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Abstract— In this paper, we examine a discrete-time stochas-
tic control problem in which there are a number of observation
options available to the controller, with varying associated
costs. The observation costs are added to the running cost
of the optimization criterion and the resulting optimal control
problem is investigated. This problem is motivated by the wide
deployment of networked control systems and data fusion.
Since only part of the observation information is available
at each time step, the controller has to balance the system
performance with the penalty of the requested information
(query). We first formulate the problem for a general partially
observed Markov decision process (POMDP) model and then
specialize to the stochastic LQG problem, where we show
that the separation principle still holds. Moreover we show
that the effect of the observation cost is manifested on the
estimation strategy as follows: instead of a Kalman filter
with gain determined by the algebraic Riccati equation, the
optimal estimator includes, in addition, a query strategy which
is characterized by a dynamic programming equation. The
structure of the optimal query for a one-dimensional system
is studied analytically and simulated with numerical examples.

I. INTRODUCTION

Recently, much attention has been paid on network
control systems (NCS), in which the sensors, the controllers
and the actuators are located in a distributed manner and
are interconnected by communication channels. In such
systems, the information collected by sensors and the de-
cisions made by controllers are not instantly available to
the controllers and actuators. Rather they are transmitted
through communication channels, which might suffer delay,
transmission errors, and as such this transmission carries
a cost. Understanding the interaction between the control
system and the communication system is very important as
it plays a key role on the overall performance of NCS.

Stability is a basic requirement for a control system,
especially for network control systems. This raises the
question of how much information a feedback controller
needs in order to stabilize the system. Questions of this
kind have motivated much of the study of NCS: stability

under communication constraints of linear control systems
is studied by Wong and Brockett [14], [15], Tatikonda
and Mitter [12], [13], Elia and Mitter [6], Nair and Evans
[11], Liberzon [10] and many others; stability of nonlinear
control systems is further studied in [8] and [4].

Broadly speaking, the amount of information the con-
troller receives, affects the performance of estimation and
control. However, information is not free. On the one hand,
it consumes resources such as bandwidth, and power (i.e.,
in the case of a wireless channel), while on the other,
generating more traffic in the network, induces delays. If
one incorporates in a standard optimal control problem an
additional running penalty, associated with receiving the
observations at the controller, then a tradeoff would result
that balances the cost of observation and the performance
of the control. In this paper, we consider a simple network
scenario: a network of sensors, provides observation on the
system state sent to the controller through a communica-
tion channel. The controller has the option of requesting
different levels of information from the sensors (i.e., more
detailed or coarser observations), and can do so at each
discrete time step. Based on the information requested an
estimate of the state is computed and a control action is
decided upon. However, what is different here is that there
is a running cost, associated with the level of information
requested, which is added to the running cost of the original
control objective. As a result the observation space is not
static, but rather changes dynamically as the controller
issues different queries on the sensors.

There exists work in the literature studying the sensor
scheduling problem [1], [9], in which there are a number
of sensors with different levels of precision and operation
costs and the controller accesses only one sensor at a time
to obtain the observation and minimize the estimation error
and operation cost. In [1] sensor scheduling is addressed for
continuous-time linear systems while in [9] the dynamics
correspond to a hidden Markov chain. In this work, we de-
scribe a general model in the context of POMDPs and then
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specialize to the stochastic discrete-time linear quadratic
Gaussian (LQG) problem. Our aim is to study optimization
over the infinite horizon—both for the discounted cost (DC)
and the long-term average cost (AC). We show that for
the LQG problem, the separation principle of estimation
and control still holds, and hence the optimal control
can be fully decoupled into two subproblem: an optimal
query/estimation problem and an optimal control problem
with full observations. The estimation problem still reduces
to a Kalman filter, with the gain computed by a discrete-
Riccati equation. However, the optimal query is solved by
a dynamic programming equation. We further specialize to
the one-dimensional LQG problem where we obtain various
analytical results: necessary and sufficient conditions for the
query strategy to be dynamic, and also the existence of
a solution to the long-term average dynamic programming
equation. In particular, it is shown that optimal query is
attained by a feedback policy which is a function of the
error variance, and has a threshold structure for the one-
dimensional problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the control of a dynamical system, which is
governed by a Markov chain (X,U , P, µ), where X is the
state space (assumed to be a Borel space), µ is the initial
distribution of the state variable Xt and U is the set of
actions, which is assumed to be a compact metric space. We
use capital letters to denote random processes and variables
and lower case letters to denote the elements of a space.
We denote by P(X) the set of probability measures on X .
The dynamics of the process are governed by a transition
kernel P on X given X ×U , which may be interpreted as

