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Abstract— Probabilistic Boolean Networks have been used
to model inter gene relationships and their dynamic behavior.
Optimal control of such networks has been proposed by
turning on or off individual genes. Though this problem was
solved in an earlier work by using a dynamic programming
algorithm, issues regarding the assignment of terminal penal-
ties and selection of genes for intervention were not addressed.
In this work we provide an algorithm for assigning terminal
penalties, taking long term uncontrolled behavior into account.
We also discuss the possibility of using gene influence for
pre selection of genes to be used for intervention. This is
implemented for the popular WNT5A network.

I. INTRODUCTION

Recent advances in microarray technology have made
it possible to collect large scale gene expression data.
Such data has been critical in verifying previously known
inter gene relationships and discovering new ones. Boolean
Networks (BN’s) were introduced by Kauffman [1] to
model such relationships. Even though the BN model was
successful in explaining certain biological phenomenon this
framework is not adequate for explaining the uncertainties
in the relationships.

With the existence of multiple BN models that can be
abducted from the data with likelihood very close to the
most optimal BN model, a typical approach is to combine
a subset of reasonable models in the ratio of their relative
importance, than to choose the single best model from
an exponential number of possible models[2]. Probabilistic
Boolean Networks (PBN’s) arise from such a combination
of BN models[3].

As briefly reviewed in the next section, the states of a
PBN form a homogeneous Markov chain with finite state
space having fixed transition probabilities. Consequently,
for such a network, given an initial state, the subsequent
states evolve according to a-priori determined probabilities.
This set up provides a model for dynamically tracking the
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gene activity profile while allowing for uncertainty in the
relationship between the different genes.

Intervention in PBN’s was proposed in [4] using a subset
of genes in the network as control inputs. The control
inputs were allowed to be ON indicating that intervention
was applied to alter the expression level of the gene and
OFF indicating no intervention i.e. the system evolves
autonomously for the time step. The control objective was
to optimally apply one or more treatments over a finite
number of steps (which we refer to as a treatment horizon)
to guide the system to a more desirable state, by minimizing
a cost function. This cost function is dependent on the cost
associated with using control and the penalty associated
with each of the final destination states.

Once the cost function and the treatment window had
been selected, the control problem was essentially reduced
to that of controlling a Markov Chain over a finite horizon.
Control problems of this type have been extensively studied
in the controls literature for over four decades . Among the
different solution methods available, the most popular one
is the technique of Dynamic Programming(DP), pioneered
by Bellman in the 1960’s. A detailed discussion on Markov
decision processes can be found in [5].

In [4] the terminal penalties for states were chosen based
on the expression level of a particular gene. In this work
we use a more rational way to assign terminal penalties by
looking at the probability with which the system eventually
slips into a desirable/undesirable attractor or a cycle. A
discussion on the existence of such cycles and attractors
can be found in [1]. We proceed to prove a theorem which
says that under such a penalty assignment the cost function
is non-increasing in the number of control steps, a result
not necessarily true for any penalty assignment. We also
investigate the use of gene sensitivity for choosing genes
for intervention and analyze the performance of the chosen
genes.

The paper is organized as follows. In Section II, we
provide a brief review of probabilistic Boolean networks.
In section III, we review the control problem for PBNs
and its solution using the Dynamic Programming technique.
Section IV contains a procedure for penalty assignment
and the proof of the related theorem. Section V contains a
biological example and some instances of gene selection for
intervention based on influence. Section VI contains some
concluding remarks.
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II. REVIEW OF PROBABILISTIC BOOLEAN NETWORKS

In this section, we provide a brief review of probabilistic
Boolean networks. We focus on the aspects that are crit-
ical to the development in this paper. For a detailed and
complete exposition, the reader is referred to [3].
A Boolean Network (BN) B = (V,F) on n genes is defined

by a set of nodes/genes V = {x1, ...,xn}, xi ∈ {0,1}, i =
1, ...,n, and a list of Boolean predictor functions
F = ( f1, ..., fn), fi : {0,1}n →{0,1}, i = 1, ...,n.
Suppose that the activity level of gene ‘i’ at time step ‘k’
is denoted by xi(k). Thus xi(k) = 0 would indicate that
at the kth time step, the ith gene is not expressed while
xi(k) = 1 would indicate that the corresponding gene is
expressed. The overall expression levels of all the genes
in the network at time step k is given by the row vector
x(k) = [x1(k),x2(k), · · · ,xn(k)]. This vector is sometimes
referred to as the gene activity profile (GAP) of the network
at time k. The function fi is the predictor function for gene
i. Updating the states of all of the genes in B is done
synchronously at every time step according to their predictor
functions. Such BNs have been studied extensively in [1].

