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Abstract— This paper reports a finite step scheme for the
computation of near-optimal control of general stochastic
systems with their diffusion terms affected by control. It is
developed based on second order estimation of the stochastic
system and the associated two adjoint variational equations.
The search is an extension of the standard steepest descent
method to the functional case with a random step size based
on the variation of an auxiliary function H. Convergence
analysis are included to show this scheme does converge to
a desired admissible control in finite step. Consistency of
the approximation of the associated adjoint equations is also
discussed. A linear quadratic control example is included for
illustration purpose.

I. INTRODUCTION

At present, there are roughly two major types of computa-
tional approaches that have comparatively solid theoretical
basis. One is based on the Markov chain approximation
method. To this method, the stochastic control system is first
approximated using a Markov chain evolving in a finite state
set, then an optimal control problem is also approximated
on this Markov chain and finite state set. At last, an optimal
control is computed or estimated for the Markov chain
optimal control problem. In [1], [2], this techniques is
discussed in detail. In [2], [3], it is clarified that the Markov
chain approximation schema proposed is also suitable to the
type of stochastic optimal control problems where control
affects the diffusion term. Another approach is based on
the numerical solution of Hamilton-Jacobi-Bellman (HJB)
equation, which is obtained using dynamic programming
technique. Theoretically, this HJB equation gives a partial
differential equation that the value function must satisfy.
For surveys of existing approaches, see [4], [5].

One of the key issues here is how to measure whether an
admissible control is close to the optimal one. A mathemat-
ical way could be using certain type of metric in the space
of all admissible controls. However, in a practical settings
the ”near-optimal” concept proposed in [6] makes more
sense. This is not only because usually a smooth optimal
control may not exist, but also because, by near-optimal the
solution is measured by how close to the optimal value the
cost function value is, which fits perfectly the objective to
optimize the cost function.

Based on the concept of near-optimality, we develop a
scheme for the computation of general optimal stochastic
control problem. By this scheme, the cost function is
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guaranteed to minimized by at least a fixed amount until
control is near-optimal in the sense that the cost function
is close to the optimal one. A loose bound is also given
for the number of iteration steps to achieve a near-optimal
solution.

The scheme is developed using a point-wise gradient
direction of an auxiliary cost function H. This auxiliary
function is computed using the solutions to two adjoint
backward stochastic differential equations (BSDEs) that
reflect the first-order and second-order approximations of
the original systems. With many researches have been
conducted towards to numerical solution of BSDEs, our
research is not emphasized on this aspects. Interested reader
can see [7], [8], [9], [10], [11], [12] for discussions of
BSDEs and their numerical computation methods.

bbb

II. PROBLEM STATEMENTS AND PRELIMINARIES

Let us first introduce notations that will be used in this
paper:

(Ω,F ,P, B) : a four-tuple defined by the sample
space Ω ⊆ �n, the σ-field F ,
the probability measure P , and the
l-dimensional independent Brownian
motion B := B(t), t0 ≤ t ≤ T with
B(t0) = 0.

F t0
t : the natural filtration generated by B(t)

augmented by all P -null sets in F .
u(·) : the m-dimensional control input. It is

a F t0
t -adapted measurable random pro-

cess taken value in a given compact set
Γ ⊂ �m. Let us also denote the bound
of the compact set Γ as Γb.

Uad[t0, T ] : the set of admissible controls. For
given (Ω,F ,P, B), each element of
Uad[t0, T ] is a control process u(·).

M� : the transpose of matrix or vector M .
| a | : the norm of a vector or a matrix a. It

is the sum of absolution value of its
components.

∂ρ
∂z : the partial derivative of a vector func-

tion ρ with respect to a vector variable
z. More specifically,

(
∂ρ
∂z

)
i,j

= ∂ρi

∂zj
.

∂2ρ
∂z�∂z

: the second order partial derivative of
a scaler function ρ with respect to a
vector variable z. More specifically,(

∂2ρ
∂z�∂z

)
i,j

= ∂2ρ
∂zi∂zj

.
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ai : the i-th row vector or a matrix a.
a·i : the i-th column vector or a matrix a.

