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Abstract— In this paper we investigate the stability of
discrete-time PWA systems in closed-loop with quadratic cost
based Model Predictive Controllers (MPC) and we derive a
priori sufficient conditions for Lyapunov asymptotic stability.
We prove that Lyapunov stability can be achieved for the
closed-loop system even though the considered Lyapunov
function and the system dynamics may be discontinuous.
The stabilization conditions are derived using a terminal
cost and constraint set method. An S-procedure technique
is employed to reduce conservativeness of the stabilization
conditions and a linear matrix inequalities set-up is developed
in order to calculate the terminal cost. A new algorithm for
computing piecewise polyhedral positively invariant sets for
PWA systems is also presented. In this manner, the on-line
optimization problem associated with MPC leads to a mixed
integer quadratic programming problem, which can be solved
by standard optimization tools.

Index Terms— Hybrid systems, Lyapunov stability, Piece-
wise affine systems, Model predictive control.

I. INTRODUCTION

Hybrid systems provide a unified framework for mod-
eling complex processes that include both continuous and
discrete dynamics. Several modeling formalisms have been
developed for describing hybrid systems, such as Mixed
Logical Dynamical (MLD) systems [1] or Piecewise Affine
(PWA) systems [2], and several control strategies have
been proposed for relevant classes of hybrid systems. PWA
systems in particular have become popular due to their
accessible mathematical description on one hand, and their
ability to model a broad class of hybrid systems [3] on
the other. Many of the control schemes for hybrid systems
are based on Model Predictive Control (MPC), e.g., as the
ones in [1], [4], [5], [6]. The implementation of MPC for
hybrid systems faces two difficult problems: how to reduce
the on-line computational complexity and, how to guarantee
closed-loop stability. In this paper we focus on the latter
problem and we aim at deriving sufficient conditions that
guarantee asymptotic stability in the Lyapunov sense [7] for
hybrid MPC based on quadratic performance indices. Note
that many of the hybrid MPC schemes, such as [1], [4], [5],
[6], only guarantee attractivity, although Lyapunov stability
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is a desirable property from a practical point of view as well.
This is due to the fact that if attractivity alone is ensured,
then in principle, an arbitrarily small perturbation from the
equilibrium may cause the state of the closed-loop system
to drift far away by a fixed distance before converging back
to the origin.

For PWA systems in closed-loop with hybrid MPC based
on quadratic costs, the stabilization conditions translate into
Linear Matrix Inequalities (LMI), as shown in [6], [8]. A
terminal cost and constraint set method [9] has been used
in [6] to guarantee attractivity for PWA systems in closed-
loop with MPC controllers. The terminal weight is cal-
culated using semi-definite programming and the terminal
state is constrained to a polyhedral positively invariant set.
Another option to guarantee attractivity for hybrid MPC
based on quadratic costs is to impose a terminal equality
constraint, as done in [1]. However, this method has the
disadvantage that the predicted state must be brought to the
origin in finite time. This requires that the PWA system
is controllable, while stabilizability should be sufficient in
general. Moreover, a longer prediction horizon may be
needed for ensuring feasibility of the MPC optimization
problem, which increases the computational complexity.
Controllers with reduced complexity are proposed for this
case in [8], although convergence can only be established
by an a posteriori analysis.

In this paper we extend the work of [6], [8] based
on a terminal cost and constraint set method [9]. We
derive a priori sufficient conditions for asymptotic stability
(including next to attractivity, also Lyapunov stability) of
hybrid MPC with costs expressed as quadratic forms. We
show that Lyapunov stability can be achieved even though
the MPC value function and the system dynamics may be
discontinuous. We employ an S-procedure technique [10]
to reduce the conservativeness of the stabilization condi-
tions with respect to [6], [8] (the example illustrates the
improvements) and we develop an LMI set-up in order to
calculate the terminal cost. A new algorithm for calculating
piecewise polyhedral positively invariant sets (needed as
the terminal set) for PWA systems is also developed. As
a consequence, the MPC optimization problem leads to an
Mixed Integer Quadratic Programming (MIQP) problem,
which is a standard problem in hybrid MPC [1].