P (A | x, u) = Prob(Xt+1 ∈ A | Xt = x, Ut = u) ,

for t = 0, 1, . . . , and A an element of the set of the Borel
σ-field of X , the latter denoted by B(X).

We suppose there are m different observation processes
available but only one process can be accessed at a time.
Consider for example, a network of sensors providing
observations for the control of a dynamical system. Suppose
that there are m levels of sensor information, and at each
time t, Y i

t represents the set of data provided at the i-th
level, which lives in a space Y i. In as much as the complete
set of data is a partial measurement of the state Xt of
the system, we are provided with stochastic kernels Ki on
P(Y i) × X , which may be interpreted as the conditional
distribution of Y i

t given Xt.
The mechanism of sensor querying is facilitated by the

query variable Qt which chooses the subset of sensors to
be queried at time t, i.e., takes values in Q = {1, . . . , m}.
The evolution of the system is as follows: at each time t an
action and query (Ut, Qt) = (u, q) ∈ U×Q are chosen and
the system moves to the next state Xt+1 according to the
probability transition function P and the data set Y q

t+1 ∈
Y qt+1 , corresponding to the queried sensors, is obtained.

Following the standard POMDP model formulation (as
in [5]), we define the history spaces {Ht} by

H0 = P(X)
Ht+1 = Ht × U × Q × Y , t = 0, 1, . . . ,

where Y = ∪q∈QY q. Thus, the generic element of the
history space Ht is denoted by

ht = (µ, u0, q0, y1, . . . , xt−1, ut−1, qt−1, yt) ∈ Ht .

The information available for decision making at time t is
the history Ht = σ{Ht}, where {Ht} stands for the history
process.

An admissible control is a sequence v = (v0, v1, . . . ),
where each vt is a kernel on U×Q given Ht. Specifying an
admissible control v, obtains a unique probability measure
P

v
µ on the path space of the process. Markov controls

and stationary controls are defined in the standard manner.
We let U denote all admissible controls, and UM , US

all Markov and stationary (Markov) controls respectively.
Under a Markov control v, the probability measure P

v
µ

renders (Xt, Yt) a Markov process. Following the theory
of POMDPs, we obtain an equivalent completely observed
model through the introduction of the conditional distribu-
tion Ψt of the state given the observations [2], [5], [7]. We
let Ψ := P(X). An important difference from the otherwise
routine construction is that the observation process does not
live in a fixed space but varies dynamically based on the
query process. On the other hand, the query variable gives
us the freedom to choose the nonlinear Bayesian filters to
update the state estimates.

P̃ (dx, y|ψt, ut, q) :=
∫

x′∈X

Kq(y|x)P (dx|x′, ut)ψt(dx′),

V (y, ψt, ut, q) :=
∫

x∈X

P̃ (dx, y|ψt, ut, q),

ψt+1 = T (ψt, y, ut, q)(dx)

=

{
P̃ (dx,y|ψt,ut,q)

V (y,ψt,ut,q)
, if V (y, ψt, ut, q) �= 0,

0, otherwise.
(1)

Here T is the nonlinear filtering operator that has the
intuitive interpretation as the a posteriori conditional dis-
tribution of the state, given that decision (u, q) was made,
observation y ∈ Y q obtained, and an a priori distribution
ψ. Likewise, V (dy, ψ, u, q) is interpreted as the one-step
ahead conditional probability on the observation space Y q

given an a priori distribution ψ for the state, under decision
u. With the option to select the query variable q at each
step, we are able to choose the proper Bayesian filter to
update the state estimates.