PBNs, the probabilistic generalization of BNs were first
introduced in [3]. Now suppose that for each gene i, there
is a family of l(i) possible Boolean functions

f (i)
1 , f (i)

2 , f (i)
3 , · · · , f (i)

l(i)

that can be used to describe the dependency of xi on
x1,x2, · · · ,xn. Furthermore, suppose that f (i)

j is selected with

a probability c(i)
j with ∑l(i)

j=1 c(i)
j = 1 Then the expression

level of the ith gene transitions according to the equation:

xi(k +1) = f (i)
j (x(k)) with probability c(i)

j . (1)

Let us consider the evolution of the entire state vector
x(k). Corresponding to a probabilistic Boolean network
with n genes, there are at most N = ∏n

i=1 l(i) distinct
Boolean networks, each of which could capture the inter-
gene functional relationships with a certain probability. Let
P1,P2, · · · ,PN be the probabilities associated with the selec-
tion of each of these networks. Suppose the kth network
is obtained by selecting the functional relationship f (i)

ik
for

gene i, i = 1,2, · · · ,n, 1 ≤ ik ≤ l(i). Then, if the choice of
the functional relationship for each gene is assumed to be
independent of that for other genes, we have

Pk =
n

∏
i=1

c(i)
ik

. (2)

The binary n-digit state vector x(k) can be mapped to
positive integers z(k)

z(k) = 1+
n

∑
j=1

2 j−1x j(k). (3)

Then as x(k) ranges from 00 · · ·0 to 11 · · ·1, z(k) will take on
all values from 1 to 2n. Clearly, the map from x(k) to z(k) is
one-to-one, onto and hence invertible. Thus instead of the

binary representation x(k) for the state vector, one could
equivalently work with the decimal representation z(k).

Now the evolution of the states of the PBN can be
described by a finite Markov chain model. By an elementary
exercise in probability theory we can deduce that for any
two states a and b, ∈ {1,2n} the transition probability
Pr{z(k +1) = a|z(k) = b} is given by

N

∑
i=1

Pr{z(k +1) = a|z(k) = b,Network i is selected}.Pi

= ∑
i∈I

Pi

(4)

where I =

{i : Pr(z(k +1) = a|z(k) = b, Network i is selected) = 1}.
By letting the vectors a and b range over all possible basis
vectors in R2n

, we can determine the 2n ×2n entries of the
transition probability matrix(TPM) A.

Now let w(k) denote the probability distribution vector
at time k, i.e. wi(k) = Pr{z(k) = i}. It is straightforward to
show that w(k) evolves according to the equation

w(k +1) = w(k)A (5)

where the entries of the A matrix have been determined
using (4).

A possible way of quantifying the relative importance of
different predictor genes on a target was introduced in [3].
The influence Ij( f ) of the gene x j on the Boolean function
f , with respect to a probability distribution of states D(x)
is defined as

I j( f ) = ED

[
∂ f (x)
∂x j

]
(6)

where E is the expectation operator, ∂ f (x)
∂x j

is defined as

f (x) ⊕ f (x j) and x j is defined as (x1,x2, . . . ,x j−1,x j ⊕
1,x j+1, . . . ,xn). Essentially influence is the weighted aver-
age over states of the change in the value of function f
in the event of the flipping of a variable. In the context of
PBN’s the influence of gene xk on gene xi becomes

Ik(xi) =
l(i)

∑
j=1

Ik( f (i)
j ).c(i)

j (7)

The influence matrix Γ has entries Γi j = Ii(x j). Also by
taking the row sum we can find Γi which is the influence
of the gene xi on the network in general under the state
distribution D. Under perfect observation D is degenerate,
with Γ easy to calculate and interpret.

