of Matlab, cannot han-
dle equality constraint directly. In this case, we may adopt
another approach using discontinuous Lyapunov functions.

In fact, (9) is a strong condition, which guarantees the
continuity of the Lyapunov function when the state from
one partition enters another one. The requirement that the
Lyapunov function be decreasing when the state crosses
from the i-th partition to the j-th one implies that:

v
(2m)
i (x) ≥ v

(2m)
j (x) or x[m]T Pix

[m] ≥ x[m]T Pjx
[m]

(15)
Note that the set Sij can be represented by {x| �Fijx = 0},

where �Fij is a properly chosen matrix [14]. Thus ∀x ∈ S ij ,
�F

[m]
ij x[m] = 0. (15) is equivalent to the following LMI in

Pi, Pj , Tij by the Finsler’s Lemma [2]:

Pi − Pj + �F
[m]T
ij Tij + T T

ij
�F

[m]
ij ≥ 0 (16)

Thus, (13) of Theorem 3 can be replaced by (16) for ∀i, j ∈
Ωc.

Remark 8: For the case that i ∈ I1, we can rewrite the
system (6) as

ξ̇ = Āiξ, ∀ξ ∈ S̄i =
{
ξ|Ēiξ ≥ 0

}
(17)

where

ξ =

[
x
1

]
, Āi =

[
Ai ai

0 0

]
, Ēi =

[
Ei ei

]

F̄ij =

[
Fij fij

0 1

]
, z̄ =

[
z
1

]

Note that if Ēiξ ≥ 0, then Ē
[m]
i ξ[m] ≥ 0. If ξ = F̄ij z̄, then

ξ[m] = F̄
[m]
ij z̄[m]. Now we define v̄

(2m)
i = ξ[m]T P̄iξ

[m],
which is no longer a HPLF. Fortunately, in (12)-(14), if we
replace Ai[m] by Āi[m], E

[m]
i by Ē

[m]
i and F

[m]
ij by F̄

[m]
ij and

with the variables properly dimensioned, the inequalities
about v̄

(2m)
i (replace v

(2m)
i with v̄

(2m)
i ) in (8)-(10) still hold.

In fact, the last row of Āi is zero and the derivative of
constant 1 is zero, thus there must exist a Āi[m], such that
d
dt ((Āξ)[m]) = Ā[m](t)ξ[m].

Note that the coefficients of the last entry of ξ in Lemma
1 will not be changed if we take the last entry of ξ as
variable. So, for Ēi and F̄ij , there must exist Ē

[m]
i and F̄

[m]
ij ,

such that (Ēiξ)[m] = Ē
[m]
i ξ[m] and (F̄ijξ)[m] = F̄

[m]
ij ξ[m].

Thus we have
d

dt
v̄
(2m)
i

|
ξ̇[m]=Āi[m]ξ

[m] =
d

dt
v̄
(2m)
i

|
ξ̇=Āiξ

=
d

dt
v̄
(2m)
i

|ẋ=Aix+ai

We can conclude that v̄
(2m)
i is a Lyapunov function

segment for the region Si, i ∈ I1.
Remark 9: A regular sliding mode occurs when the

vector fields in both partitions S̄i and S̄j point toward
the common boundary Sij . Another sliding mode named
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higher-order sliding mode arises when the vector fields are
tangent to the boundary. However, we do not deal with this
issue in this paper. The readers may refer to [14] concerning
this issue.

Remark 10: Theorem 3 introduces a PHPLF for the
continuous-time PWA system (6). Note that Zachary in
[18] showed that non-homogeneous polynomial Lyapunov
functions in the form of sum of squares cannot perform
better than HPLFs of the same degree for simultaneous
stability of multiple linear systems. For PWA systems,
we can also show that such non-homogeneous Lyapunov
function cannot improve stability analysis. To improve the
conservatism of the PHLFs for stability analysis, one can
simply increase the degree m.

Remark 11: Some technical improvements can be ap-
plied here. For a copositive definite matrix, usually, we
simply let all entries of the matrix be positive scalars, which
obviously is a strong sufficient condition. In [15], Parrilo
suggested a relaxed approach to obtain a copositive definite
matrix based on an LMI method. The method can be applied
here.

