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Abstract— This paper addresses the asymptotic and mean
square stability of a class of linear stochastic hybrid systems.
The systems of interest are composed of a high-level super-
visor that drives a closed-loop jump linear system using an
external Markovian input and a performance measure of the
closed-loop system. Two new testable sufficient conditions for
the asymptotic and mean square stability of these so-called
Hybrid Jump Linear Systems with performance map are in-
troduced. The first condition is also sufficient to determine the
asymptotic stability of a deterministic switched system under
arbitrary switching. A new testable necessary condition for the
asymptotic stability of switched systems is also introduced.

I. INTRODUCTION

This paper addresses the stability analysis of a class
of linear stochastic hybrid systems. These systems are
composed of low-level, continuous or discrete-time, closed-
loop systems and a high-level supervisor, which is generally
event-driven. The role of the supervisor is to modify the be-
havior of the closed-loop system by, for example, engaging
different controllers to meet time-dependent performance
requirements. Thus, the supervisor produces a switching
signal that specifies the closed-loop system’s mode of
operation.

The particular focus of this paper is on the stability
analysis of hybrid jump linear systems [1] where the deter-
ministic dynamics of a system are switched by a stochastic
signal that depends on a measure of the state of the system.
These systems, similar to the one depicted in Figure 1, are
composed of a low-level closed-loop jump linear system
and a high-level supervisor which generates the switching
signal based on a stochastic input, N(k), and on state
information from the closed-loop system, provided by an
analog-to-symbol (A/S) map.

Hybrid jump linear systems are natural models for
closed-loop control systems deployed in digital computers
equipped, for example, with fault recovery mechanisms.
In such systems, the supervisor’s objective is to correct
the effects of faults introduced in the computer system
by executing the proper recovery procedure. Generally, the
supervisor is implemented as a high level computer program
which can be modeled with a finite state machine (FSM).
In this paper, two new testable sufficient conditions for
asymptotic and mean square stability of these hybrid jump
linear systems are introduced, along with a new testable
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necessary condition for asymptotic stability. The asymptotic
stability results are applicable to the whole class of linear
stochastic hybrid system and also to the broader class of
switched systems.

The rest of the paper is organized as follows. Section II
gives a precise definition of a hybrid jump linear system,
including the definitions of the A/S map, the performance
map and the FSM. In Section III, a recent result in [2] is
combined with some classical results from [3] and [4] to
provide a testable sufficient condition for the asymptotic
stability of switched systems. This section also provides
the testable necessary condition for the asymptotic stability
of switched systems. Section IV introduces a new testable
sufficient condition for the mean square stability of hybrid
jump linear systems with performance maps which is tighter
than the one provided in Section III. Section V illustrates
the theory via Monte Carlo simulation examples. Finally,
our conclusions are provided in Section VI.

II. HYBRID JUMP LINEAR SYSTEMS WITH

PERFORMANCE SUPERVISION

Consider the block diagram of the class of hybrid jump
linear systems in Figure 1. These systems are composed of
a finite state machine, an analog-to-symbol (A/S) map, and
a jump linear closed-loop system. The FSM is described by
two relations: the state evolution equation and the output
map. The former is used to compute the next state of the
FSM based on the current inputs and state while the latter is
used to compute the FSM’s output based also on the current
inputs and state. Formally, the FSM’s inputs constitute a
stochastic process defined on the underlying probability
space (Ω,F ,Pr). The external process, N(k), will be
restricted to be a discrete homogeneous Markov chain that
takes on symbols from the set ΣIN

= {ηN1ηN2, . . . , ηNln}.
The second input is the output of the A/S map ψ :
R

n → ΣIν
with action x(k) �→ ν(k) = ψ(x(k)),

where ΣIν
= {ην1, ην2, . . . , ηνlν}. Clearly, ν(k) is also a

discrete stochastic process with probability measure given
by the transformation of the Markovian measure of N(k)
corresponding to the dynamics of the FSM and the closed-
loop jump linear system.