II. PRELIMINARIES

Let R, R+, Z and N denote the field of real numbers,
the set of non-negative reals, the set of integer numbers and
the set of non-negative integers, respectively. Given a set
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S ⊆ R
n, we denote by ∂S the boundary of S, by int(S) its

interior, and by cl(S) its closure. Consider the time-invariant
discrete-time autonomous nonlinear system described by

xk+1 = G(xk), (1)

where G : R
n → R

n is an arbitrary nonlinear function.

Definition II.1 Let 0 ≤ λ ≤ 1 be given. A set P ⊆ R
n is

called a λ-contractive set for system (1) if for all x ∈ P
it holds that G(x) ∈ λP . For λ = 1 a λ-contractive set is
called a positively invariant set.

A polyhedron is a convex set obtained as the intersection
of a finite number of open and/or closed half-spaces.
Moreover, a convex and compact set in R

n that contains the
origin in its interior is called a C-set. A piecewise polyhedral
set is a finite union of polyhedral sets. The 2-norm of a
vector x ∈ R

n is defined as:

‖x‖2 �
√

|x1|2 + . . . + |xn|2,
where xi, i = 1, . . . , n is the i-th component of x. For a
positive definite matrix Z, λmin(Z) and λmax(Z) denote the
smallest and the largest eigenvalue of Z, respectively.

III. PROBLEM STATEMENT

Consider the time-invariant discrete-time PWA system
described by equations of the form [2]

xk+1 = Ajxk + Bjuk + fj when xk ∈ Ωj , (2)

where xk ∈ X ⊆ R
n is the state and uk ∈ U ⊆ R

m is the
control input at the discrete-time instant k ≥ 0. Aj ∈ R

n×n,
Bj ∈ R

n×m, fj ∈ R
n, j ∈ S with S := {1, 2, . . . , s} a

finite set of indices and s denoting the number of discrete
modes. Here, fj ∈ R

n denotes a fixed offset vector for all
j ∈ S. The sets X and U are assumed to be polyhedral C-
sets. The collection {Ωj | j ∈ S} defines a partition of X,
meaning that ∪j∈SΩj = X and Ωi∩Ωj = ∅ for i 
= j. Each
Ωj is assumed to be a polyhedron (not necessarily closed).
Let S0 := {j ∈ S | 0 ∈ cl(Ωj)} and let S1 := {j ∈ S | 0 
∈
cl(Ωj)}, so that S = S0 ∪S1. We assume that the origin is
an equilibrium state for (2) with u = 0 and we require that

fj = 0 for all j ∈ S0. (3)

The class of hybrid systems described by (2)-(3) contains
PWA systems which may be discontinuous over the bound-
aries and which are Piecewise Linear (PWL), instead of
PWA, in the state space region ∪j∈S0Ωj . For a fixed N ∈ N,
N ≥ 1, let xk(xk,uk) := (xk+1, . . . , xk+N ) denote a state
sequence generated by system (2) from initial state xk and
by applying the input sequence uk := (uk, . . . , uk+N−1) ∈
U

N . Furthermore, let XT ⊆ X denote a desired target set
that contains the origin.

Definition III.1 The class of admissible input sequences
defined with respect to XT and state xk ∈ X is UN (xk) :=
{uk ∈ U

N | xk(xk,uk) ∈ X
N , xk+N ∈ XT }.

Consider the following constrained optimization problem.

Problem III.2 At time k ≥ 0 let xk ∈ X, the target set
XT ⊆ X and N ≥ 1 be given. Minimize the cost function

J(xk,uk) � x�
k+NP (xk+N )xk+N +

N−1∑
i=0

x�
k+iQxk+i

+ u�
k+iRuk+i (4)

over all input sequences uk ∈ UN (xk), where P (xk+N ) =
Pj when xk+N ∈ XT ∩Ωj and (xk+i, uk+i) satisfy (2) for
i = 0, . . . , N − 1.

Here, N denotes the prediction horizon and Pj , Q and R
are assumed to be positive definite matrices. We call an
initial state xk ∈ X feasible if UN (xk) 
= ∅. Similarly,
Problem III.2 is said to be feasible (or solvable) for xk ∈ X

if UN (xk) 
= ∅. Let Xf (N) denote the set of feasible initial
states xk with respect to Problem III.2 and let

VMPC : Xf (N) → R+, VMPC(xk) � inf
uk∈UN (xk)

J(xk,uk)

(5)
denote the value function corresponding to (4). Throughout
the paper we assume that there exists an optimal sequence of
controls calculated by solving Problem III.2 for state xk ∈
Xf (N), i.e. u∗

k := (u∗
k, u∗

k+1, . . . , u
∗
k+N−1). Hence, the

infimum in (5) is a minimum and VMPC(xk) = J(xk,u∗
k).