Another technique is suggested by Zachary [18] which
applies the set

Īn,m = {X ≥ 0 ∈ Rdn,m×dn,m : x[m]T Xx[m] =
n∑

i=1

x2m
i }

and the S-procedure to obtain a positive definite v(x). For
example, Īn,1 = In×n, Ī2,2 = diag{1, 0, 1}. Thus (12) in
fact can be replaced by

Pi − E
[m]
i

T
UiE

[m]
i − εĪn,m ≥ 0 (18)

where ε is a sufficiently small positive scalar and m is the
degree of the corresponding power transformation.

IV. DISCRETE-TIME PWA SYSTEMS

Consider the following discrete-time PWA system:

xt+1 = Aixt + ai, xt ∈ Si, i ∈ I (19)

where xt ∈ Rn is the state variable,
{Si = {xt|Eixt + ei ≥ 0}}i∈I ⊆ Rn denotes a set
of polyhedral partitions/subspaces of the state space, a i

and ei are the affine terms. Similar to the continuous-
time case, we also assume that if operating regions
S̄i ∩ S̄j �= 0 then there exist Fij and fij such that
Sij = S̄i ∩ S̄j = {xt|xt = Fijzt + fij , zt ∈ Rn−1}. We
denote those index sets with ai = fi = ei = 0 as I0

and I1 = I\I0. Similar to the previous section, we first
consider the set I0 and give an extension to I1 at the
end of this section. Let Ωd represent possible index pairs
whether in the same region or from one to another based
on the measured state space:

Ωd
∆= {i, j|xt ∈ Si, xt+1 ∈ Sj , i, j ∈ I}

Similar to the continuous-time case, we introduce the
extended systems corresponding to (19) defined by

x
[m]
t+1 = A

[m]
i x

[m]
t , xt ∈ Si, i ∈ I (20)

Note that the partition properties of Remark 4 associated
with the extended state also hold. We define a PHPLF
similar to (11), and have the following result.

Theorem 4: The discrete-time PWA system (19) is
asymptotically stable, if there exists a solution (Pi =
PT

i , Ui � 0, Vij � 0, γi�) such that

Pi − E
[m]
i

T
UiE

[m]
i > 0, ∀i ∈ I0 (21)

Ai
[m]T PjAi

[m] − Pi +
∑
�

γi�P
(0)
i� + E

[m]
i

T
VijE

[m]
i < 0

∀i, j ∈ Ωd, i, j ∈ I0, � = 1, ..., Ln,m

(22)
where P

(0)
i� is such that x[m]T P

(0)
i� x[m] = 0; E

[m]
i and Ai

[m]

are the corresponding transformations of E i and Ai.

Proof: Define v
(2m)
i (t) = x

[m]
t

T
Pix

[m]
t . For each

region Si, we have Eixt ≥ 0, ∀xt ∈ Si. Thus E
[m]
i x

[m]
t ≥

0. From (21), we have

v
(2m)
i

(t) = x
[m]
t

T
Pix

[m]
t

> x
[m]
t

T
E

[m]
i

T
UiE

[m]
i

x
[m]
t

≥ 0, x
[m] �= 0

Similar to [7], we assume that the dynamics of the system
is governed by the dynamics of the local model of S i when
the state of the system transits from the region Si to Sj .
From (22), we have

∆v(t) = v(2m)(t + 1) − v(2m)(t) = x
[m]
t

T
(Ai

[m]T PjAi
[m] − Pi)x

[m]
t

< −x
[m]
t

T
(
∑

�

γi�P
(0)
i�

+ E
[m]
i

T
ViE

[m]
i

)x
[m]
t

= −x
[m]
t

T
E

[m]
i

T
ViE

[m]
i

x
[m]
t ≤ 0, x[m] �= 0

for i, j ∈ Ωd. Note that

∆v(t)|xt+1=Aixt = x
[m]T
t+1 Pjx

[m]
t+1 − x

[m]T
t (t)Pix

[m]
t

= (Aixt)
[m]T Pj(Aixt)

[m] − x
[m]T
t Pix

[m]
t

= (A
[m]
i

x
[m]
t )

T
PjA

[m]
i

x
[m]
t − x

[m]T
t Pix

[m]
t

= ∆v(t)|
x
[m]
t+1

=A
[m]
i

x
[m]
t

(23)

Thus we can conclude that v
(2m)
i is the right set of HPLFs

for system (19). The proof is completed.

Remark 12: It is obvious that when m = 1, the result
will reduce to that of Feng’s [7].