Let the states of the FSM, z(k), take on values in ΣS =
{e1, e2, . . . , els}, where ej =

[
0 ··· 0 1 0 ··· 0

]′
with a 1

in the j-th position. The FSM’s state evolution equation is
given by

z(k + 1) = S(N(k),ν(k))z(k), (1)
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where each of the ln · lν matrices S(ηN ,ην) ∈ R
ls×ls

((ηN , ην) ∈ ΣIN
× ΣIν

) is a deterministic matrix with
columns containing exactly a single one and ls − 1 zeros.
Thus, (1) describes a deterministic FSM with a stochastic
input. The FSM’s output map is

� : ΣIN
× ΣIν

× ΣS → ΣO (2)

(N(k),ν(k),z(k)) �→ θ(k) = �(N(k),ν(k),z(k)),

where ΣO = {ξ1, ξ2, . . . , ξls}. The evolution of the closed-
loop jump linear system is given by

x(k + 1) = Aθ(k)x(k). (3)

The system (3) can represent, for example, a deterministic
plant attached to a bank of control laws, which are switched
by θ(k). The formal definition of a hybrid jump linear
system follows.

Definition 2.1: The system in Figure 1 described by (1)-
(3) is called a Hybrid Jump Linear System (HJLS). Its state
evolution is given by

q(k + 1) =
[

Aθ(k) 0

0 S(N(k),ν(k))

]
q(k), (4)

where q(k) = [x(k)T ,z(k)T ]T , and its initial condition,
q(0) = [xT

0 , zT
0 ]T , belongs to any subset of R

n × ΣS .
Note that ν(0) is uniquely determined from x0 and that
θ(0) depends on N(0), x0, and z0.

Closed-Loop Jump Linear  System

State
Evolution
Equation

A/S

k( )N

( )θθθθ k( )kx

Supervisor

Output Map

FSM

( )kz

νννν k( )

Fig. 1. A stochastic hybrid jump linear system.

The system described in Definition 2.1 is very general in
the sense that the FSM representation can model many su-
pervising algorithms. However, this generality significantly
complicates the analysis when the supervisor’s decisions
depend on the supervised system’s performance (for an
account of hybrid systems without this feedback see [5]).
Thus, additional structure is imposed on the A/S map and
the FSM shown in Figure 1 as follows. The A/S map
provides performance information to the FSM. In particular
the performance metric of interest will be the value of the
norm of the closed-loop system’s state vector, x(k). It is
assumed that the supervisor performs its decision process in
two steps. In the first step, it uses the information from the

input N(k) and its current operating state, z(k), to deter-
mine the best subclass of modes to apply to the closed-loop
system at the next sample instant. During the second step,
the supervisor uses the performance information provided
by the A/S map to make the final mode selection from the
subclass of modes selected in the first step. Thus, the FSM’s
state transition matrix depends effectively only on N(k),
while the output map depends on both N(k) and ν(k).
Since the output map performs the final mode selection
based on performance information, it will be called the
performance map.

A precise definition of a HJLS with a performance map
follows. The following index set notation will be used I� �

{0, . . . , � − 1}. Without loss of generality, let ΣIN
= Iln ,

ΣIν
= Ilν , and fix positive constants 0 = α0 < α1 < · · · <

αlν−1 < αlν = ∞. The (performance) A/S map is

ν(k) = ψ(x(k)) =

lν−1∑
i=0

i1{αi≤‖x(k)‖<αi+1}, (5)

where 1{αi≤‖x(k)‖<αi+1} = 1 whenever αi ≤ ‖x(k)‖ <
αi+1 and zero otherwise. Clearly, the A/S map quantizes
the range of ‖x(k)‖ into lν levels. The FSM’s state evolu-
tion equation (1) is now simply

z(k + 1) = SN(k)z(k). (6)

