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Abstract— This paper presents a novel adaptive generalized
likelihood ratio (A-GLR) state estimator applied to rapidly
maneuvering targets in pursuit-evasion scenarios. The A-
GLR estimator employs a bank of adaptive models which
is constructed and updated on-line. The state estimate is a
probabilistic mixture of the model-matched estimates. The
adaptation of the models, the model-matched estimates, and
the a-posteriori probabilities of the models are calculated
recursively by employing a previously developed adaptive-H0

GLR algorithm. Numerical simulations of a maneuvering tar-
get (a ballistic missile) show that the A-GLR estimator delivers
state estimates characterized by a smaller average error and
a smaller covariance as compared with those obtained using
the interacting multiple model (IMM) estimator.

I. INTRODUCTION

Continuous-time dynamical systems are often subject
to structural changes occurring at discrete points in time.
Examples include systems such as processes subject to
failures/repairs and maneuvering targets. The latter are
conveniently represented as hybrid systems which are com-
binations of continuous-time systems and discrete-event
systems. The major challenge in state estimation for hybrid
systems arises from the presence of two types of uncer-
tainties: the measurement uncertainty and the uncertainty
about the current structure of the system. The last type of
uncertainty occurs when a continuous-time system is subject
to an abrupt structural change with only partially known
characteristics. The optimal state estimation problem for
stochastic linear hybrid systems, i.e., hybrid systems subject
to random discrete events, is, in general, computationally
intractable as it often fails to translate into a finite recur-
sive state estimation scheme, cf. [1]. Several suboptimal
estimators have thus been proposed, most notably adaptive
multiple model estimators, cf. [2], and the IMM estimator,
cf. [3] and [4]. For the specific problem of tracking a
maneuvering target, the IMM estimator is recognized as one
of the best practical estimators, cf. [5] and [6]. Another class
of suboptimal estimators employs generalized likelihood
ratios (GLR) of hypotheses to yield a state estimate, cf.
[7]. Previous applications of the GLR approach to target
tracking demonstrated good estimation performance, cf. [8],
[9] and [10].

The novel estimator presented here pertains to the GLR

approach and is an extension of the estimator presented
in [8]. In [8], a bank of specific input realizations (the
reference realizations) is provided a-priori to the estimator.
The new estimator, referred to as the adaptive GLR (A-
GLR) estimator, replaces the bank of a-priori realizations
by a parametric family of reference realizations. The actual
reference realization is adapted on-line as a member of this
family. Hence, the single, adaptive, reference realization
requires less information about the hybrid stochastic input
process than a bank of pre-specified reference realizations
and is more efficient from a numerical point of view. The
adaptation of the reference realization employs a sequential
probability ratio test (SPRT) and is based on the adaptive-
H0 GLR algorithm presented in [11]. The adaptive-H0

GLR algorithm is an extension of the GLR algorithm of
[12] to parametric family of reference realizations.

The performance of the resulting A-GLR estimator is
compared with that of several implementations of the IMM
estimator. For the comparison, the example system is a
target tracking problem in a pursuit-evasion scenario against
a maneuvering ballistic missile.

II. PROBLEM STATEMENT

Consider a discrete-time stochastic linear hybrid system,
with a continuous-time valued based state x sampled at
equal intervals ∆:

x(k+1) =F(k)x(k) + G1(k)u(k) + G2(k)z(k) + ω(k)
y(k) =H(k)x(k) + η(k)

(1)
with x ∈ R

n, u ∈ R
q, z ∈ R

p, y ∈ R
m. The process and

measurement noises, ω ∼ N (0,Qω), and η ∼ N (0,Qη),
are assumed to be normally distributed and independent.
The state and measurement variables, x and y, are random
time series which are solutions of the above linear stochastic
system, and u is assumed to be a known external input.
The process z has the meaning of an unknown input whose
behavior is subject to additive abrupt changes and is not
directly observed. The realizations of the process z before
and after an abrupt change are restricted to belong to
parametric families of functions. Moreover, the time interval
between the abrupt changes occurring in z exceeds a value
w� such that w� >> ∆ and the ratio between the largest
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time constant in the system and w� is small. The last
assumption renders the system slowly-varying in structure.
For the filtering problem to be meaningful, the system is
assumed to be observable.

The objective is to develop a fast and statistically reliable
state estimator for the system.