(aij) : A matrix that its (i, j)-th element is
aij .

Consider the following stochastic system with control:

dx(t) = f(t, x(t), u(t))dt + σ(t, x(t), u(t))dB(t),
x(t0) = x0, (1)

where f, σ are measurable in (t, x, u). The objective of
optimal control is to find the admissible control to minimize
the cost function given by:

J(u(·)) = E{
∫ T

t0

L(t, x(t), u(t))dt + h(x(T ))}, (2)

where L is a measurable function in (t, x, u) and h is a
function of x(T ). If the time interval and the initial state
value of considering can change, J is also a function of
t0, x0 and T. We also let the optimal cost, usually called
value function, be denoted as V or V (t0, , x0, T ).

We say an admissible control uε is near optimal if the
the value of the corresponding cost is near the value of
V . More specifically, for given ε > 0, uε is ε-optimal if
| J(u(·)) − V |≤ ε. In some cases it is not easy to justify
the real meaning of near-optimal for one single fixed ε. We
consider a positive sequence converges to zero, say, E :=
{εn} → 0+. A sequence of admissible controls {un(·)} is
called E-optimal if | J(un) − V |≤ εn.

In this study, we need the following assumption:
Assumption 1: We assume:

A1. f, σ, and L are measurable in (t, x, u) and twice
continuously differentiable in x and u.
A2. h is twice continuously differentiable.
A3. There is a constant C such that the following Lipschitz
type conditions are satisfied:

| ρ(t, x, u) |≤ C(1+ | x |),
| ρ(t, x, u) − ρ(t, x′, u′) | + | ∂ρ

∂x
(t, x, u) − ∂ρ

∂x
(t, x′, u′) |

+ | ∂ρ

∂u
(t, x, u) − ∂ρ

∂u
(t, x′, u′) |

≤ C(| x − x′ | + | u − u′ |),
| h(x) |≤ C(1+ | x |),

| h(x) − h(x′) | + | ∂h

∂x
(x) − ∂h

∂x
(x′) |≤ C | x − x′ |,

where ρ = f, σ, L.
In the proof of the proposed scheme, we also need the

following result borrowed from [13]:
Lemma 1: Ekeland’s Principle Let (S, d) be a complete

metric space and ρ(·) : S → �1 be lower-semicontinuous
and bounded below. For ε ≥ 0, if uε ∈ S satisfies

ρ(uε) ≤ inf
u∈S

ρ(u) + ε.

Then, for any λ > 0, there exists a uλ ∈ S such that
ρ(uλ) ≤ ρ(uε), d(uλ, uε) ≤ λ, ρ(uλ) ≤ ρ(u) + ε

λd(uλ, uε)
where d(uλ, uε) is the distance in the metric space.

We also need a result for backward stochastic differential
equations:

Lemma 2: Consider a backward stochastic differential
equation (BSDE) in the following form:

x(t) +
∫ T

t

ξ(s, x(s), y(s), γ(s))ds +
∫ T

t

y(s)dB(s)

= X, (3)

where B(t) is a Brownian motion or Wiener process defined
on a probability space (Ω,F ,P), Ft is its natural filtration,
X is a FT measurable random vector, x, Y are n and
n × m dimensional random vector and matrix variables,
respecticely, ξ is a P ⊗ Bd ⊗ Bn×m ⊗ Bl/Bd measurable
function, P is the σ-algebra of Ft-progressively measurable
subsets of Ω × [t0, T ], and γ(s) is a l-dimesional random
vector process that represents uncertainty of the model.
Assume that ξ is uniformly Lipschitz in the variables x and
y with the Lipschitz constant Cb independent of γ. Then,
the solution pair (x, y) uniquely exists for each given γ(·)
and the solution is uniformly bounded. More specifically,
there exists a constant C5 such that

E

∫ T

t0

| x(t) |2 + | y(t) |2 dt < C5.