The model also includes a running penalty r : X×U →
R, which is assumed to be continuous and non-negative, as
well as a query penalty function c : Q → R, that represents
the cost of information. Let g = r + c. We are interested
primarily in the long run average infinite-horizon criterion.
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In other words we seek to minimize, over all admissible
policies v ∈ U ,

J (v) := lim sup
N→∞

1
N

E
v
x

[
N−1∑
t=0

g(Xt, Ut, Qt)

]
. (2)

We also consider the β-discounted criterion, β ∈ (0, 1),

J
(v)
β (x) := E

v
x

[ ∞∑
t=0

βtg(Xt, Ut, Qt)

]
. (3)

Define J∗ := infv∈U J (v), J∗
β(x) := infv∈U J

(v)
β (x).

Now let g̃(ψ, u, q) =
∫

g(x, a, q)ψ(dx). It is straight-
forward to express the control objectives in (2) and (3) in
the equivalent CO model. Due to its contraction properties,
there always exists a stationary Markov policy for the
objective in (3), satisfying the Hamilton-Jacobi-Bellman
(HJB) equation,

J∗
β(ψ) = min

(u,q)∈U×Q

{
g̃(ψ, u, q)

+ β

∫
Y q

V (dy, ψ, u, q)J∗
β

(
T (y, ψ, u, q)

)}
. (4)

Minimizing the long-term average cost is accomplished,
under certain conditions, by the HJB equation

J∗ + h(ψ) = min
(u,q)∈U×Q

{
g̃(ψ, u, q)

+
∫

Y q

V (dy, ψ, u, q)h
(
T (y, ψ, u, q)

)}
, (5)

provided of course that such a solution exists. In (5), J∗ is
the optimal average cost, and h is called the bias function.

III. STOCHASTIC LINEAR CONTROL WITH

OBSERVATION COST

In this section, we consider a stochastic linear system in
discrete-time, with quadratic running penalty (LQG). First,
in subsection III-A we derive the LQG control models for
both discounted cost and long-term average cost. Then,
the dynamic programming equation is further simplified
and decoupled into two separate problems: the optimal
estimation problem and the control problem, the latter being
a standard LQG optimal control.

A. Linear quadratic Gaussian (LQG) control: the model

Consider a system evolving according to

xt+1 = Axt + But + εt, (6)

where xt ∈ Rn is the state, ut ∈ Rl is the control, and the
process noise εt is Gaussian, with zero mean and covariance
matrix M . The state-process is observed by

yq
t = Cqxt + ηq

t , (7)

when the query action q ∈ Q is issued, where yq
t ∈ Rnq is

the measurement. The observation noise ηq
t is also assumed

to be Gaussian, with zero mean and covariance matrix Nq.
As usual, the family {(εt, η

q
t ) , t = 0, . . . , } is assumed

independent, and also independent from the initial state x0.
Furthermore, the covariance of εt, η

q
t is given by

cov

(
εt

ηt

)
=

(
M Lq

(Lq)T Nq

)
.

Lastly, the running cost is assumed to be a quadratic
function, i.e., r(x, u) = ‖Dx + Fu‖2, for some matrices
D and F .

B. Stability

In the classical LQG control setup, it is well known that
under the condition that (A,B) is stabilizable and (C,A)
is detectable, the optimal control is stable, i.e., it results
in a bounded variance for the state process. The following
statement is straightforward to prove.

Theorem 1: Suppose (A,B) is stabilizable and there
exists q ∈ Q such that (Cq, A) is detectable. Then the
optimal control over the infinite horizon is stable.

It is interesting to note that it is possible for a feedback
controller to stabilize the system even when none of the
observation pairs (Cq, A) are detectable. Consider a system
with the following parameters:

A =
(

2 0
0 2

)
, B =

(
1
1

)
, C1 = (1, 0) , C2 = (0, 1) .

When q = 1, q = 2, the observer detects x1, x2, respec-
tively. For any fixed q, no feedback controller can stabilize
the system; on the other hand, under the query sequence
q = {1, 2, 1, 2, · · · }, sufficient information is obtained to
design a stable controller.