For further use, let Yk
k0

denote the σ-algebra generated
by the measurements:

Yk
k0

= σ{y(s) : k0 < s ≤ k} (2)

III. DESCRIPTION OF THE A-GLR ESTIMATOR

The optimal Bayesian estimator for the hybrid system
in Eq. (1) is a NP-complete problem involving an expo-
nentially growing tree of models and, as such, cannot be
implemented in real time [13]. Practical Bayesian based
estimators are suboptimal in that they have to rely on
certain model management techniques to keep the number
of models limited, thus allowing the computational scheme
to be finite.

The A-GLR estimator limits the number of models by
pruning on-line the unlikely models from the full model
tree. The pruning of the models is carried out in two
steps. First, parametric families of models are selected.
Each parametric family describes the unknown input either
before or after an abrupt change. Next, the bank of models
is constructed on-line by selecting at each time instant k
the most likely models from within the parametric families.
The selection of the most likely models, along with the
calculation of their a posteriori probabilities and model-
matched estimates, is achieved by employing an adaptive-
H0 GLR algorithm [11]. The resulting A-GLR estimator
is recursive and the computational effort involved increases
only linearly with the number of models.

Contrary to most multiple model estimators, the A-GLR
estimator does not explicitly employ a bank of model-
matched filters computed in parallel. Instead, a single
model-matched Kalman filter is employed; the last is re-
ferred to as the reference Kalman filter. The adaptive-H0

GLR algorithm calculates all the model-matched estimates
from the outputs of the reference Kalman filter. The calcu-
lation of the model-matched estimates by a GLR algorithm
is more numerically efficient than running a bank of filters
in parallel [14] and naturally permits for on-line adaptation
of the models. However, as a trade-off, the GLR algorithm
is applicable to models which differ by their inputs only,
the transition matrix must be the same in all the models
considered.

The flowchart of the A-GLR estimator is shown in
Figure 1 which can be summarized in six repetitive steps:
(1) formation of a set of hypotheses, (2) GLR computa-
tions, (3) formation of the model bank, (4) model-matched
estimation, (5) calculation of the a-posteriori probabilities
of the models, and (6) estimate fusion.

A. The Formation of the Set of Hypotheses

The GLR algorithm employs multiple hypotheses. The set
of hypotheses describes the parametric families of which the
input z is a member. This set of hypotheses, Sk

H , contains
one reference hypothesis characterized by no additive abrupt
change, H0, and w hypotheses that assume different onset
time instants of the abrupt change as well as different
functional realizations, H k

i , i ∈ {1, · · · , w}. Hence, Sk
H =

{H0,H k
1 , · · · ,H k

w }.
The reference hypothesis defines a parametric family of

functions characterized by a dynamic profile, fH ∈ H0,
of the process z before an abrupt change. The actual
realization for z before an abrupt change is referred to as the
reference realization and is given by z = νH fH , where
the scaling factor νH has to be estimated on-line. Each
abrupt change hypothesis represents a parametric family of
functions characterized by two parameters: a time instant for
the onset of the abrupt change, k�

i , and a dynamic profile
of the abrupt change, fi. The realization for z after an
abrupt change associated with hypothesis H k

i is given by
z = νH fH + νifi where both scaling factors νH and νi

are estimated on-line by the adaptive-H0 GLR algorithm.

B. The Adaptive-H0 GLR Algorithm

The adaptive-H0 GLR algorithm is an improved version
of the GLR algorithm of [12] and was first introduced
in [11] for the purpose of fault detection in systems with
one unknown input. The adaptive-H0 GLR algorithm pro-
vides an estimate of the reference realization, ẑH , and
a maximum likelihood estimate, ẑML

i , for the realization
of each hypothesis H k

i . It also calculates the likelihood
ratios, L(H k

i , ẑML
i ), between the estimated realizations of

the abrupt change hypotheses and the estimated realization
of the reference hypothesis:

ẑML
i � ẑH + arg max

z̃
p

(Yk
k0

∣∣ H k
i , z̃

)
(3a)

= ẑH +
d(k, i)
J(k, i)

fi (3b)

L(H k
i , ẑML

i ) �
p

(Yk
k0

∣∣ H k
i , ẑML

i , ẑH

)
p

(Yk
k0

∣∣ H0, ẑH

) = e
1
2

d2(k,i)
J(k,i) (4)