Remark 13: For the case that i, j ∈ I1, we can rewrite
the system (19) as

ξ̇t = Āiξt, ∀ξt ∈ S̄i =
{
ξt|Ēiξt ≥ 0

}
(24)

where

ξt =

[
xt

1

]
, Āi =

[
Ai ai

0 1

]
, Ēi =

[
Ei ei

]
We can easily check that in the equalities (21)-(22), when

A
[m]
i is replaced by Ā

[m]
i , E

[m]
i by Ē

[m]
i with the variables

properly dimensioned, the properties of v̄
(2m)
i still hold for

i, j ∈ I1.
However, different from the continuous-time case, jumps

of state from one partition to another are much more
complex. In fact, we have to deal with the situation that
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the state jumps from the partition i ∈ I0 to the partition
j ∈ I1 or vice versa.

Case 1 (i ∈ I0, j ∈ I1 and i, j ∈ Ωd): We choose

Āi =
[

Ai 0
0 1

]
and F̄i =

[
Fi 0

]
. Now we have to

extend the Lyapunov matrix Pi to a proper dimensioned
matrix P̄i. A procedure is described as follows:

Given a variable matrix Zi = (z(i)
i1,i2

) ∈
Rdn+1,m×dn+1,m . Thus W̄i = ξ[m]T Ziξ

[m] =
dn+1,m×dn+1,m∑

j=1

z
(i)
i1,i2

x
mj1
1 · · ·xmjn

n , where
n∑

k=1

mjk can

take a value from the set {0, 2m − 2, 2m − 1, 2m}.
Compare W̄i with vi = x[m]T Pix

[m] and determine the
entries of Zi such that z

(i)
i1,i2

for x
[2m]
i are the same as the

coefficient of x
[2m]
i in vi, and let the rest entries of Zi

be zeros. Choose such Zi as P̄i. In this situation, we can
easily check that vi = x[m]T Pix

[m] = ξ[m]T P̄iξ
[m] = v̄i.

Case 2 (i ∈ I1, j ∈ I0 and i, j ∈ Ωd): Simply let Āj =[
Aj 0
0 1

]
and Ēj =

[
Ej 0

]
, and choose the proper

P̄j from Pj as Case 1.
To complete Theorem 4, the following two conditions

shall be added:

P̄i − Ē
[m]T
i ŪiĒ

[m]
i > 0, ∀i ∈ I0 (25)

Ā
[m]T
i P̄jAi

[m] − P̄i +
∑

l γilP̄
(0)
il + Ē

[m]T
i V̄ijĒ

[m]
i < 0,

(26)
∀i, j ∈ Ωd; (i, j ∈ I1)∪(i ∈ I0∩j ∈ I1)∪(i ∈ I1∩j ∈ I0)

where P̄
(0)
i� is such that ξ[m]T P̄

(0)
i� ξ[m] = 0; Ē

[m]
i and

Āi[m] are the corresponding transformations of Ēi and Āi,
respectively. Thus, we have already checked all the four
possible situations (i, j ∈ I0; i, j ∈ I1; i ∈ I0, j ∈ I1;
i ∈ I1, j ∈ I0; for i, j ∈ Ωd) that may happen in the state
jump for discrete-time systems.

Remark 14: We can also conclude that the non-
homogeneous polynomial Lyapunov function in the form
of sum of squares cannot improve the stability analysis
for discrete-time PWA systems as stated in Remark 10. A
similar result about how to alleviate the conservatism as
stated in Remark 11 can be applied here.

V. EXAMPLES

In this section, we give some examples to illustrate our
results. We compare our results with existing works in two
aspects: One is the decay rate of the system; the other is
the assertion of stability.

Example 1: The following example is from [14]. Here
we will compare the decay rate of the continuous-time PWA
system (6). The system parameters are given by

A1 = A3 =

[ −0.1 1
−5 −0.1

]
, A2 = A4 =

[ −0.1 5
−1 −0.1

]
E1 = −E3 =

[ −1 1
−1 −1

]
, E2 = −E4 =

[ −1 1
1 1

]
By setting (14) as

PiAi[m]+Ai[m]
T Pi−ρPi+

∑
�

γi�P
(0)
i� +E

[m]
i

T
ViE

[m]
i < 0

where ρ is the corresponding decay ratio. We compare ρ
by solving m = 1 and m = 2, respectively. Note that when
m = 1, P

(0)
i� = 0, thus the method is actually equivalent

to the method of Johansson [14] or Hassibi and Boyd [10].
And the optimal ρ = −0.21.