The following stability analysis is not affected by the
possible non-uniqueness of the optimal control sequence,
i.e. all results apply irrespective of which optimal sequence
is selected. Let x∗

k(xk,u∗
k) := (x∗

k+1, . . . , x
∗
k+N ) denote

the state sequence generated by system (2) from initial
state xk ∈ Xf (N) and by applying the optimal sequence
of controls u∗

k. Let u∗
k(1) denote the first element of u∗

k.
According to the receding horizon strategy, the MPC control
law is defined as

uMPC
k = u∗

k(1); k ∈ N. (6)

A precise problem formulation can now be stated as follows.

Problem III.3 Let a desired set of initial states X0 ⊆ X,
system (2) and the matrices Q, R be given. Determine the
terminal weights Pj , the terminal constraint set XT and the
prediction horizon N such that system (2) in closed-loop
with the MPC control (6) is asymptotically stable in the
Lyapunov sense and X0 ⊆ Xf (N).

Moreover, it is desirable that a solution to the above
problem should be such that Problem III.2 leads to an MIQP
problem, which can be solved by standard optimization
tools [11].

Note that many of the hybrid MPC schemes only guaran-
tee attractivity, e.g., see [1], [5], and not Lyapunov stability
[7], which is an important property in practice. This is due to
the fact that if attractivity alone is ensured, then in principle,
an arbitrarily small perturbation from the equilibrium may
cause the state of the closed-loop system to drift far away
by a fixed distance before converging back to the origin.
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IV. MAIN RESULTS

In this section we derive a priori sufficient conditions that
guarantee asymptotic stability in the Lyapunov sense for
the closed-loop hybrid system (2)-(6). Consider an auxiliary
local PWL control law of the form

ũk � Kjxk, xk ∈ Ωj , k ∈ N, Kj ∈ R
m×n, j ∈ S0. (7)

Let XU := ∪j∈S0{x ∈ Ωj | Kjx ∈ U} denote the safe set
with respect to state and input constraints for this controller.
Let XT ⊆ XU ⊆ ∪j∈S0Ωj denote the terminal constraint
set from Problem III.2. Let Qji := {x ∈ Ωj | ∃u ∈ U :
Ajx + Bju + fj ∈ Ωi}, (j, i) ∈ S0 × S0 and let St0 :=
{(j, i) ∈ S0 × S0 | Qji 
= ∅}. The set of pairs of indices
St0 can be easily determined off-line by solving s2

0 linear
programs, where s0 is the number of elements of S0. Let
x∗

k(xk,u∗
k) := (x∗

k+1, . . . , x
∗
k+N ) denote the state sequence

generated by system (2) from initial state xk ∈ Xf (N) and
by applying the optimal sequence of controls u∗

k.

Theorem IV.1 [12] Consider system (2) and suppose XT ⊆
XU is a closed positively invariant set for the closed-loop

system (2)-(7) that contains the origin in its interior. Assume

that there exists N ≥ 1 such that X0 ⊆ Xf (N) and that

x̃�
k+1Pix̃k+1 − x�

k Pjxk + x�
k Qxk + ũ�

k Rũk ≤ 0 (8)

for all xk ∈ XT ∩ Ωj , (j, i) ∈ St0, where{
x̃k+1 � Ajxk + Bj ũk + fj

ũk = Kjxk

when xk ∈ XT ∩ Ωj .

(9)
Then, the origin of the PWA system (2) in closed-loop

with the MPC control (6) is asymptotically stable in the

Lyapunov sense in Xf (N), while satisfying the state and

input constraints.