In the above, ẑH is the estimated reference realization
and z̃ � νifi is a realization of the abrupt change. The
symbol d is the signature correlation and the symbol J is
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Fig. 1. A-GLR estimator.
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the normalized Kullback-Leibler divergence (an information
theoretic norm) of hypothesis H k

i , see [15]. The value of
d and J is calculated based on the system matrices of a
reference Kalman filter and on its residuals, γ, as follows

d(k, i) � d(k − 1, i) + ρT (k, i)V −1(k)γ(k) (5a)

J(k, i) � J(k − 1, i) + ρT (k, i)V −1(k)ρ(k, i) (5b)

ρ(k, i) � H(k)Γ(k, i) (5c)

Γ(k, i) � G2(k)fi(k) + F(k − 1)Γ(k − 1, i) (5d)

F(k − 1) � F (k)[I − K(k − 1)H(k)] (5e)

where V is the residual covariance and K is the Kalman
gain. The recursions for d, J and Γ are initiated by
d(k�

i , i) = 0, J(k�
i , i) = 0, and Γ(k�

i , i) = 0. The reference
Kalman filter requires a realization for the unknown pro-
cess z; the employed realization is the estimated reference
realization ẑH ∈ H0. The adaptive-H0 algorithm adapts
the reference realization ẑH judging by the likelihood
ratio between the maximum likelihood estimate of the
reference at time instant k, see Eq. (3), as compared with
the estimated reference realization at time instant k − 1;
the threshold of the decision function is conditioned by the
desired Type I error probability, α. See Ref. [11] for details.

C. The Formation of the Model Bank

The bank of models describes several realizations for the
process z over the time interval [k0, k]. At each time instant
k, a model, Mk

i , is associated with the reference hypothesis
H0 and with an abrupt change hypothesis H k

i ∈ Sk
j as

follows

Mk
0 : ẑH (l) (6a)

Mk
i : ẑH (l) [1(k0) − 1(k�

i )] + ẑML
i (l)1(k�

i ) (6b)

where l ∈ {k0, · · · , k}, i ∈ {1, · · · , w}, the symbol 1(l)
denotes the unit step function at time instant l, and k�

i is
the onset time of the abrupt change assumed by H k

i .

D. The Model-Matched State Estimates

Each model-matched state estimate, x̂i(k|k), is calculated
assuming that model Mk

i is true

x̂i(k|k) � E
(
x

∣∣Mk
i ,Yk

k0

)
(7)

The model-matched estimate x̂0(k|k) and its covariance
P0(k|k) are calculated by the reference Kalman filter em-
ployed by the GLR algorithm. The remaining x̂i(k|k) and
Pi(k|k) are calculated using outputs of the GLR algorithm

x̂i(k|k) = x̂0(k|k) +
d(k, i)
J(k, i)

Υk
i (8a)

Pi(k|k) = P0(k|k) +
Υk

i Υk
i

T

J(k, i)
(8b)

where Υk
i � (I − K(k)H(k))Γ(k, i).

E. The A-Posteriori Probabilities of the Models

The a-posteriori probability of each model,
Pr

(
Mk

i

∣∣Yk
k0

)
, is calculated from the likelihood ratios of

the models using the Bayes’ rule

Pr
(
Mk

i

∣∣Yk
k0

)
=

L
(
Mk

i

)
Pr

(
Mk

i

)
w∑

j=0

L
(
Mk

j

)
Pr

(
Mk

j

) (9)

where Pr(Mi) is the total probability of model Mk
i and

L(Mk
i ) is a likelihood ratio defined as:

L(Mk
i ) �

p
(Yk

k0

∣∣ Mk
i

)
p

(Yk
k0

∣∣ Mk
0

) (10)

Since the model Mk
i is chosen to be the maximum like-

lihood realization of hypothesis H k
i , the value of L(Mk

i )
is

L(Mk
i ) = L(H k

i , ẑML
i ) (11)

F. The Estimate Fusion

The minimum mean square state estimate, x̂(k|k), is
expressed as a probabilistic mixture using the law of total
probability:

x̂(k|k) � E
(
x

∣∣Yk
k0

)
=

w∑
i=0

x̂i (k|k) Pr
(
Mk

i

∣∣Yk
k0

)
(12a)

P(k|k) =
w∑

i=0

Pr
(
Mk

i

∣∣Yk
k0

) × {
Pi(k|k)+

[x̂i(k|k) − x̂(k|k)] [x̂i(k|k) − x̂(k|k)]T
}

(12b)