The specific performance map to be analyzed is

θ(k) = �(N(k),ν(k), z(k))

= (ln · ls)ν(k) + ln[0, 1, . . . , ls − 1]z(k) + N(k)

= (ln · ls)ν(k) + ϕ(k). (7)

where ϕ(k) = z̃(k) + N(k) and z̃(k) = [0, 1, . . . , ls −
1]z(k). Thus, if z(k) = ej then z̃(k) = j − 1. Clearly,
z̃(k) ∈ Ils is isomorphic to z(k). Also, observe that
ϕ(k) = T (N(k), z̃(k)), where T : ΣIN

× Ils → Iln·ls−1

with action (e, d) �→ f = ln ·d+e is a bijective map. Thus,
ϕ(k) is isomorphic to the random process (N(k),z(k)),
which is known by [5] to be a Markov chain of the same
order as the Markov chain N(k). Thus, ϕ(k) is also a
Markov chain. Notice, however, that θ(k) may not be a
Markov chain since ν(k) may not be memoryless. A hybrid
jump linear system as described by (3) and (5)-(7) is called
a Hybrid Jump Linear System with Performance Map with
state evolution given by (4).

In [1] it is shown that the set M = {{xe} × ΣS} is an
invariant set for (4), where xe = 0. In addition, the stability
properties of M are equivalent to the stability properties of
the equilibrium point of (3) (xe = 0). So, the stability of
a HJLS can be studied by analyzing the stability properties
of its associated jump linear system. This is the approach
followed in the next two sections. Specifically, in the next
section, stability tests that are independent of the switching
sequence produced by the performance map (7) are given. A
less conservative result which takes into account the specific
performance map employed is given in Section IV.
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III. STABILITY ANALYSIS OF DISCRETE-TIME

SWITCHED SYSTEMS

A. Preliminaries

Discrete-time stability results similar to those for
continuous-time switched systems are well known (cf. [2],
[6]–[8]). It follows from those results that for stability
analysis it suffices to consider the following autonomous
linear discrete-time switched system

xσ(k + 1) = Aσ(k)xσ(k), xσ(0) = x0, (8)

where the discrete-time switching signal, σ, is a sequence
(σ(0), . . . , σ(k), . . .) ∈ I∞

L = IL × IL × · · · . The set I∞
L

of all possible switching sequences is such that each entry
in a sequence is used to select Aσ(k) ∈ M � {Ai : Ai ∈
R

n×n, i ∈ IL}. The effect of the switching signals in I∞
L

can also be seen via the set of discrete linear inclusions
(DLI), consisting of the set of all possible trajectories
DLI(M) � {(xσ(0), . . . , xσ(k), . . .) : xσ(k) ∈ R

n, k ∈
Z

+} where xσ(k + 1) = Aσ(k)xσ(k) for Aσ(k) ∈ M and
σ(k) ∈ IL. The following stability definition includes the
effect of all possible switching sequences.

Definition 3.1: [7] The equilibrium point xσ = 0 of the
discrete-time switched system (8) is absolutely asymptoti-
cally stable (AAS) if every trajectory in DLI(M) satisfies
limk→∞ xσ(k) = 0.

AAS can be studied by analyzing products of matrices
since (8) is AAS if and only if

lim
k→∞

Aσ(k) · · ·Aσ(0) = 0, Aσ(k) ∈ M, k ∈ Z
+.

A particular subclass of arbitrary switched sequences is
that formed by sampled-paths of stochastic processes with
state space IL. In particular, let θ̃(k) be any second-order
stochastic process, with initial distribution πθ̃(0) and state
space IL. Consider the system

x̃(k + 1) = A
θ̃(k)x̃(k), x̃(0) = x̃0, (9)

where A
θ̃(k) ∈ M. The following definition applies.

Definition 3.2: Let x0 be a second order random variable
independent of θ̃(k) for all k ≥ 0 with distribution fx0

. The
system (9) is mean square stable if for every x0 and πθ̃(0),
E{‖x̃(k)‖2} → 0 as k → ∞.