The uniqueness and existence are existing results. For more
details, see [8], [11]. By constructing a Cauchy sequence
xk(t), yk(t), k = 0, 1, 2, . . . as follows:

xk(t) +
T

t

ξ(s, xk−1(s), yk−1(s), γ(s))ds +
T

t

yk(s)dB(s),

starting from any square integrable processes
pair(x0(t), y0(t)), and applying Proposition 2.2 in
[11], we can prove the solution is uniformly bounded.
Details are omitted because of space and the fact that these
techniques are standard.

III. ADJOINT EQUATIONS, MAXIMUM PRINCIPLE, AND
CONDITIONS TO NEAR-OPTIMALITY

Most results and techniques in this section can be found
in [14], [6]. They are critical in understanding the compu-
tation scheme proposed in this paper.

For a given admissible control input ū(t), let the trajec-
tory of the equation (1) be denoted as x̄(t). Also let the
first and second adjoint processes, denoted as y1(t) and
y2(t) respectively, be the same as that defined in [14]. Let
two costs be defined as:

J1(u(·)) = E[
∫ T

t0

∂L

∂x
(t, x̄(t), ū(t))y1(t)dt

+
∂h

∂x
(x̄(T ))y1(T )], (4)

J2(u(·)) = E[
∫ T

t0

∂L

∂x
(t, x̄(t), ū(t))y2(t)dt

+
∂h

∂x
(x̄(T ))y2(T )]. (5)
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The associated adjoint equations are given by:

dp(t) = −{∂f

∂x
(t, x̄(t), ū(t))�p(t)

+
m∑

i=1

∂σ·i
∂x

(t, x̄(t), ū(t))�K·i(t) +
∂L

∂x
(t, x̄(t), ū(t))}dt

+K(t)dB(t), p(T ) =
∂h

∂x
(x̄(T )). (6)

dQ(t) = −{∂f

∂x
(t, x̄(t), ū(t))�Q(t)

+Q(t)
∂f

∂x
(t, x̄(t), ū(t))

+
m∑

i=1

[
∂σ·i
∂x

(t, x̄(t), ū(t))�Q(t)
∂σ·i
∂x

(t, x̄(t), ū(t))

+
∂σ·i
∂x

(t, x̄(t), ū(t))�R·i(t) + R·i(t)
∂σ·i
∂x

(t, x̄(t), ū(t))]

+Λ(t)}dt + R(t)dB(t),

Q(T ) =
∂2h

∂x�∂x
(x̄(T )), (7)

where Λ(t) = ∂2L
∂x�∂x

(t, x̄(t), ū(t)) +∑n
i=1{pi(t) ∂2fi

∂x�∂x
(t, x̄(t), ū(t)) +

Ki(t) ∂2σi

∂x�∂x
(t, x̄(t), ū(t))}. Following the standard

reasoning process in [6] and [14], the following
relationships can be established:

J1(u(·)) = E

∫ T

t0

p(t)�[f(t, x̄(t), u(t))

−f(t, x̄(t), ū(t))]dt

+E

∫ T

t0

tr{K(t)[σ(t, x̄(t), u(t) − σ(t, x̄(t), ū(t))]}dt, (8)

J2(u(·)) = E

∫ T

t0

1
2

[
y�
1 (t)

(
p(t)

∂2f

∂x�∂x
(t, x̄(t), ū(t))

+
m∑

i=1

Ki(t)
∂2σi

∂x�∂x
(t, x̄(t), ū(t))

)
y1(t)

]
dt

+E

∫ T

t0

p�(t)[
∂f

∂x
(t, x̄(t), u(t))

−∂f

∂x
(t, x̄(t), ū(t))]y1(t)dt

+E

∫ T

t0

m∑
i=1

K�
i (t)[

∂σ

∂x
(t, x̄(t), u(t))

−∂σ

∂x
(t, x̄(t), ū(t))]y1(t)dt. (9)

Define the Hamiltonian function H as:

H(t, x, v, p,K) = L(t, x, v) + p�f(t, x, v)

+
m∑

i=1

K�
i σi(t, x, v). (10)