IV. COMPARISON OF THE IMM AND A-GLR
ESTIMATORS

For the sake of comparison, a specific example is con-
sidered involving the terminal engagement between an in-
terceptor (the pursuer) and a maneuverable ballistic missile
(the evader). During the terminal engagement, the speed of
the opponents is assumed constant and the dynamics of the
pursuer and the evader are linearized along the initial line of
sight. The maneuvering dynamics of the pursuer and evader
is approximated by first-order transfer functions with time
constants τP and τE , respectively. The pursuer is equipped
with a single on-board sensor which measures the lateral
separation between the target and the interceptor. These
assumptions result in a fourth-order model of the form of
Eq. (1) whose matrices are found in Ref. [2]. In the model,
the known input, u, is the pursuer’s command acceleration
and the unknown input, z, subject to abrupt changes is the
target’s command acceleration. The value of the pursuer’s
command acceleration is selected using the DGL/1 guidance
law [2]. The engagement lasts 4 seconds and the target
performs a bang-bang maneuver at t = 2.0 s when the
target’s command acceleration, z, changes from +zmax to
−zmax. Both the onset time of the bang-bang maneuver
and the value of zmax are unknown to the pursuer. The
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initial target’s acceleration is 0 [g]. The parameters of the
simulations are provided in Table I where σ is the standard
deviation of the angular measurement noise. The covariance
of the linearized measurement noise, Qη , is calculated from
σ assuming the range, r, is known:

Qη(k) = (r(k)σ)2 (13)

For comparison, the IMM estimator is selected since the
latter is recognized to have good performance in tracking
problems of highly maneuvering targets [5]. Four different
IMM estimators, denoted IMM1, ..., IMM4, are compared
with two implementations of the A-GLR estimator, denoted
AGLR1 and AGLR2. The estimators are compared using the
statistics obtained through Monte Carlo simulation which
involves 100 different noise realizations. The noise realiza-
tions are the same for all the estimators.

A. Selection of Parameters for the Estimators

The AGLR1 and AGLR2 estimators employ a Type I
error probability, α, set to α = 0.001, and dynamic profiles
fH and fi set to a constant non-zero values. The hypotheses
differ only by the onset time of the abrupt change, k�

i .
At any current time instant k, the hypotheses are selected
such that the value of k�

i is uniformly distributed in the
time interval k�

i ∈ [k − 70, k]. The (unnormalized) total
probability, Pr(Mk

i ), is calculated as follows:

Pr(Mk
i ) =

{
e−

1
2 (ẑML

0 (k)−ẑH (k))2
/σ2

a , i = 0

e−
1
2 (|ẑML

i (k)|−|ẑH (k)|)2
/σ2

b , i �= 0
(14)

where i ∈ {0, · · · , w}, σa = 10 [g] and σb = 2 [g]. The
total probability can be unnormalized since it is only used
within a ratio, see Eq. (9). Contrary to the IMM estimators,
the A-GLR estimator does not employ Markovian transition
probabilities between the models. The two A-GLR estima-
tors differ by the number of hypotheses, w. The AGLR1
estimator employs w = 10 while the AGLR2 estimator
employs w = 70.

The estimators IMM1, IMM2, and IMM3 employ a bank
of three Kalman filters with shaping filters (SF). The SF
approximates the unknown target’s command acceleration
by a Wiener process acceleration model (WPAM) [13]. The
three Kalman filter differs only by the covariance, Qw, of
the WPAM; the values employed are Qw ∈ {0, 9, 225} [g2]
for IMM1, and Qw ∈ {0, 25, 2500} [g2] for IMM2 and

TABLE I

SIMULATION PARAMETERS

Pursuer velocity VP = 2 300 m/s
Evader velocity VE = 2 700 m/s
Pursuer max. acc. umax = 30 g
Evader max. acc. zmax = 15 g
Pursuer time constant τP = 0.2 s
Evader time constant τE = 0.2 s
Initial range r(0) = 20 000 m
Measurement freq. f = 100 Hz
Std. dev. ang. noise σ = 0.1 mrad

Fig. 2. Estimation of the target’s acceleration. Solid line: estimated value,
dashed line: true value.

IMM3. The estimators IMM2 and IMM3 differ only by
their Markovian transition probability matrices, see below.

The estimator IMM4 incorporates 9 Kalman
filters in its bank. Each filter assumes a constant
acceleration level for z. The selected levels are
{−30,−20,−10,−5, 0, 5, 10, 20, 30} [g]. None of the
filters match at any time the true target’s command
acceleration; the last is realistic since ẑmax is unknown to
the pursuer.