Clearly, if (8) is absolutely asymptotically stable then (9)
is mean square stable since for every sample path generated
by θ̃(k) it follows that limk→∞ Aσ(k) · · ·Aσ(0) = 0. The
switching sequences {σ(k) : k ∈ Z

+} in (8) can be
generated, for example, by a high level supervisor as in
(3). In this light it is easy to see that the hybrid jump
linear systems defined in (4) are a particular type of linear
switched systems for which many stability analysis tools
are available. The next subsection presents a new testable
sufficient condition for the AAS of (8) along with a new
testable necessary condition. By extension, both tests apply
also to hybrid jump linear systems.

B. Stability Analysis

A recent result in [2] provides a sufficient condition for
the absolutely asymptotic stability of (8). This result, how-
ever, requires the solution of L2 linear matrix inequalities
(LMI) in L unknowns. The following theorem reduces this
number to only L. In the sequel, P > 0 will denote a real,
symmetric, and positive definite matrix P ∈ R

n×n.
Theorem 3.1: If for a given set of matrices {Wi > 0, i ∈

IL} there exists a set of matrices {Pi > 0, i ∈ IL}
satisfying the condition

L−1∑
j=0

AT
i PjAi − Pi = −Wi, ∀i ∈ IL (10)

then (8) is absolutely asymptotically stable.
Proof : Suppose (10) holds and observe for any x ∈ R

n that
xT AT

i PiAix ≥ 0. Then

xT AT
i PjAix − xT Pix ≤

L−1∑
j=0

xT AT
i PjAix − xT Pix

≤ −xT Wix,

and therefore Pi − AT
i PjAi > 0 for every i, j ∈ IL. Since

these matrices Pi satisfy the hypothesis in [2, Theorem 2],
the system (8) is absolutely asymptotically stable.

An advantage of Theorem 3.1 is that there exists a simple
test to determine the existence of a solution for (10). The
following test has been adapted from the more general
results in [4, Proposition 6] and [9, Lemma 1].

Theorem 3.2: Let {Ai ∈ R
n×n, i ∈ IL} be given and

define Ā as

Ā = (EL ⊗ In2) diag(A0 ⊗A0, . . . , AL−1 ⊗AL−1), (11)

where EL is an L × L matrix with every entry equal to 1,
and In2 is a n2 × n2 identity matrix. Then, for every set
of matrices {Wi > 0, i ∈ IL} there exists a unique set of
matrices {Pi > 0, i ∈ IL} that satisfy (10) if and only if
ρ(Ā) < 1.

As a consequence of this theorem, a spectral radius test
determines the absolute asymptotic stability of switched
systems.

Theorem 3.3: Consider the system (8) and let Ā be
defined as in (11). If ρ(Ā) < 1 then the system (8) is
absolutely asymptotically stable.
Proof : The result follows directly from Theorems 3.1 and
3.2.

Observe that the AAS condition ρ(Ā) < 1 in Theorem
3.3 is similar to the sufficient condition for the mean square
stability of the system

x̃(k + 1) =
√

LA
θ̃(k)x̃(k), (12)

where θ̃(k) ∈ IL is a Markov chain with transition
probabilities pij = 1/L [4]. Thus, Theorem 3.3 admits
the following interpretation: If the mean of the sample
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paths ‖x̃(k)‖2 of (12) goes asymptotically to zero then so
does each possible trajectory of (8). Although the converse
argument is not always true, it can be seen that if (8)
is absolutely asymptotically stable, then the average of
‖x(k)‖2 over the possible trajectories must also approach
zero asymptotically. This motivates our next result.