Notice that now we have Λ(t) =
∂2H

∂x�∂x
(t, x̄(t), ū(t), p(t),K(t)). We can define the

third cost function:

J3(u(·)) =

1
2
E

{∫ T

t0

y�
1 (t)

∂2H

∂x�∂x
(t, x̄(t), p(t), K(t))y1(t)dt

+y�
1 (T )

∂2h

∂x�∂x
(x̄(T ))y1(T )

}
. (11)

And also following the reasoning process in [14] we can
see that

J3(u(·)) = E
T

t0

tr(Q(t)Φ(t)) +
m

i=1

tr(Ri(t)Ψi(t))dt, (12)

where Φ(t), Ψ(t) are given by:

Φ(t) = y1(t)[f(t, x̄(t), u(t)) − f(t, x̄(t), ū(t))]�

+[f(t, x̄(t), u(t)) − f(t, x̄(t), ū(t))]y�
1 (t)

+
(

∂σij

∂x
(t, x̄(t), ū(t))y1(t)

)
·[σ(t, x̄(t), u(t)) − σ(t, x̄(t), ū(t))]�

+[σ(t, x̄(t), u(t)) − σ(t, x̄(t), ū(t))]

·
(

∂σij

∂x
(t, x̄(t), ū(t))y1(t)

)�

+[σ(t, x̄(t), u(t)) − σ(t, x̄(t), ū(t))]
·[σ(t, x̄(t), u(t)) − σ(t, x̄(t), ū(t))]�, (13)

Ψ(t) = y1(t)[σ(t, x̄(t), u(t)) − σ(t, x̄(t), ū(t))]�

+[σ(t, x̄(t), u(t)) − σ(t, x̄(t), ū(t))]y�
1 (t). (14)

Based on the solution of the two adjoint backward
stochastic differential equations given by (6) and (7), we
can also define a modified Hamiltonian function H as:

H(x̄,ū)(t, x, u) = H(t, x, u, p(t),
K(t) − Q(t)σ(t, x̄(t), ū(t)))

+
1
2
σ(t, x, u)�Q(t)σ(t, x, u). (15)

Then, the so-called Maximum Principle in [6], [14], [15]
and the major results in [6] can be summarized by the
following theorem:

Theorem 1: Assume that conditions in Assumption 1 in
previous section are all satisfied.
(1). The necessary condition for an admissible con-
trol ū(t) and its corresponding solution x̄(t) minimize
the cost function J if ū(·) minimizes the functional∫ T

t0
H(x̄,ū)(t, x̄(t), u(t))dt.

(2). There exists a constant C1 > 0, such that an admissible
control ū(t) and its corresponding solution x̄(t) is ε-optimal
if the following inequality is satisfied:∫ T

t0

H(x̄,ū)(t, x̄(t), ū(t))dt

≤ inf
u∈Uad[t0,T ]

∫ T

t0

H(x̄,ū)(t, x̄(t), u(t))dt + C1ε. (16)

(3). There exists a constant C1, which is related to the
Lipschitz constant C, the time interval [t0, T ] and the value
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range Γ of admissible controls but independent of ε. Assume
the Hamiltonian function H(t, x(t), u(t), p, K) defined in
(10) and the function h(x) in the terminal cost of the cost
function given by (2) are convex in with respect to t and
x, respectively. If for some ε > 0, there is an admissible
control ū such that the inequality (16) holds. Then,

J(ū(·)) ≤ inf
u∈Uad[t0,T ]

J(u(·)) + C1ε
1
2 .