Proof: Let ∆VMPC(xk) := VMPC(xk+1) − VMPC(xk).
Consider the shifted sequence of controls uk+1 :=
(u∗

k+1, . . . , u
∗
k+N−1, ũk+N ). By optimality, we observe that

for all xk ∈ Xf (N)

∆VMPC(xk) ≤ J(xk+1,uk+1) − J(xk,u∗
k) =

= −x�
k Qxk − u∗�

k Ru∗
k + x̃�

k+N+1Pix̃k+N+1−
− x∗�

k+NPjx
∗
k+N + x∗�

k+NQx∗
k+N + ũ�

k+NRũk+N . (10)

Since x∗
k+N ∈ XT , from the hypothesis (8) it follows that

∆VMPC(xk) ≤ −x�
k Qxk ≤ λmin(Q)‖xk‖2

2. (11)

Then, it follows that VMPC has a negative definite forward
difference [7]. From (4) it follows that

VMPC(xk) ≥ x�
k Qxk ≥ λmin(Q)‖xk‖2

2, (12)

for all xk ∈ Xf (N). Hence, VMPC is a positive definite and
radially unbounded function [7].

Let x̃k(xk, ũk) := (x̃k+1, . . . , x̃k+N ) denote the state
sequence generated by system (9) from initial state xk ∈
XT . Since x̃k ∈ XN

T , (8) holds for all elements of the

sequence x̃k and by optimality it follows that (e.g., see [12]
for details):

VMPC(xk) ≤ max
j∈S0

x�
k Pjxk ≤ max

j∈S0
λmax(Pj)‖xk‖2

2, (13)

for all xk ∈ XT . Hence, VMPC is a decrescent function [7]
on XT (note that XT contains the origin in its interior).

In [9] it is proven that if VMPC satisfies the conditions
(11)-(12)-(13), and if VMPC is continuous, then asymptotic
stability in the Lyapunov sense is guaranteed. We prove
in [12] that the conditions (11)-(12)-(13) are sufficient for
asymptotic stability in the Lyapunov sense, even though the
VMPC is discontinuous. The reader is referred to [12] for
details, due to space limitations.

Hence, from (11)-(12)-(13) and [12] it follows that the
PWA system (2) in closed-loop with the MPC control (6)
is asymptotically stable in the Lyapunov sense in Xf (N).

Remark IV.2 The results of [9] regarding stability of MPC
rely on the fact that VMPC is continuous (e.g., see Section 3.2
of [9]). Theorem IV.1 shows that Lyapunov stability can be
achieved in quadratic forms based hybrid MPC, even though
VMPC may be discontinuous (with the exception of x = 0).
Note that VMPC is always continuous in x = 0, since by
(13) we have that limx→∞ VMPC = VMPC(0) = 0.

A. Computation of the terminal weights and control gains

Under the assumption that the closed-loop system (9) ad-
mits a common quadratic or a Piecewise Quadratic (PWQ)
Lyapunov function, a solution to inequality (8) can be found
via semi-definite programming, as it has been shown in
[6] (see also [8] for an alternative LMI set-up). In the
sequel we employ an S-procedure technique with respect to
inequality (8) in order to reduce the conservativeness of the
stabilization conditions (as done in [10]), i.e. we consider
the matrix inequality

Pj − (Aj + BjKj)�Pi(Aj + BjKj) − Q

− K�
j RKj − E�

jiUjiEji > 0 for all (j, i) ∈ St0 (14)

in the unknowns (Pj , Kj , Uji), where the matrices Pj are
the terminal weights employed in cost (4), the matrices Uji

have all entries non-negative and the matrices Eji define the
cones Cji, which are such that Cji := {x ∈ R

n | Ejix ≥ 0}
and Qji ⊆ Cji for all (j, i) ∈ St0. Note that if (Pj , Kj , Uji)
with Pj > 0 and Uji with all entries non-negative for all
(j, i) ∈ St0 satisfy (14), then it follows that

x�(Pj − (Aj + BjKj)�Pi(Aj + BjKj) − Q

− K�
j RKj)x ≥ x�(E�

jiUjiEji)x ≥ 0 (15)

whenever x ∈ Qji ⊆ Cji, (j, i) ∈ St0. Hence, (8) is
satisfied and conservativeness is reduced when comparing
to the corresponding nonlinear matrix inequality, i.e.