Theorem 3.4: Let Ā be defined as in (11). A necessary
condition for (8) to be absolutely asymptotically stable is
ρ(Ā) < L.
The proof of this theorem parallels the necessity proof of [3,
Theorem 2.1]. Asymptotic stability of (8) is used to show
that for any given set of matrices {Wi > 0, i ∈ IL} there
exists a unique set of matrices {Pi > 0, i ∈ IL} satisfying

(1/L)
L−1∑
j=0

AT
i PjAi − Pi = −Wi. (13)

This fact and Theorem 3.2 give the desired result.
Proof : Let the initial condition x0 be fixed and let the
transition matrix for the deterministically switched system
(8) be given by

Φ(k + n, k) �

{
In, n = 0,

Aσ(k+n−1) · · ·Aσ(k), n ≥ 1.

Let {Wi > 0, i ∈ IL} be given and define g(Φ(k +
n, k)) � ΦT (k + n, k)Wσ(k+n)Φ(k + n, k). Note that
for every fixed value of σ(k), g(Φ(k + n, k)) can take
Ln different values, one for every possible permutation of
{σ(k + 1), . . . , σ(k + n)} ∈ IL. If σ(k) = i and n ≥ 1,
the Ln values of g(Φ(k +n, k)) are obtained by evaluating

g(Φ(k + n, k)) = AT
i · AT

σ(k+1)=�1
· · ·AT

σ(k+n−1)=�n−1

· Wσ(k+n)=�n
· Aσ(k+n−1)=�n−1

· · ·Aσ(k+1)=�1 · Ai,

for each permutation of {�1, . . . , �n} ∈ IL. Thus, the mean
value of g(Φ(k + n, k)) when σ(k) = i is given by

Ê{g(Φ(k + n, k))|σ(k) = i} �{
Wi, n = 0∑

σ(k+1) · · ·
∑

σ(k+n)
g(Φ(k+n,k+1)Ai)

Ln , n ≥ 1.

Since Wσ(k+n) > 0, Rayleigh’s inequality gives

‖g(Φ(k + n, k))‖ ≤ λ̄‖Φ(k + n, k)‖2,

where λ̄ = maxi{λmax(Wi)} and λmax(Wi) denotes the
maximum eigenvalue of Wi. Since absolute asymptotic
stability of (8) is equivalent to uniform global exponential
stability, there exist scalars β > 1 and 0 < α < 1 such that
‖Φ(k + n, k)‖2 ≤ βαn (see [10] Theorem 22.7). Thus, it
follows that

‖Ê{g(Φ(k + n, k))|σ(k)}‖≤ λ̄βαn.

Next, define the matrices P (n, σ(k)), n ≥ 0 as

P (n, σ(k)) �

k+n∑
i=k

Ê{g(Φ(i, k))|σ(k)},

and observe that they are symmetric and positive definite
by definition. Furthermore, for any m > n ≥ 0

‖P (m,σ(k)) − P (n, σ(k))‖≤
k+m∑

i=k+n+1

‖Ê{g(Φ(i, k))|σ(k)}‖

≤
m∑

i=n+1

λ̄βαi

≤ λ̄βαn/(1 − α).

Thus, for any ε > 0 there exists a sufficiently large n
such that λ̄βαn/(1 − α) < ε, which in turn implies that
P (n, σ(k)) has a unique limit with respect to n. Thus,
define Pi � limn→∞ P (n, σ(k) = i) and observe that

P (n, σ(0) = i) =
n∑

l=0

Ê{g(Φ(l, 0))|σ(0) = i}

= Wi +

n∑
l=1

Ê{g(Φ(l, 0))|σ(0) = i}.

(14)

In addition, since g(Φ(k+n, k+1)Aσ(k)) = AT
σ(k)g(Φ(k+

n, k + 1))Aσ(k), then

Ê{g(Φ(l, 0))|σ(0) = i} =

(1/L)AT
i

L−1∑
j=0

Ê{g(Φ(l, 1))|σ(1) = j}Ai. (15)

Substituting (15) in (14) gives

P (n, σ(0) = i) = Wi+(1/L)

L−1∑
j=0

AT
i P (n−1, σ(1) = j)Ai.