In the proof of the result corresponding to (3) of Theorem
1 in [6], one can see that ∂H

∂u to be small is the key step.
However, it is of more interests in this paper to evaluate
whether

∫ T

t0
| ∂H

∂u | dt is small. In fact, it is the major
criterion that our scheme based on. For this concern, we
have the following theorem:

Theorem 2: Assume that conditions in Assumption 1 in
previous section are all satisfied.
(1). There exists a constant C2 > 0 independent of ε
such that, if uε(·) is an ε-optimal control, the following
estimation holds:

∫ T

t0

| ∂Hxε,uε

∂u
(t, xε(t), uε(t)) | dt < C2ε

1
2 . (17)

(2). Assume the Hamiltonian function H defined in (10)
and the function h(x(t)) in the terminal cost of the cost
function given by (2) are convex. Then, there is a constant
C3 > 0 independent of ε such that for any ε > 0, as long
as an admissible control ū(·) satisfies

∫ T

t0

| ∂Hxε,uε

∂u
(t, xε(t), uε(t)) | dt < C3ε, (18)

ū is guaranteed to be an ε-optimal control.
The proof is omitted because of length limitation. Interested
reader may request details from the author or see [16].

Algorithm 1: (Functional Stochastic Steepest Descent
Scheme)

Initial step: Start with a randomly selected admissible
control ū(·).

Updating rule:

• Calculate x̄k(t) according to the stochastic equation
(1) .

• Solve the first order adjoint equation (6) for p̄k(t).
• Solve the second order adjoint equation (7) for K̄k(t).
• Update ū(t) with

ūk+1(t) = ūk(t) − λ(t)
∂Hx̄k,ūk

∂u
(t, x̄k(t), ūk(t)),

(19)
where λ(t) is a positive scaler random process bounded
by a some constant Cū(·).

Example:
Consider the case where the stochastic control system is
linear and the cost function is quadratic. More specifically,

consider the following problem:

dx(t) = [A(t)x(t) + B(t)u(t) + b(t)]dt
+[C(t)x(t) + D(t)u(t) + σ(t)]dW (t),

x(t0) = x0,
(20)

J(u(·)) = E
1

2

T

t0

[< L(t)x(t), x(t) >

+2 < M(t)x(t), u(t) >

+ < M(t)u(t), u(t) >]dt +
1

2
< Gx(T ), x(T ) > , (21)

where W (t) is scalar Brownian motion, L,M, N,G are
matrices of appropriate dimensions, and < ·, · > denote
the inner product in Euclidean space.

Now the adjoint equations become:


dp(t) = −{
A�(t)p(t) + C�(t)K(t)

+ 1
2L(t)x(t) + u�(t)M(t)

}
dt

+K(t)dW (t),
p(T ) = Gx(T ),

(22)




dQ(t) = −{
A�(t)Q(t) + Q(t)A(t)

+C�(t)Q(t)C(t)
+C�(t)N(t) + N(t)C(t) + L(t)

}
dt

+N(t)dW (t),
Q(T ) = G.

(23)

The Hamiltonian function H is the following:

H(t, x0, u, p, K)

=
1
2

< L(t)x(t), x(t) > + < M(t)x(t), u(t) >

+
1
2

< N(t)u(t), u(t) >

+p�(t)[A(t)x(t) + B(t)u(t) + b(t)]
+K�(t)[C(t)x(t) + D(t)u(t) + σ(t)].

It can be calculated that:
∂Hx̄,ū

∂u
(t, x, u) =

∂H(t, x0, u, p̄, K̄)
∂u

= M(t)x̄(t) + N(t)ū(t)
+B�(t)p̄(t) + D�(t)K̄(t). (24)

Apparently, the proposed scheme is a normal iterative
method to solve the equation:

M(t)x(t) + N(t)u(t) + B�(t)p(t) + D�(t)K(t) = 0

for u. It is shown in [17, Page 309] that, together with posi-
tive semidefinitness of R(t)−D�(t)Q(t)D(t), this equation
is the linear quadratic version of Maximum Principle.

IV. CONVERGENCE ANALYSIS

In this section, technical details of the convergence anal-
ysis will be given. Consider two consecutive controls uk(·),
and uk+1(·) in the iterative computing process using scheme
in Algorithm 1. We will analyze the convergence of the
Algorithm 1 through evaluating the difference J(uk+1(·))−
J(uk(·)). First, we will see how well the first-order and
second-order processes can be used to estimate the differ-
ence. To this end, the following lemma holds:
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Lemma 3: For any two generic consecutive controls cal-
culated based on the updating rule in Algorithm 1, assume
the step size is chosen such that E

∫ T

t0
| λk(t) |2 dt ≤ 1.