III. CONTROL IN PBNS AND DP REVIEW

Our intervention strategy would involve the momentary
turning ON or OFF of individual genes in the network and
then letting the network evolve to the next time step. Such
intervention is possible by using gene enhancers or repres-
sors. For a multiple time step procedure our intervention
would seek to be globally optimal.
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For a PBN with n genes we could have a subset of m
possible candidate genes to be used as control variables.
Then at any given time step k, the row vector u(k) ∆=
[u1(k),u2(k), · · · ,um(k)] describes the complete status of all
the control inputs. Here the input ui(k) = 1 would represent
flipping the status of the ith control gene and ui(k) = 0
would represent leaving the ith gene as it is. As in the case
of the state vector, one can equivalently represent the control
input status by decimal numbers using equation (3). As u(k)
takes on binary values from [0,0 · · · ,0] to [1,1, · · · ,1], the
variable v(k) ranges from 1 to 2m.

Later on in section V, we will impose the restriction
that only one preselected gene will be used for intervention
purposes. In such a case, v(k) will take the following form.

v(k) =

{
1 if the intervention gene is flipped

0 otherwise.
(8)

We now proceed to derive the counterpart of equation
(5) for a probabilistic Boolean network subject to auxiliary
controls. Let v∗ be any integer between 1 and 2m and
suppose that v(k) = v∗. Then, it is clear that the procedure
outlined in the last section can be used to compute the
corresponding A matrix which will now depend on v∗ and
can be denoted by A(v∗). Furthermore, the evolution of
the probability distribution vector at time k will take place
according to the following equation:

w(k +1) = w(k)A(v∗). (9)

Since the choice of v∗ is arbitrary, the one-step evolution
of the probability distribution vector in the case of a PBN
with control inputs takes place according to the equation:

w(k +1) = w(k)A(v(k)). (10)

A. Finite horizon policies

Since the transition probability matrix in (10) is a func-
tion of all the control inputs u1(k),u2(k), · · · ,um(k), the
evolution of the probability distribution vector of the PBN
with control now depends not only on the initial distribution
vector but also on the values of the control inputs at different
time steps. Furthermore, intuitively it appears that it may
be possible to make the states of the network evolve in
a desirable fashion by appropriately choosing the control
input at each time step. These ideas were formalized in
[4] to arrive at the following finite horizon optimization
problem:

Given an initial state z(0),

min
µ0,µ1,··· ,µM−1

E

[
M−1

∑
k=0

Ck(z(k),µk(z(k))+CM(z(M))

]
(11)

subject to

Pr{z(k +1) = j|z(k) = i,v(k)} = ai j(v(k)) (12)

where

• ai j(v(k)) is the ith row, jth column entry of the matrix
A(v(k));

• M represents the treatment/intervention window;
• µk : [1,2,3, · · · ,2n] → [1,2,3, · · · ,2m], k =

0,1,2, · · · ,M − 1 are functions mapping the state
space into the control space;

• Ck(z(k),v(k)) is the one step cost of applying the
control v(k) at state z(k);

• and CM(z(M)) is the terminal cost associated with the
state z(M).

B. Solution Using Dynamic Programming

A technique to solve optimal control problems of the type
described by (11) is Dynamic Programming. The solution
is as follows.1

Since the control occurs only at time steps 0,1, . . . ,M−1

JM(z(M)) = CM(z(M)) (13)

Jk(z(k)) = min
v(k)∈{1,··· ,2m}

{Ck(z(k),v(k))+

2n

∑
j=1

az(k), j(v(k)).Jk+1( j)} for k = 0,1, · · · ,M−1. (14)

IV. ASSIGNMENT OF TERMINAL PENALTIES

In this section, we develop a method for terminal penalty
assignment. In [4] penalties were assigned to states based
on the expression level of certain key genes which we call
penalty genes. In particular we used WNT5A a gene known
to be over expressed in metastatic melanoma.

However for a terminal state it would be more logical to
look at the long term prospective behavior of the system in
the absence of control. A more sophisticated way would be
to use the following procedure.

• Partition the states of the Markov Chain into transient
and persistent states. In biological networks persistent
states usually occur as singleton attractors or cycles
with very few states. With an appropriate procedure
for PBN construction most attractors would be samples
from the data set.