Letting n → ∞ in the expression above implies that
the matrices Pi uniquely satisfy (13). Thus, Theorem 3.2
implies that ρ(Ā/L) < 1 or ρ(Ā) < L, completing the
proof.

Observe that if a HJLS satisfies the conservative condi-
tions of Theorem 3.3, it is both absolutely asymptotically
stable and mean square stable. The next section provides a
less conservative sufficient condition for the mean square
stability of HJLS with performance maps.

IV. A SUFFICIENT CONDITION FOR THE MEAN SQUARE

STABILITY OF A HJLS WITH A PERFORMANCE MAP

The main result of this section follows.
Theorem 4.1: Consider the following hybrid jump linear

system with performance map defined by

x(k + 1) = Aθ(k)x(k)

ν(k) = 1{‖x(k)‖≥α}, θ(k) = Lν(k) + ϕ(k), (17)

where x(k) ∈ R
n, α > 0, and ϕ(k) ∈ IL is a Markov

chain with transition probability matrix Πϕ = [pji]. Let A
be defined as

A � (ΠT
θ ⊗ In2) diag(A0 ⊗ A0, . . . , A2L−1 ⊗ A2L−1),

(18)

572



where Πθ = [ 1 1
1 1 ] ⊗ Πϕ. If ‖A‖∞ < 1 then (17) is mean

square stable.
Proof : Due to space limitations, part of the proof is only
sketched out. Let Q(k + 1) = E{x(k + 1)x(k + 1)T } and
define

Qi(k + 1) � E{x(k + 1)x(k + 1)T
1{θ(k+1)=i}}

so that Q(k + 1) =
∑

i Qi(k + 1). Then it follows that

Qi(k + 1) =
2L−1∑
j=0

AjE{x(k)x(k)T
1{θ(k+1)=i,θ(k)=j}}AT

j .

Now, define qx(k) � vec(x(k)x(k)T ), q̃i(k + 1) �

vec (Qi(k + 1)) = E{qx(k+1)1{θ(k+1)=i}} and apply the
vec(·) operator to the equation above to obtain

q̃i(k + 1)

=
2L−1∑
j=0

Aj ⊗ AjE{qx(k)1{θ(k+1)=i,θ(k)=j}}. (19)

Let Fk be the sigma algebra generated by the random
variables {θ(k), . . . ,θ(0)} and observe that

E{qx(k)1{θ(k+1)=i,θ(k)=j}} =

= E{E{qx(k)1{θ(k+1)=i,θ(k)=j}|Fk}}
= E{qx(k) Pr{θ(k + 1) = i|Fk}1{θ(k)=j}}.

(20)

Notice that the value of Pr{θ(k + 1) = i|Fk}1{θ(k)=j}

depends on one of the following four mutually exclusive
conditions. (i) The set {θ(k) = j} is empty. (ii) The set
{θ(k) = j} is not empty but there are no non-empty
sets of the form {θ(k + 1) = i,θ(k) = j,θ(k − 1) =
�k−1, . . . ,θ(0) = �0} where �0, �1, . . . , �k, �k+1 ∈ ΣO =
I2L with �k � j, �k+1 � i. (iii) The set {θ(k) = j} and
some or all the sets {θ(k + 1) = i, . . . ,θ(0) = �0} are
not empty, but pĵı̂ = Pr{ϕ(k + 1) = ı̂|ϕ(k) = ĵ} = 0,
where ĵ = j − L�j/L�, ı̂ = i − L�i/L�, and �·� is the
floor function. (iv) The set {θ(k) = j}, some or all the
sets {θ(k + 1) = i, . . . ,θ(0) = �0} are not empty, and
pĵı̂ > 0. In (iii) observe that {θ(k) = j} = {ϕ(k) =
ĵ,ν(k) = �j/L�}, so a very simple argument shows that
{θ(k + 1) = i,θ(k) = j, . . . ,θ(0) = �0} = {ϕ(k + 1) =
ı̂,ϕ(k) = ĵ, . . . ,ϕ(0) = �̂0}. Thus,

Pr{θ(k+1) = i|θ(k) = j, . . . ,θ(0) = �0}
= Pr{ϕ(k + 1) = ı̂|ϕ(k) = ĵ, . . . ,ϕ(0) = �̂0}
= pĵı̂ = 0.