When m = 2, the corresponding Ai[2] and E
[2]
i are

A1[2] = A3[2] =

[
−0.2 10 0
−1 −0.2 5
0 −2 −0.2

]

A2[2] = A4[2] =

[
−0.2 2 0
−5 −0.2 1
0 −10 −0.2

]
,

E
[2]
1 = E

[2]
3 =

[
1 −2 1
1 0 −1
1 2 1

]
, E

[2]
2 = E

[2]
4 =

[
1 −2 1
−1 0 1
1 2 1

]

The optimal ρ = −0.40. It is obvious that when m = 2,
the PHPLF gives a much better result than that of PQLF,
or m = 1.

If we change the system parameters Ai to

A1 = A3 =

[ −0.1 1
−5 0.1

]
, A2 = A4 =

[ −0.1 5
−1 −0.1

]
When m = 1, we cannot get a feasible solution from

(12)-(14), i.e., Johansson [14] or Hassibi and Boyd [10]’s
methods cannot confirm the stability of the system. Based
on the simulation programmed by Johansson [14], we can
see that the system is stable as shown in Figure 1.

In fact, if we choose m = 2, we can show that the system
is stable and Pi for (12)-(14) are given by:

P1 =

[
39.3319 −8.47619 −12597.9
−8.47619 25590.7 −41.6463
−12597.9 −41.6463 982.788

]

P2 =

[
981.565 −36.8693 −8311.88
−36.8693 17019.3 −13.2532
−8311.88 −13.2532 39.9871

]

P3 =

[
39.3319 −8.47619 −11666.2
−8.47619 23727.4 −41.6463
−11666.2 −41.6463 982.788

]

P4 =

[
981.565 −36.8693 510.634
−36.8693 −625.727 −13.2532
510.634 −13.2532 39.9871

]

Note that in [14], the authors suggested a way to further
divide partitions, in order to establish the stability of system.
This method is valid here.

Example 2: In this example, we will compare the decay
ratio of the discrete-time PWA system (19). The system
parameters are given by

A1 = A3 =

[
1 0.01

−0.05 0.897

]
, A2 = A4 =

[
1 0.05

−0.01 0.897

]
Ei, i ∈ I is the same as these of Example 1.

Since we do not know the system state jump a priori, we
force Ωd = I × I. By setting (22) as

Ai
[m]T PjAi

[m]−(1+ρ)Pi+
∑

�

γi�P
(0)
i� +E

[m]
i

T
VijE

[m]
i < 0

where ρ is the corresponding decay rate. We compare ρ by
solving m = 1 and m = 2, respectively. Note that when
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Fig. 1. System state trajectory [0 1]T and [1 0]T
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Fig. 2. System state trajectory from [0 1]T and [0 -1]T

m = 1, P
(0)
i� = 0, thus the method is actually equivalent to

the method of Feng [7]. And the optimal ρ = −0.01.
When m = 2, the corresponding A

[2]
i are

A
[2]
1 = A

[2]
3 =

[
1 0.02 0.0001

−0.05 0.8965 0.00897
0.0025 −0.0897 0.804609

]

A
[2]
2 = A

[2]
4 =

[
1 0.1 0.0025

−0.01 0.8965 0.04485
0.0001 −0.01794 0.804609

]

And E
[2]
i are the same as those of Example 1. The optimal

ρ = −0.02. It is obvious that m = 2 gives an much
improved result.

In fact, if we change the system parameters to:

A1 = A3 =

[
1 0.01

−0.05 0.997

]
, A2 = A4 =

[
1 0.05

−0.01 0.998

]
we cannot get a feasible solution when m = 1. However,

when m = 2, Theorem 4 still proves the stability of the
system with the corresponding Pi shown as follows.

P1 =

[
6.98249 0.122781 117286
0.122781 −234570 −0.0225782
117286 −0.0225782 0.249983

]

P2 =

[
0.261448 0.18896 186391
0.18896 −372779 0.719387
186391 0.719387 7.01142

]

P3 =

[
6.98249 0.122781 137957
0.122781 −275911 −0.0225782
137957 −0.0225782 0.249983

]

P4 =

[
0.261448 0.18896 119429
0.18896 −238855 0.719387
119429 0.719387 7.01142

]

The simulation result in Figure 2 verifies our concluson.

VI. CONCLUSION

In this paper, sufficient conditions for the stability of
PWA systems based on piecewise homogeneous polynomial
Lyapunov functions (PHPLFs) have been provided. The
conditions can be checked by solving a set of LMIs. With
respect to the previous work on PQLFs, improved stability
analysis results can be obtained by increasing the degree of
the PHPLF. Some numerical examples have demonstrated
the advantages of the PHPLFs.
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