Pj − (Aj + BjKj)�Pi(Aj + BjKj) − Q − K�
j RKj > 0.
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Next, we develop a method for finding a solution to the
matrix inequality (14). This method is based on solving a
sequence of LMIs that is obtained by fixing a suitable basis
of the state space and successively selecting tuning parame-
ters. Consider an eigenvalue decomposition of the terminal
weight matrices from cost (4), i.e. Pj = VjΣjV

�
j , j ∈ S0

where Σj = diag(σ1j , . . . , σnj), σ1j ≥ . . . ≥ σnj and
V �

j = V −1
j . In the sequel we assume that the orthonormal

matrices Vj are known and let Γj := diag(γ1j , . . . , γnj),
j ∈ S0 denote an arbitrary diagonal matrix. Consider now
the following LMI:

∆ji > 0, (j, i) ∈ St0, (16)

with

∆ji :=

⎛
⎝VjΣjV

�
j − Q − E�

jiUjiEji ∗ ∗
V �

i (Aj + BjKj) Γi 0
Kj 0 R−1

⎞
⎠ ,

in the unknowns (σ1j , . . . , σnj), (γ1i, . . . , γni), Kj , Uji,
(j, i) ∈ St0. In addition to (16) we require that the linear
scalar inequalities

σ1j ≥ . . . ≥ σnj > 0, γnj ≥ . . . ≥ γ1j > 0, (17a)
1
εlj

− σlj ≥ 0, εlj − γlj ≥ 0, l = 1, . . . , n, (17b)

with εlj fixed constants (tuning factors) in (0, 1], are satis-
fied for all j ∈ S0 and that

Uji has all entries non-negative, ∀(j, i) ∈ St0. (18)

Note that the tuning factors εlj ∈ (0, 1] are fixed in (17)
and that condition (18) can be easily written as an LMI.
Hence, the conditions (16)-(17)-(18) are in the LMI form.

Theorem IV.3 Choose the orthonormal matrices Vj and the

tuning factors εlj ∈ (0, 1], l = 1, . . . , n, j ∈ S0 such

that the LMI (16)-(17)-(18) is feasible. Let (σ1j , . . . , σnj),
(γ1i, . . . , γni), Kj , Uji, (j, i) ∈ St0 be a solution. Then

(Pj , Kj , Uji) with Pj = Vj diag(σ1j , . . . , σnj)V �
j > 0 is

a solution of the matrix inequality (14).

The proof of Theorem IV.3 is given in the Appendix.
Solving the LMI (16)-(17)-(18) hinges on the fact that the
orthonormal matrices Vj and the scaling factors εlj must
be chosen a priori. This is not a problem with respect to
the tuning factors, which can be chosen arbitrarily small.
However, when it comes to fixing the matrices Vj , it is
interesting to find out how they should be chosen such
that by varying σ1j , . . . , σnj a sufficiently wide range
of Pj matrices is covered. An answer to this question
can be obtained for the two dimensional case, where all
orthonormal matrices can be parameterized according to

Vj :=
(− sin θj cos θj

cos θj sin θj

)
, (19)

where 0 ≤ θj ≤ π. In this way, multiple solutions of
the LMI (16)-(17)-(18) can be obtained by varying θj . A

similar explicit form of Vj can be specified also in the three
dimensional case, by using two angles, i.e., θ1j and θ2j .
However, these expressions get more complicated in higher
dimensional spaces.

B. Computation of the terminal constraint set

In the sequel we develop a method for calculating a
terminal constraint set XT ⊆ XU that satisfies the hypothesis
of Theorem IV.1 and solves Problem III.3.

Consider system (9) with the feedback gains calculated
as in Section IV-A. From the hypothesis of Theorem IV.1
it follows that

x�(Aj + BjKj)�Pi(Aj + BjKj)x−
− x�Pjx ≤ −λmin(Q)‖x‖2

2 < 0 (20)

for all x ∈ XT \ {0}, (j, i) ∈ St0. Then, it can be
proven along the lines of the proof of Theorem IV.1 that
the possibly discontinuous function V (x) := x�Pjx when
x ∈ Ωj , j ∈ S0 is a local PWQ Lyapunov function for the
closed-loop system (9). Let

E := ∪j∈S0Ej with Ej := {x ∈ XU ∩ Ωj | V (x) ≤ c},
where c > 0, j ∈ S0, be a (piecewise ellipsoidal) sublevel
set of V . From (20) it follows that there exists α ∈ (0, 1)
such that the set E is α-contractive.

Theorem IV.4 Consider system (9) and assume that it ad-

mits a PWQ Lyapunov function V (x) = x�Pjx when

x ∈ Ωj , j ∈ S0. Let E ⊆ XU be a sublevel set of V and let

α ∈ (0, 1) be such that E is α-contractive. Now assume that

there exist polyhedral sets Pj that satisfy αEj ⊆ Pj ⊆ Ej for

all j ∈ S0. Then the piecewise polyhedral set P := ∪j∈S0Pj

is a positively invariant set for system (9) and P ⊆ XU.