The following estimation holds:

E |xk+1(t) − xk(t) − y1(t) − y2(t)|2

≤ C5E(
∫ t

t0

| λk(τ) |2 dτ)2, ∀t ∈ [t0, T ], (25)

where y1(t), y2(t) are first-order and second-order pro-
cesses.
The proof is omitted here. Interested readers may see [16].

Now we are ready to present the convergence property
of the Algorithm 1.

Theorem 3: For given an ε > 0, assume that the admis-
sible control value set Γ is big enough so that no ε-optimal
control can reach the δ0 neighborhood of the boundary of
Γ, where δ0 is a small positive constant. Then, there exist
positive constants α, β and δ such that, if λk(t) is selected in
the interval [α, β] and satisfies E

∫ T

t0
| λk(t) |2 dt ≤ 1, the

cost value is guaranteed to decrease at least by the amount
of δ, by using the proposed scheme starting from any
admissible control. Therefore, if the cost function J(u(·))
is bounded below, the proposed scheme achieves ε-optimal
solution in finite steps.
The proof is omitted to save space. Interested reader may
see [16] or ask the author for more details.

V. CONSISTENT APPROXIMATION SOLUTIONS TO
BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

The convergence analysis conducted in the last section
is based on the assumption that precise solutions to two
adjoint equations can be available. Such an assumption
is not practical. However, the analysis can still be valid
with some modification. In this section, the approximation
of backward stochastic differential equation is discussed.
Rather than to develop an approximation algorithm, the ob-
jective is to consider the precision required for a consistent
approximation algorithm so as to achieve desirable near-
optimal solution to the original stochastic control problem.

Consider the case where two pairs of approximated
solutions, (p̂k(t), K̂k(t)) and (Q̂k(t), R̂k(t)), are obtained
to the adjoint equations (6) and (7), respectively, at the
step k using the proposed iterative scheme. Let the adjoint
processes corresponding to ûk+1 be denoted as ŷ1(t), ŷ2(t),
respectively, where ûk+1 is the next step control computed
using the approximation solutions p̂k, K̂k, Q̂k, R̂k. For sim-
plicity, we also denote all other variables associated with
these approximation solution using a hat symbol .̂

Carefully considering the convergence analysis in last
section. We need the following lemma:

Lemma 4: Given an admissible control ū(·), let the
corresponding state trajectory be denoted as x̄(·), and
the solution to the adjoint equations (6), (7) be
denoted as p̄(·), K̄(·), Q̄(·), R̄(·), respectively. Assume

p̂(·), K̂(·), Q̂(·), R̂(·) are approximated solutions to those
adjoint equations such that

E

∫ T

t0

[| p̂(t) − p̄(t) |2 + | K̂(t) − K̄(t) |2

+ | Q̂(t) − Q̄(t) |2 + | R̂(t) − R̄(t) |2]dt < η, (26)

where η is a given small positive real number. Then, the
following results hold:

(1). E
∫ t

t0

∣∣∣∂H
∂u (τ, x̂k, ûk, p̂k(ûk), K̂k(û + k))

∣∣∣2 dτ is
bounded by a constant. This constant is depend on the
Lipschitz constant C and the approximation error η.
(2). There is a constant Ĉ such that the auxiliary
cost functions J1, J2, J3 defined in (4), (5), and (11),
respectively, satisfy the following estimation:

| Ji(u(·)) − Ĵi(u(·)) |< Ĉη, i = 1, 2, 3., (27)

where Ĵi is the corresponding costs defined in (8),
(9), and (12) with p(t), K(t), Q(t), R(t) replaced by
p̂(t), K̂(t), Q̂(t), R̂(t), respectively.
Proof is omitted. See [16] for details.