Note that (20) equals zero according to (i)-(iii) since the
random variable Pr{θ(k + 1) = i|Fk}1{θ(k)=j} is a con-
stant equal to zero. This is not the case for the last condition.
It follows from (iv) that Pr{θ(k + 1) = i|Fk}1{θ(k)=j} ∈
{0, pĵı̂} and it can be shown that

‖E{qx(k)1{θ(k+1)=i,θ(k)=j}}‖∞
≤ pĵı̂‖E{qx(k)1{θ(k)=j}}‖∞ = pĵı̂‖q̃j(k)‖∞.

Now, define q̃(k) � [q̃0(k)T , . . . , q̃2L−1(k)T ]T , yi �

[poı̂(A0 ⊗ A0), . . . , p(L−1)ı̂(A2L−1 ⊗ A2L−1)], and let
J (k) ⊆ I2L−1 be the subset of indices j for which
Pr{θ(k + 1) = i|Fk}}1{θ(k)=j} = pĵı̂ is satisfied under
condition (iv). Then it follows from (i)-(iv) that

‖q̃i(k + 1)‖∞
≤ ‖yi‖∞ max

m∈J (k)

{∥∥∥∥E{qx(k)1{θ(k+1)=i,θ(k)=m}}
pm̂ı̂

∥∥∥∥
∞

}
≤ ‖yi‖∞ max

m∈J (k)
{‖q̃m(k)‖∞} ≤ ‖yi‖∞ ‖q̃(k)‖∞ .

Now, ‖A‖∞ = maxi{‖[p0ı̂A0 ⊗ A0, . . . , p(L−1)ı̂A2L−1 ⊗
A2L−1]‖∞} = maxi{‖yi‖∞}, so taking max{·} on both
sides of the equation above gives

‖q̃(k + 1)‖∞ ≤ max
0≤i≤2L−1

{‖yi‖∞}‖q̃(k)‖∞
≤ ‖A‖∞‖q̃(k)‖∞.

Clearly, if ‖A‖∞ < 1 then q̃(k + 1) → 0 as k → ∞ which
in turn implies that Q(k+1) → 0 as k → ∞, and the mean
square stability of (3) follows.

Finally, observe from its definition that A =
[
A1 A2

A1 A2

]
where A1 = (ΠT

ϕ ⊗In2) diag(A0⊗A0, . . . , AL−1⊗AL−1)
and A2 = (ΠT

ϕ ⊗In2) diag(AL⊗AL, . . . , A2L−1⊗A2L−1).
Thus, a corollary to Theorem 4.1 follows.

Corollary 4.1: For the system considered in Theo-
rem 4.1, if

∥∥[A1 A2

]∥∥
∞

< 1 then (17) is mean square
stable .