Proof: From αEj ⊆ Pj ⊆ Ej for all j ∈ S0 we have
that αE ⊆ P ⊆ E . Thus, P ⊆ XU. Let x ∈ P . Hence,
there exists j ∈ S0 such that x ∈ Pj ⊆ Ωj . Take γj > 1
such that γjx ∈ ∂Ej . Then, it follows that Acl

j (γjx) ∈ αE .
Then, because of positive homogeneity of PWL dynamics,
it follows that Acl

j x ∈ α
γj
E ⊆ αE . Since αE ⊆ P , P is a

positively invariant set for system (9).
The approach of Theorem IV.4 amounts to solving the

problem of fitting a polyhedron in between two closed
ellipsoidal sets where one is contained in the interior of the
other. A possible way to solve this problem has been re-
cently developed in [13] in the context of DC programming
(difference of convex functions). Here, a polyhedral set is
constructed by treating the ellipsoidal sets as sublevel sets
of suitable quadratic functions, and by exploiting upper and
lower piecewise affine bounds on such functions. Giving
additional structure to the algorithm of [13] such that it
generates a polyhedron with a finite number of facets for
each region Ωj , a piecewise polyhedral positively invariant
set is obtained for system (9). This set can be used as the
terminal constraint set in Problem III.2.
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Note that this method yields a terminal set which is a
union of at most s0 polyhedral sets. Another option to
obtain the terminal constraint set is to employ the algorithm
developed in [14]. This algorithm computes the maximal
positively invariant set for a PWA system, but this set might
be a union of more than s0 sets. If this is the case, then
one has to introduce additional Boolean variables in order
to formulate Problem III.2 as an MIQP problem.

C. How to determine the prediction horizon

In the case of the quadratic forms cost (4), Problem III.2
with the terminal constraint set calculated as in Theo-
rem IV.4 leads to an MIQP problem. The minimum value
of N needed to ensure feasibility of this problem for a
desired set of initial conditions X0 ⊆ X (i.e. the minimum
N for which X0 ⊆ Xf (N)) can be calculated using the
expcon function of the Hybrid Toolbox [11]. The function
expcon computes the explicit MPC control law and returns
the feasible state-space region Xf (N). Thus, one can check
if X0 ⊆ Xf (N) for a fixed N .

The computational complexity of the on-line MPC op-
timization problem increases exponentially with both the
length of the prediction horizon and the number of Boolean
variables. Hence, one has to make a trade-off in choosing
between a smaller terminal set, but which has a simple
representation (e.g., a piecewise polyhedral set obtained as
in Theorem IV.4 or a polyhedral set obtained as in [6]),
and a larger terminal set, but possibly with a complex
representation (e.g., as the set obtained in [14]).

V. EXAMPLE

Consider the following open-loop unstable system:

xk+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1xk + Buk if E1xk > 0
A2xk + Buk if E2xk ≥ 0
A3xk + Buk if E3xk > 0
A4xk + Buk if E4xk ≥ 0

(21)

subject to the constraints xk ∈ X = [−10, 10] × [−10, 10],
uk ∈ U = [−1, 1], where

A1 =
[
0.5 0.61
0.9 1.345

]
, A2 =

[−0.92 0.644
0.758 −0.71

]
, B =

[
1
0

]
,

A3 = A1 and A4 = A2. The state-space partition of the
system is given by

E1 = −E3 =
[−1 1
−1 −1

]
, E2 = −E4 =

[−1 1
1 1

]
.