• For singleton attractors the penalty J is set according
to the status of the penalty gene or genes, e.g. for the
Markov Chain in Figure 1 the penalty gene is gene
No.3 and if the gene is upregulated, the corresponding
state penalty is +3.

• For a cycle the penalty is based on the fraction of
time spent in states having penalty gene or genes in
undesirable profile.

• For a transient state j, the penalty J( j) = ∑i P(S∞ =
i|St = j).J(i), where i is a cycle or a singleton attractor.

We illustrate this procedure using the following example

1We could also obtain a policy tree starting from a particular initial state
descending recursively M steps, may be storing intermediates for use in
other sub problems. However, since the state space is finite, we used a
bottom up procedure that is easy to implement and provides the complete
solution i.e a table of optimal action from any state at any given time.
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Fig. 1. Markov chain for a 3 gene PBN, x3 = 1 is penalized with +3

Consider the markov chain in Figure 1, with upregulated
penalty gene No.3 with a penalty 3. There are two per-
sistent equivalence classes. Attractor {000} with penalty
0 and cycle {100,111} with penalty 1

3 × 0 + 2
3 × 3 = 2

corresponding to the stationary distribution π = [ 1
3 , 2

3 ] of
states {100,111}.The penalties are listed in the table I. The
quantities P({000})and P({100,111}) are the probabilities
of falling in the attractor {000} and the cycle {100,111},
respectively.

State P({000}) P({100,111}) Jeq Js
000 1 0 0 0
100 0 1 2 0
010 0.5 0.5 1 0
110 0.25 0.75 1.5 0
001 0.75 0.25 .5 3
101 0.25 0.75 1.5 3
011 0.5 0.5 1 3
111 0 1 2 3

TABLE I

TERMINAL PENALTY Jeq IS BASED ON THE PROCEDURE IN SECTIONIV.

Js IS BASED ON THE INSTANTANEOUS STATE PROFILE. UPREGULATED

GENE NO.3 IS USED AS THE PENALTY GENE WITH WEIGHT +3

.

A particular advantage of using the above procedure
is that starting from any initial state, we can say that
using more control steps is always advantageous. This is
illustrated in section V. No such claim can be made for the
scheme in [4].

A. Cost function and number of control steps

Let S be the set of states. We now present a proof by
induction of the fact that by doing the penalty assignment
using the procedure in section IV the cost function J is
a non-increasing function of the number of control steps
used. To do so, we first make the following observa-
tions/assumptions:

• From the definition of the terminal penalties, the fol-
lowing relationship holds

JM(i) = ∑
j∈S

ai j(1)JM( j) (15)

• In equation (15) the control input v = 1 corresponds
to u = [0,0, . . . ,0] , the case with no control input i.e.
autonomous evolution. Furthermore CM(i,1) = 0, since
it is the cost of applying no control input.

• The cost of applying control is stationary and non-
negative i.e. CM(i,v) = C(i,v) and C(i,v) ≥ 0 for all
v∈ A, where A is the set of all possible control actions.

We now prove that the cost function for a 1 step proce-
dure is less than that of a 0 step procedure. For any i ∈ S
consider JM−1(i), the one step value function. Then from
(14),

JM−1(i) = min
v∈A

(C(i,v)+ ∑
j∈S

ai j(v).JM( j))

= min( min
v∈A−{1}

(C(i,v)+ ∑
j∈S

ai j(v).JM( j)),

C(i,1)+ ∑
j∈S

ai j(1).JM( j))

In view of (15) and C(i,1) = 0, we have

JM−1(i) = min( min
v∈A−{1}

(C(i,v)+ ∑
j∈S

ai j(v).JM( j)),JM(i))

so that JM−1(i) ≤ JM(i)
(16)

Without loss of generality assume this to hold true for an
M− k−1 step procedure, i.e.

JK+1(i) ≤ JK+2(i) (17)

Now from (14), we have

JK+1(i) = min
v∈A

(C(i,v)+ ∑
j∈S

ai j(v).JK+2( j))

Let v∗ be an input that attains this minimum i.e.