C. Separation principle

In this section, we analyze the optimal control problem
and show that the separation principle holds. First we
consider the optimal control problem over a finite horizon,
which reduces to minimizing the functional:

Jk = E

[ k∑
t=0

c(qt) + ‖Dtxt + Ftut‖2

]

+ E
[
xT

k+1Gxk+1

]
, (8)

where the term xT
k+1Gxk+1 is the terminal penalty. The

objective is to choose {q0, u0, q1, u1, · · · , uk} so as to
minimize Jk. According to the general POMDP model we
have discussed in the last section, we can obtain an equiv-
alent completely observed model through the conditional
distribution ψt = P (xt | Ht). Let yt and qt denote the
observation history and the query history up to time t,
respectively. One important aspect of the standard LQG
problem [3] is that the conditional distribution ψt of xt

given yt is Gaussian. It follows along the same lines, that
for the problem at hand, the conditional law of xt given
ht = (qt−1, yt) is also Gaussian, with mean x̄t and variance
Wt, satisfying

x̄t+1 = Ax̄t + But + Kt[y
qt

t+1 − C(Ax̄t + But)], (9a)

Wt+1 = Tq(Wt) = AWtA
T + M − KtW̃

T
t , (9b)
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where

W̃t := L + MCT + AWtA
TCT

Kt := W̃t(CAWtA
TCT + CMCT + N)−1 .

Here we denote Cqt , Lqt , Nqt as C,L,N respectively, to
simplify the notation. Note that the form of (9a)–(9b) is the
same as the classical Kalman filter [3]. Due to fact that the
Gaussian distribution is uniquely determined by its mean
and variance, the optimal policy in (8) can be computed
via the dynamic programming equation

Jt(x̄t,Wt) = min
qt,ut

{
c(qt) + E ‖Dxt + Fut‖2

+ E
[
Jt+1(x̄t+1,Wt+1) | ht

]}
. (10)

By (9a)–(9b), we obtain

uk = −(FTF + BTGB)−1(FTD + BTGA)x̄k,

and the optimal qk is a selector from

qk ∈ arg min
q

{
c(q) + tr

[
DWtD

T
]
+

tr
[
(AWtA

T + M − Tq(Wt))Π
]}

,

where tr[·] denotes the trace of a matrix. Then we solve
(10) for t = k − 1, k − 2, . . ., to obtain

ut = −(FTF + BTΠt+1B)−1(FTD + BTΠt+1A)x̄t,

and after some algebra, we deduce that the optimal query,
is obtained from

ft(Wt) = min
q

{
c(q) + tr

[
DWtD

T
]
+ ft+1(Tq(Wt))

+ tr
[
(AWtA

T + M − Tq(Wt))Πt+1

]}
, (11)

where f(Wt) is a function of the variance matrix Wt, and
Tq(·) is the map defined in (9b). We refer to Tq as a Riccati
operator. Note that (11) is in the form of a deterministic
dynamic programming equation. As mentioned earlier, the
optimal estimation is not provided by a Kalman filter
alone, but it also involves the solution of the dynamic
programming equation (11). In summary, we have following
theorem:

Theorem 2 (Separation Principle): The optimal control
(6)–(7), relative to the finite horizon criterion in (8) is given
by

ut = −(FTF + BTΠt+1B)−1(FTD + BTΠt+1A)x̄t,

where Πk+1 = G, and for 0 ≤ t < k + 1,

Πt = DTD + ATΠt+1A − (DTF + ATΠt+1B)·
(FTF + BTΠt+1B)−1(FTD + BTΠt+1A), (12)

and

ft(Wt) = min
q

{
c(q) + tr

[
DWtD

T
]
+ ft+1(Tq(Wt))

+ tr
[
(AWtA

T + M − Tq(Wt))Πt+1

]}
, (13)

with fk+1 = 0.