The elements, Pr(Mk
i |Mk−1

j ), of the Markovian transi-
tion probability matrix are set to:

IMM1
IMM2

}
=⇒

{
Pr(Mk

i |Mk−1
i ) = 0.98

Pr(Mk
i |Mk−1

j ) = 0.01 i �= j
(15)

IMM3 =⇒
{

Pr(Mk
i |Mk−1

i ) = 0.995
Pr(Mk

i |Mk−1
j ) = 0.0025 i �= j

(16)

IMM4 =⇒
{

Pr(Mk
i |Mk−1

i ) = 0.98
Pr(Mk

i |Mk−1
j ) = 0.0025 i �= j

(17)
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Fig. 3. Magnitude of the average estimation error. The estimate is the
target’s acceleration.

B. Simulation results

The estimated target’s acceleration is depicted in Figure 2
for a sample noise realization; all the estimators employ the
same sample noise realization. As compared to the estimates
from the IMM estimators, the estimates from the A-GLR
estimators are characterized by a better noise rejection and
a faster convergence after an abrupt change.

The magnitude of the average error in the estimate of the
target’s acceleration is depicted in Figure 3. As compared
to the estimates from the IMM estimators, the estimates
from the A-GLR estimators converge faster after an abrupt
change. The IMM1 estimator exhibits both a large average
error and a slow convergence of the estimate. The IMM2
shows that increasing the covariance of the SF improves the
convergence of the IMM estimate after an abrupt change,
but not sufficiently to reach the rate of convergence of the
A-GLR estimator. Further increasing the covariance of the
SF at a level higher than IMM2 (not shown here) does not
yield further improvements in the convergence of the esti-
mate. The IMM3 estimator converges faster than the IMM2

Fig. 4. Standard deviation of the estimation error. The estimate is the
target’s acceleration.

estimator despite using the same bank of filters because it
employs lower Markovian transition probabilities. However,
the IMM3 estimator also exhibits the largest worse-case
average error. The IMM4 estimator is characterized by a
biased estimate. Additional simulations, not shown here,
employing the IMM4 estimator with different values for
its Markovian transition probabilities did not significantly
improve performance.

The standard deviation (SD) in the estimate of the target’s
acceleration is depicted in Figure 4. The estimates from the
A-GLR estimators exhibit a peak at t ∼ 2.4 s, the last occurs
in reaction to the abrupt change in the target command
acceleration. Before the peak, the A-GLR estimators and the
IMM1 estimator yield estimates with similar SD. After the
peak, the lowest SD is achieved by the A-GLR estimators.
The IMM1 estimator exhibits a SD lower than the IMM2
estimator because the covariance of its SF is the lowest. The
IMM3 estimator demonstrates a large SD of its estimate at
the beginning of the engagement and after the peak; its
low Markovian transition probabilities render the estimate
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TABLE II

COMPUTATIONAL REQUIREMENTS

Estimator time [10−2s] factor

IMM with 3 fi lters 31 1×
IMM with 9 fi lters 129 4.2×
A-GLR with 10 hypotheses 26 0.8×
A-GLR with 70 hypotheses 115 3.7×

sensitive to noise initially and after an abrupt change. The
IMM4 estimator is similar to the IMM2 estimator in terms
of the requirements for the SD.

To summarize the results in Figures 3 and 4, the estimates
from the A-GLR estimators demonstrate simultaneously fast
convergence after an abrupt change and a low standard de-
viation. In the same situation, the IMM estimator can yield
either an estimate with a fast convergence, or an estimate
with a low standard deviation, but not both simultaneously.

The computational load for the A-GLR estimator in-
creases linearly with the number of hypotheses [14]. By
comparison, the computational load for the IMM estimator
increases faster than linearly with the number of filters;
this happens because the IMM procedure for mixing ini-
tial conditions is a quadratic operation with respect to
the number of filters. The actual computational effort as
required by the implemented estimators is displayed in
Table II; as a baseline, the factor parameter is assumed to
be equal to one for the IMM estimator with 3 filters. In
terms of computational effort, the A-GLR estimator with
10 hypotheses is similar to an IMM estimator with 3 filters
while the A-GLR estimator with 70 hypotheses is similar to
an IMM estimator with 9 filters. The IMM estimator with
9 filters requires five times more computational time than
that with 3 filters. The computational effort needed by the
A-GLR estimator increases almost linearly with the number
of hypotheses.