JK+1(i) = (C(i,v∗)+ ∑
j∈S

ai j(v∗).JK+2( j)) (18)

Now consider the step K:

JK(i) = min
v∈A

(C(i,v)+ ∑
j∈S

ai j(v).JK+1( j))

(19)

= min( min
v∈A−v∗

(C(i,v)+ ∑
j∈S

ai j(v).JK+1( j)),

C(i,v∗)+ ∑
j∈S

ai j(v∗).JK+1( j))

⇒ JK(i) ≤C(i,v∗)+ ∑
j∈S

ai j(v∗).JK+1( j) (20)

Now using (18) and (20) we get,

JK(i)− JK+1(i) ≤ ∑
j∈S

ai j(v∗){JK+1( j)− JK+2( j)}

Now using (17) we have JK+1( j) ≤ JK+2( j) ∀ j ∈ S,

⇒ JK(i) ≤ JK+1(i) (21)

Hence for any initial state i ∈ S, the value function JK(i)
is a non increasing function of the number of control time
steps used.
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V. EXAMPLE BASED ON GENE EXPRESSION DATA

In this section, we apply the methodology of this paper to
derive an optimal intervention strategy for a particular gene
regulatory network. The network chosen is one developed
from data collected in a study of metastatic melanoma
[6]. In this expression profiling study, the abundance of
messenger RNA for the gene WNT5A was found to be
highly discriminating between cells with properties typi-
cally associated with high metastatic competence versus
those with low metastatic competence. These findings were
validated and expanded in a second study [7]. In this study,
experimentally increasing the levels of the Wnt5a protein
secreted by a melanoma cell line via genetic engineer-
ing methods directly altered the metastatic competence of
that cell as measured by the standard in vitro assays for
metastasis. A further finding of interest in the current study
was that an intervention that blocked the Wnt5a protein
from activating its receptor by the use of an antibody that
binds Wnt5a protein, could substantially reduce Wnt5a’s
ability to induce a metastatic phenotype. This of course
suggests a study of control based on interventions that alter
the contribution of the WNT5A gene’s action to biological
regulation, since the available data suggests that disruption
of this influence could reduce the chance of a melanoma
metastasizing, a desirable outcome.

The methods for choosing the genes involved in a small
local network that includes the activity of the WNT5A gene
and the rules of interaction have been described in [8]. As
discussed in that paper, the WNT5A network was obtained
by studying the predictive relationship between 587 genes.
The expression status of each gene was quantized to one of
three possible levels: −1 (down-regulated), 0 (unchanged)
and 1 (up-regulated). Thus in this case, the gene activity
profile at any time step is not a binary number but a ternary
one.

A network with 587 genes will have 3587 states which
is an intractably large number to use either for modeling
or for control. Consequently, the number of genes was
narrowed down to the 10 most significant ones. This was
done using the Coefficient of Determination(COD) tech-
nique [9] applied to the gene expression patterns across 31
different stress conditions and prior biological knowledge.
Subsequent reduction from 3 to 2 levels is done in a way to
minimize the loss of entropy for every individual gene. For
many genes this process is lossless since they are observed
in only 2 of the 3 expression levels.

The companion website [10] shows this 10 gene network
and provides insights to the determination of the 210 ×210

matrix of transition probabilities for the Markov Chain
corresponding to the dynamic evolution of the gene-activity
profile of the 10 gene network. The predictors and functions
were determined from the data using COD analysis.

Here it would be appropriate to point out that to apply
the algorithm of this paper, it is not necessary to actually
construct a PBN; all that is required are the transition

probabilities between the different states under the different
controls.

The control objective for this 10-gene network is to
externally down-regulate the WNT5A gene. As explained
earlier, the reason is that it is biologically known that
WNT5A ceasing to be down-regulated is strongly predictive
of the onset of metastasis.