We have derived the optimal control for finite horizon.
Similar results hold for the infinite horizon problem, under
suitable stability assumptions. First let us consider the
infinite horizon discounted cost. The HJB equation of (4)
can be expressed in the following form,

Jβ(x̄t,Wt) = min
u,q

{[
c(q) + E ‖Dx + Fu‖2 |ht

]
+ βE[Jβ(x̄t+1,Wt+1)|ht]

}
. (14)

Using standard arguments, we show that the solution takes
the form

Jβ(x̄,W ) = x̄TΠx̄ + fβ(W ) .

where Π is a symmetric non-negative definite matrix. Then
the optimal control ut satisfies

ut = −(FTF + βBTΠB)−1(FTD + βBTΠA)x̄t (15)

where Π is the solution of the algebraic Riccati equation,

Π = DTD + ATΠA − (DTF + βATΠB)

(FTF + βBTΠB)−1(FTD + βBTΠA), (16)

and q is the minimizer of

fβ(W ) = min
q

{
c(q) + tr

[
(AWAT + M − Tq(W ))Π

]
+ tr

[
DWDT

]
+ βfβ(Tq(W ))

}
. (17)

Under the assumption that (A,B) is stabilizable and there
exists q ∈ Q such that (Cq, A) is detectable, the discounted
cost problem has a bounded solution for any β < 1.

Concerning the long-term average cost criterion the fol-
lowing result is stated without proof.

Theorem 3 (Ergodic control): Suppose (A,B) is stabi-
lizable and there exists q ∈ Q such that (A,Cq) is
detectable, then there exists an optimal control which is
stable, and q is the minimizer of the dynamic programming
equation

ρ+f(W ) = min
q

{
c(q)+ tr

[
(AWAT +M −Tq(W ))Π

]
+ tr

[
DWDT

]
+ f(Tq(W ))

}
, (18)

while u is as in (15) and Π is the solution of the algebraic
Riccati equation in (16), with β = 1.

One can show that if we fix the query variable q to be
constant, (17) and (18) become equivalent to the Riccati
equation for the Kalman filter.

In summary, the steps to compute the optimal controller
are as follows:

1) First we solve for Π in the Riccati equation (16).
The optimal control is given by the linear feedback
controller in (15) based solely on the mean x̄ with a
constant gain.
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2) With Π obtained in the previous step, we solve
the dynamic programming equation (17) for the dis-
counted cost, or (18) for the average cost, to obtain
the optimal stationary policy for the query q.

3) At each step, the optimal q is determined by Wt, and
the state estimates are updated according to (9a)–(9b).

IV. OPTIMAL ESTIMATION IN 1-D

In this section, we concentrate on the optimal estimation
problem and explore the properties and structure of the
optimal estimator for a one-dimensional system.

Consider the 1-D linear system,

xt+1 = Axt + εt

yt = Cqxt + ηq
t

The objective is to estimate the system state x̂t in such
a manner so as to minimize the infinite horizon criteria
(DC and AC), with a running cost given as the sum of the
estimation error variance wt and the observation cost c(qt),
at each time step t. Let v(q) := Nq/(Cq)2, which may be
viewed as the normalized noise. Then, Tq(w) in (9b) can
be written as

Tq(w) =
v(q)(A2w + m)
A2w + m + v(q)

,

and the HJB equation of (17) takes the form

fβ(w) = min
q

{
c(q) + w + βfβ(Tq(w))

}
.

If we let gβ(w) = fβ(w) − w, we have

gβ(w) = min
q

{
c(q) + βTq(w) + βgβ(Tq(w))

}
. (19)

Now suppose there are two query options, q ∈ Q =
{1, 2}, with observation costs c(1), c(2), and corresponding
normalized noise v(1), v(2), where c(1) < c(2) and v(1) >
v(2). The analysis of this dynamic programming equation
even for the one-dimensional case is rather involved and the
results stated are given without proofs due to lack of space.

Let ŵ1, ŵ2 denote the unique fixed points of T1, T2

respectively. Since v1 > v2, we have ŵ1 > ŵ2. Let q∗β
denote the minimizer of (19) (i.e., an optimal β-discounted
Markov policy), and q∗ denotes the minimizer of the
ergodic-cost optimality equation. For example, q∗(w) = 2
denotes that the optimal policy is to use the query q = 2,
when the estimation error variance is w. It is clear that
we may restrict our attention to the set [ŵ2, ŵ1], since for
w > ŵ1, q∗β(w) = q∗β(ŵ1) and q∗(w) = q∗(ŵ1), while
for w < ŵ2, q∗β(w) = q∗β(ŵ2) and q∗(w) = q∗(ŵ2). Once
w ∈ [ŵ2, ŵ1], applying q(w) = 1 will result in a variance
T1(w) > w, but incur the smallest penalty c(1), while
applying q(w) = 2, results in T2(w) < w, but the higher
penalty c(2) is paid. We investigate under what conditions
the optimal stationary query policy q∗ is dynamic, i.e., not
a constant. For this, we need to state some properties of Tq.