The tuning parameters of the MPC algorithm are Q =
10−4I2 and R = 10−3. For system (21) the LMIs of [6], [8]
turn out to be infeasible. With the S-procedure approach of
subsection IV-A we have obtained the following solution
by solving the LMI (16)-(17)-(18) for the tuning factors
ε11 = 0.04, ε21 = 0.3, ε12 = 0.08, ε22 = 1 and for the

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x2

x1

Fig. 1. State-feedback: State trajectories - red; XT - blue polyhedra; XU

- yellow and blue polyhedra.

orthonormal matrices V1, V2 defined as in (19) for θ1 = 2.4
and θ2 = 0.9:

P1 =
[
12.9707 10.9974
10.9974 14.9026

]
, P2 =

[
7.9915 −5.5898
−5.5898 5.3833

]
,

P3 = P1, P4 = P2,

K1 =
[−0.7757 −1.0299

]
, K2 =

[
0.6788 −0.4302

]
,

K3 = K1, K4 = K2,

U11 =
[
0.4596 1.9626
1.9626 0.0198

]
, U12 =

[
0.4545 2.0034
2.0034 0.0250

]
,

U21 =
[
0.0542 0.0841
0.0841 0.0506

]
, U22 =

[
0.0599 0.0914
0.0914 0.0565

]
,

σ11 = 24.9765, σ21 = 2.8969, σ12 = 12.4273,

σ22 = 0.9475, γ11 = 0.0395, γ21 = 0.2954,

γ12 = 0.0791, γ22 = 0.9675. (22)

A piecewise polyhedral positively invariant set has been
computed for system (21) in closed-loop with (7) (with
the feedbacks given in (22)) using the approach of The-
orem IV.4 and the algorithm of [13] for the sublevel set
E with c = 14, which satisfies E ⊆ XU. In this case
E is α contractive for α = 0.9286. The trajectories of
the closed-loop system (21)-(7) (with Kj given in (22))
with the vertices of XT as initial conditions are plotted
in Figure 1 together with a plot of the safe set XU. The
simulation results illustrate the positive invariance of the
terminal constraint set.

The state trajectory of system (21) with initial state
x0 = [−5 − 3.8]� and in closed-loop with the MPC
control (6) calculated for N = 4 (obtained using the Hybrid
Toolbox [11] as in subsection IV-C) is plotted in Figure 2.
The MPC controller successfully stabilizes the open-loop
unstable system (21) while satisfying the constraints.
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Fig. 2. MPC: State trajectory - red; XT - blue polyhedra.

VI. CONCLUSIONS

In this paper we have derived sufficient a priori con-
ditions for Lyapunov asymptotic stability of hybrid MPC
based on quadratic costs. The stabilization conditions have
been obtained using a terminal cost and constraint set
method. We have shown that Laypunov stability can be
achieved even if the considered Lyapunov function and
the system dynamics are discontinuous. An S-procedure
technique has been employed in order to reduce conser-
vativeness with respect to earlier work [6], [8] and an LMI
set-up has been developed for calculating the terminal cost.
A new procedure for computing positively invariant sets for
PWA systems has also been presented. As such, the MPC
optimization problem leads to an MIQP problem, which can
be solved by standard optimization tools.
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APPENDIX

A. Proof of Theorem IV.3

Since (σ1j , . . . , σnj), (γ1i, . . . , γni), Kj , Uji, (j, i) ∈ St0

satisfy the LMI (16)-(17)-(18) we can apply the Schur
complement to (16), which yields

VjΣjV
�
j − (Aj + BjKj)�ViΓ−1

i V �
i (Aj + BjKj)

− Q − K�
j RKj − E�

jiUjiEji > 0.

By adding and subtracting (Aj + BjKj)�ViΣiV
�
i (Aj +

BjKj) in the above inequality we obtain the equivalent

VjΣjV
�
j − (Aj + BjKj)�ViΣiV

�
i (Aj + BjKj)−

− Q − K�
j RKj − E�

jiUjiEji >

> (Aj + BjKj)�ViΓ−1
i V �

i (Aj + BjKj)−
− (Aj + BjKj)�ViΣiV

�
i (Aj + BjKj). (23)

From (17b) we have that 1−σljγlj ≥ 0 for all l = 1, . . . , n
and all j ∈ S0. Then, the inequality

Γ−1
i − Σi =

⎛
⎜⎝

1−γ1iσ1i

γ1i
. . . 0

...
. . .

...
0 . . . 1−γniσni

γni

⎞
⎟⎠ ≥ 0

holds for all i ∈ S0 and from (23) it follows that the
inequality

VjΣjV
�
j − (Aj + BjKj)�ViΣiV

�
i (Aj + BjKj)

− Q − K�
j RKj − E�

jiUjiEji > 0

is satisfied for all (j, i) ∈ St0. The matrix inequality (14)
is obtained by letting Pj = VjΣjV

�
j > 0 for all j ∈ S0 in

the above inequality.
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