The optimal control problem can now be completely
specified by choosing (i) the treatment/intervention window,
(ii) the terminal penalty and (iii) the types of controls and
the costs associated with them.
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Fig. 2. Terminal penalty with WNT5A as the penalty gene

We next consider two different aspects of the control
scheme:

A. Comparison of the two Schemes

We used the procedures in section IV and [4] to assign
the terminal penalties Jeq and Js respectively, using WNT5A
as a penalty gene with a penalty of +5, as shown in Figure
2. In the optimal control problem, we used gene 1 (PIRIN)
for intervention purposes. In particular consider the state
791 a data point corresponding to [0,1,1,0,1,0,0,0,1,1] as
the initial state. For the scheme based on states we observe
that the value function Js is not monotonic. Nevertheless we
observe that after a certain number of steps the expected
cost function decreases monotonically (12 steps in this
case). This lack of monotonicity complicates the problem
of selection of an appropriate control horizon particularly
if the control horizon cannot be too large. We believe that
the number of steps upto which the oscillations occur is
related to the distance of the states in the network from the
attractors. This is a topic still under investigation. Using the
terminal penalty based on equivalence classes mitigates this
problem. It is guaranteed that starting from any initial state,
using additional control steps, we cannot do any worse even
in the short term (Figure 3.1).

B. Selection of genes for intervention

For the purposes of intervention, in theory we could flip a
number of genes. However from a biological perspective we
would want the intervention to be minimal. Thus it makes
sense to choose a particular gene, that is likely to be the
most effective in bringing about the desired intervention.
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Fig. 3. (3.1)With initial state 791 the expected cost is plotted for control
with two different types of terminal penalty assignments, Js based on
the individual states and Jeq based on equivalence classes. (3.2)Expected
reduction in cost by using control for 5 time steps. Observe that different
genes dominate when 787,788 and 789 are the initial states.

In principle the optimal control problem could be solved
for each gene and then the best gene chosen. However this
would be a computationally demanding procedure. Here we
suggest two different heuristic approaches for gene selection
and compare their performance for the WNT5A example.
These two approaches are based on (1) gene influence and
(2) a one step control(with 0 control cost).

Gene influence as described in section II is a property
of the underlying PBN and depends only on the state
distribution. It is independent of the cost of control, terminal
penalties and time steps. Unlike the optimal control problem
which would have to be solved every time the cost functions
are changed gene influence has to be calculated only once.
We could use gene influence to narrow down the pool, that
can then be studied using dynamic programming. This in
essence is similar to the popular feature selection problem
in the pattern recognition area.

One of the ten genes is to be preselected to be used
as control. At each time step the control action is chosen
according to equation (14) as either flipping that gene or
leaving it as is. We found that genes 1(PIRIN), 2(WNT5A)
itself and 8(HADHB) dominate other genes in reducing the
expected cost after 5 steps of control from any of the 210

initial states. However there is no one particular gene that
performs better than other genes for all initial states. This
is clear from Figure 3.2.

This motivated us to use the rank expectation to rank the
genes. We used a uniform distribution over

• S: All 210 = 1024 states.
• SDATA: States in the dataset.
• SDATA WNT 5A=1: States in dataset with WNT5A upreg-

ulated(9 in number).

In general we observed that the influence heuristic per-
forms better if the number of states over which the ranks
are averaged are in particular, the states which need more
intervention. The heuristic does not perform well when we
use averaging over all states since the majority of states
need very little or no intervention.

We also found that gene influence was very effective in
ruling out genes that should not be used for intervention.

For the WNT5A network we discovered that the set of genes
with least influence matched very closely the set of genes
which were least effective when used for intervention. In
particular the set of genes ranked in the bottom 20% by
influence matched the set ranked by expected cost reduction
in the 5 step optimal control with an accuracy ranging from
50−100% for all states. We display the detailed results on
the companion website [10].

VI. CONCLUDING REMARKS

In this paper we have refined our method of assignment
of terminal penalties based on the individual state profile[4]
by using equivalence classes of states. We also proved that
such a terminal penalty assignment ensures that using more
control steps produces better results, something that is not
necessarily true for individual state based assignment in the
short run. We also introduced gene influence as a simple
heuristic to narrow down the pool of candidate genes to
be used for intervention purposes by selecting genes with
high influence or more so by rejecting genes with low
influence. This is important since the states in the network
grow exponentially with the number of variables, and it may
not be possible to check all candidate genes using the dy-
namic programming approach. The optimal control results
presented here assume that Boolean networks are combined
in a certain way to produce PBNs. Appropriate methods for
combining such biological models is still an open question.
The redundancy in biological data and the causal inference
procedures in general complicate the abduction of networks.
The sensitivity of the performance of control to the accuracy
of inference is also not well understood at the present time
and a topic for further investigation.
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