V. EXAMPLES

Three simulation examples are presented to illustrate
the theorems in the previous sections and demonstrate
their limitations. In these examples, the hybrid jump linear
systems represent closed-loop systems implemented on fault
recoverable computers. These systems operate as follows:
N(k) is a two-state Markov chain, N(k) ∈ {0, 1}, repre-
senting the absence (0) or presence (1) of computer faults
in a system. The objective of the supervisor is to maintain
a correct level of performance, which is attained when
the norm of the plant’s state vector, ‖x(k)‖, is below a
specified level α. Thus, the A/S output is 0 whenever
‖x(k)‖ < α and 1 otherwise. The supervisor can select
one of three operation modes: Nominal, Fault-Recovery,
and Performance Recovery modes. The Nominal mode is
selected only when there are no faults in the system and the
performance is acceptable, i.e., when N(k) = ν(k) = 0.
The Fault-Recovery mode is selected whenever there is a
fault in the system, regardless of the current performance of
the system. This is because the supervisor prioritizes fault
correction over performance correction. Finally, the Perfor-
mance Recovery mode is selected when the performance is
unacceptable and there is no fault present in the system, i.e.
N(k) = 0, ν(k) = 1. The behavior described above can
be represented by setting A1 = A3 in (17).
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TABLE I. Stability Conditions Satisfied by the Examples.

Theorem 3.3 Theorem 3.4 Theorem 4.1

ρ(Ā) < 1 ρ(Ā/L) < 1 ‖A‖∞ < 1

Example 1 0.9997 � 0.2499 � 0.7463 �

Example 2 2.2729 0.5682 � 0.9947 �

Example 3 3.1651 0.7913 � 2.0470

The entries with a check mark in Table I indicate which
stability conditions are met by the examples. For example,
Example 2 satisfies the necessary condition for stability
under arbitrary switching but not the sufficient condition
clearly showing that the necessary condition is not sufficient
to ensure stability under arbitrary switching.

Table II gives the parameters for each example. All the
examples use the same initial condition x0 = [1 − 1]T ,
the same initial chain distribution π0 = [1 0], and the same
performance threshold α = 1 .

Since it is impossible to show that Example 1 is asymp-
totically stable for every switching rule the following pro-
cedure was followed: 2000 sample paths of N(k) were
produced and for each one, the system trajectory was
computed. At every time k the square of the norm of the
plant’s state vector was calculated. Finally, the average of
‖x(k)‖2 was computed and plotted in Figure 2. As this
figure shows (and was expected), none of the 2000 sample
paths diverged to infinity. The mean square stability of
Examples 2 and 3 was simulated using also 2000 Monte
Carlo runs. Figure 2 also shows the simulation results for
those examples.

TABLE II. Hybrid Jump Linear Systems’ Parameters.

Example 1 Example 2 Example 3

A0

[
0.75 0.15
0.40 0.30

] [
0.41 0.075
0.20 0.15

] [
0.90 0.15
0.40 0.30

]

A1

[
−0.62 0.00

0.00 0.57

] [
−1.01 0.00

0.00 0.40

] [
−1.20 0.00

0.00 0.70

]

A2

[
0.21 0.00
0.10 0.30

] [
0.25 0.00
0.05 0.30

] [
0.50 0.00
0.10 0.60

]

ΠN

[
0.10 0.90
0.05 0.95

] [
0.70 0.30
0.60 0.40

] [
0.60 0.40
0.50 0.50

]

VI. CONCLUSIONS

In this paper two new testable sufficient conditions for
absolute asymptotic and mean square stability of discrete-
time switched systems were presented. These results can be
applied to a large class of linear stochastic hybrid systems
as shown by their application to a specific subclass of linear
stochastic hybrid systems. These systems consist of a finite
state machine driving the mode of operation of a closed-
loop system depending on the occurrence of a fault event
modeled by a stochastic process and on a state-dependent
level of performance of the closed-loop system. A sufficient

50 100 150 200 250 300

10
−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

Samples

M
ea

n/
E

xp
ec

te
d 

of
 ||

 x
 (

k)
||2

Example 1
Example 2
Example 3

Mean of ||x(k)||2 in Example 1

E{||x(k)||2} in Examples 2 & 3

Fig. 2. Mean of the norm squared (Example 1) and second moment of
x(k) (Examples 2 and 3). Example 1 satisfies Theorem 3.5 while Example
2 satisfies Theorem 4.1. Example 3 satisfies neither condition.

condition that takes the structure of the hybrid system into
account was also developed and shown via an example to
be less conservative.
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