Applying the claim (1) in Lemma 4, one can see the
following result corresponding to Lemma 3:

Corollary 1: Under the assumption in Lemma 4, for the
second order approximation of the trajectory process x(·)
at (x̂k, ûk) based on the approximation solution of the
corresponding BSDEs, there exists a constant Ĉ5 such that:

E |x̂k+1(t) − x̂k(t) − ŷ1(t) − ŷ2(t)|2

≤ Ĉ5E(
∫ t

t0

| λk(τ) |2 dτ)2,∀t ∈ [t0, T ], (28)

where Ĉ5 is only depend on the Lipschitz constant C and
the approximation error bound η.

Remark 1: In fact, the assumption in (26) is not restric-
tive for numerical algorithms of BSDE. In [12], a schema
has been proposed for the equation

Yt +
∫ T

t

ZsdBs = ξ +
∫ T

t

f(s, ω, Ys, Ys, Zs)ds,

such that

E | Y (t) − Yn(t) |2 +E

∫ T

t

| Z(s) − Zn(s) |2 ds

≤ C ′′′(εn + δn + 1/λ),

where C ′′′ is a constant, εn and δn are discretization
error in time and space, λ is a parameter for a related
poison process that can be converge to positive infinity in
the approximation process, (Yt, Zt) and (Yn, Zn) are the
precise and approximated solutions, respectively. It can be
seen that this convergence result guarantees (26).

Theorem 4: Assume all assumptions and conditions in
Theorem 3 are satisfied. Choose ηk ≤ supt∈[t0,T ] λ

2
k(t).

Then, there exist positive constants α, β and δ such that, if
λk(t) is selected in the interval [α, β] and satisfies

E

∫ T

t0

| λk(t) |2 dt ≤ 1,
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the cost value is guaranteed to decrease at least by the
amount of δ, by using the proposed scheme starting from
any admissible control with the approximated solutions of
the adjoint equation satisfying (26) where the η is replaced
by ηk at step k. Therefore, if the cost function J(u(·)) is
bounded below, the proposed computation scheme achieves
ε-optimal solution in finite steps.
Proof is omitted. See [16] for details.

VI. CONCLUDING REMARKS

In this paper, a scheme is proposed for the computation
of optimal control for general stochastic system where the
diffusion term is affected by control input. It is developed
based on the concept of near-optimality and the gener-
alization of the well-known Maximum Principle to first-
order condition. An Hamiltonian type auxiliary function is
constructed to capture the gradient information at optimal
solution. Based on that, a gradient direction is calculated
for the searching of optimal control.

The proposed scheme provides us with a framework for
discretization for numerical computation. This can be seen
in two aspects. On one hand, the BSDEs can be solved
numerically as long as the error is consistent to the desired
one. On the other hand, the control updating rule is automat-
ically discretized if the initial admissible control is discrete
and the BSDEs are solved numerically. In this sense, the
proposed scheme differs from the Markov approximation
methods in [2] in the way that we compute the control
iteratively at the first stage, then this control is updated by
numerical solution to a group of equations free of control
while in their methods, the system is approximated using
a normalized markov discretization techniques. Then, the
resulted controlled Markov system is solved for optimal
control.

The proposed scheme also provides some insight of the
”gradient direction” in the optimization problems where
the cost is a function while the constraints are stochastic
equations. It is of interests in pursue further understanding
of such type of concept in a more abstract sense so as to
develop better optimization methods in functional spaces.

The computation scheme is based on the numerical
solution to sequences of backward stochastic differential
equations. The consistency of such numerical solution to
the proposed scheme is discussed. However, numerical
computation for BSDE is not studied in detail in this work.
Heuristically, we believe that it is easier to solve than the
inequality with adjoint equation constraints in the gener-
alized Maximum Principle. There are some computation
methods have been proposed for BSDEs. For examples, see
the [12], [9] and references cited therein. It is still of interest
to investigate the related consistent BSDE algorithm.

This scheme is only proposed here theoretically, even
though we believe it can be implemented easily provided
that a consistent algorithm to BSDEs is available. It is also
an important issue in future to develop the corresponding

numerical computation package so as to compare the pro-
posed scheme and major existing algorithm by numerical
simulation.
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