Lemma 4: It holds, for all w, w′,

Tq(w) − Tq(w′) = Tq(w)Tq(w′)
A2(w − w′)

(A2w + m)(A2w′ + m)
.

Lemma 5: Define

Sq(w) :=
Tq(w)

(A2Tq(w) + m)
.

Let (q1, q2, . . . , qk) be any finite sequence with elements in
{1, 2}. Then, using Lemma 4, we obtain by induction on k
that

Tq1 ◦ · · · ◦ Tqk
(w) − Tq1 ◦ · · · ◦ Tqk

(w′) =

A2kTq1(w)Tq1(w
′)Γ (w,w′)

(w − w′)
(A2w + m)(A2w′ + m)

,

where

Γ (w,w′) =
k∏

i=2

Sqi
(w) × Sqi

(w′) .

Lemma 6: The following identity holds

T1(w) − T2(w) = A2 v1 − v2

v1v2
T1(w)T2(w) .

Indeed write

ŵ1 + ŵ2 − T2(ŵ1) − T1(ŵ2) =
(
T1(ŵ1) − T2(ŵ1)

)
− (

T1(ŵ2) − T2(ŵ2)
)
,

and the result follows from the fact that w → T1(w)−T2(w)
is strictly monotone increasing.

Combining Lemmas 4–6 and noting that Tq and Sq

are strictly monotone increasing, we have the following
theorem:

Theorem 7: Let (q1, q2, . . . , qk) be any finite sequence
with elements in {1, 2}. Then the map

w �→ Tq1 ◦ · · · ◦ Tqk

(
T1(w)

) − Tq1 ◦ · · · ◦ Tqk

(
T2(w)

)
is strictly monotone increasing on [ŵ2, ŵ1].

The following theorem provides a necessary and suffi-
cient condition for the query policy to be non-constant.

Theorem 8: In order for q∗β(ŵ2) = 1, it is necessary and
sufficient that

c2 +
∞∑

k=0

βk
(
ŵ2 − T k

2 ◦ T1(ŵ2)
)

> c1 , (20)

while in order for q∗β(ŵ1) = 2, it is necessary and sufficient
that

c2 < c1 +
∞∑

k=0

βk
(
ŵ1 − T k

1 ◦ T2(ŵ1)
)
. (21)

Under the conditions (20)–(21), one can show that the
span of the discounted cost function gβ in (19) is bounded,
and passing to the limit as β → 1, the standard approach
obtains the existence of an stationary optimal policy for
the AC criterion, which is characterized as in the following
theorem.

Theorem 9: If (20)–(21) are satisfied, there exists an
optimal stationary query policy minimizing the long term
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average cost for the estimation problem, which is the
minimizer of the dynamic programming equation

g(w) = min
q

{
c(q) + Tq(w) + g(Tq(w))

}
.

The solution g : [ŵ2, ŵ1] → R is a concave function.

It turns out that the optimal query policy for both the
discounted cost and average cost is a threshold policy based
on the estimation error variance, namely, the optimal q∗ is
in the form

q∗ =
{

1, w < w∗

2, w ≥ w∗

In Figure 1, we first compare the optimal policies for the
discounted cost and the average cost. As β approaches 1, the
optimal thresholds for the discounted cost converge to the
threshold of the optimal policy for the average cost. Further-
more, the optimal threshold is decreasing as β approaches
1, which agrees with intuition, namely that as the future is
weighted more in the criterion, the frequency with which
the optimal policy chooses the more accurate and costly
observation increases. Figure 2, shows how the difference
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Fig. 1. The optimal policy threshold vs the discounted factor beta

in cost between the two queries affects the optimal policy.
As the price difference increases, the threshold point of the
optimal policy is also increasing. Once the price difference
reaches 0.45, then the optimal policy is constant: the cost
for the better observation is high enough that the controller
chooses to use the least costly observation all the time.
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