V. CONCLUDING REMARKS

A novel state estimator is presented for linear systems
with unknown inputs subject to additive abrupt changes.
The new algorithm is recursive and employs banks of
parametric families of input functions in conjunction with
a GLR algorithm to yield a state estimate. The estimator
is implemented in the difficult case of tracking a randomly
maneuvering ballistic missile and its performance is com-
pared to several implementations of the IMM estimator.
Extensive simulation results show that the A-GLR estimator
delivers a better trade-off between the estimation reliability
as expressed by the standard deviation of the estimation
error and speed of convergence after an abrupt change.
None of the implemented IMM estimators is capable of
delivering estimates characterized by a similar standard
deviation error while simultaneously exhibiting comparable
rate of convergence.

The overall superior performance of the novel A-GLR
estimator is attributed to more accurate modeling of the

unknown input which is realized by introducing banks of
parametric families of input functions describing explicitly
the admissible shapes for the unknown input (such as the
type of maneuvers performed by a target) and on-line
model-matching of the input to members of theses families.
The above benefits of the A-GLR estimator are achievable
at relatively modest computational expense as, unlike the
IMM estimator, the A-GLR estimator employs only a single
Kalman filter.

Based on the demonstrated superiority of the A-GLR
estimator, it is concluded that the new scheme is a powerful
tool for state estimation of rapidly maneuvering targets and
also may be useful in other estimation problems of similar
mathematical description. Current research involves the de-
velopment of a yet more sophisticated GLR multiple model
estimator by allowing interactions between the models.

REFERENCES

[1] H. J. Kushner, “Robustness and convergence of approximations to
nonlinear fi lters for jump-diffusions,” Computational and Applied
Math., vol. 16, pp. 153–183, 1997.

[2] T. Shima, Y. Oshman, and J. Shinar, “Effi cient multiple model adap-
tive estimation in ballistic missile interception scenarios,” Journal of
Guidance, Control, and Dynamics, vol. 25, no. 4, pp. 667–675, 2002.

[3] H. A. P. Blom, “An effi cient fi lter for abruptly changing systems,” in
Proceedings of the Conference on Decision and Control, 1984, pp.
656–658.

[4] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model
algorithm for systems with markovian switching coeffi cients,” IEEE
Transactions on Automatic Control, vol. 33, pp. 780–783, 1988.

[5] T. Kirubarajan and Y. Bar-Shalom, “Kalman fi lter versus IMM
estimator: when do we need the latter?” IEEE Transactions on
Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1452–1457,
2003.

[6] T. Kirubarajan, Y. Bar-Shalom, K. R. Pattipati, and I. Kadar, “Ground
target tracking with variable structure IMM estimator,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 36, pp. 26–46,
2000.

[7] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes—
Theory and Applications. Englewood Cliffs, N.J.: Prentice-Hall,
April 1993, ISBN 0-13-126780-9.

[8] D. Dionne and H. Michalska, “A multiple reference GLR state
estimator for hybrid systems,” WSEAS Transactions on Circuits and
Systems, vol. 3, pp. 711–716, 2004.

[9] J. Korn, S. W. Gully, and A. S. Willsky, “Nonlinear generalized
likelihood ratio algorithms for maneuver detection and estimation,”
in Proceedings of the American Control Conference, 1982, pp. 985–
987.

[10] K. Schnepper, “Comparison of GLR and multiple model fi lters for
a target tracking problem,” in Proceedings of the Conference on
Decision and Control, 1986, pp. 666–670.

[11] D. Dionne, H. Michalska, Y. Oshman, and J. Shinar, “A novel
adaptive generalized likelihood ratio detector with application to a
terminal pursuit-evasion problem,” submitted to the Journal Guid-
ance, Control, and Dynamics.

[12] A. S. Willsky and H. L. Johns, “A generalized likelihood ratio
approach to the detection and estimation of jumps in linear systems,”
IEEE Transactions on Automatic Control, vol. AC-21, pp. 108–112,
1976.

[13] Y. Bar-Shalom and X. R. Li, Estimation and Tracking: Principles,
Techniques and Software. Boston, U.S.: Artech House, Inc., 1993.

[14] A. S. Willsky, Detection of abrupt changes in dynamic systems, ser.
Detection of Abrupt Changes in Signals and Systems, M. Basseville,
A Benveniste, eds., Lecture Notes in Control and Information Sci-
ences, v. 77. New York: Springer, 1986, pp. 27–49.

[15] S. Kullback, Information Theory and Statistics. New York: Dover
Publications, July 1997, ISBN: 0-48669684-7.

338


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


