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Abstract— Predictive Optimal ILC has been implemented
on a non-minimum phase experimental test facility. Predictive
Optimal ILC has first been derived for discrete-time systems,
having previously only been formulated for the continuous
case. Practical implementation issues have been considered and
methods have been proposed to limit the necessary memory
and calculation time required. The plant has been described
and experimental results then presented for two cases of
predictive horizon. The effect of variation of parameters used
in the cost function has been described. The convergence rate
observed in practice has been compared against a theoretical
bound.

I. INTRODUCTION

Iterative learning Control (ILC) can be applied to systems
which repetitively perform the same task with a view to
sequentially improving accuracy. The task in question is
regarded as the tracking of a given reference signal r(t)
or output trajectory for an operation on a specified time
interval. The object of ILC is to use the repetitive nature
of the process to progressively improve the accuracy with
which the operation is achieved by updating the control
input iteratively from trial to trial. A literature survey of
ILC can be found in [1] and there exist textbooks on the
subject [2], [3].

Norm Optimal ILC and Predictive Optimal ILC (which
includes Norm Optimal ILC as a subset) have been im-
plemented on a non-minimum phase experimental test-bed.
Non-minimum phase systems have proved a significant
challenge in the field of ILC and the experimental test-
bed was designed specifically to include this characteristic.
The Norm Optimal algorithm has previously been derived
both in continuous time [4] and discrete time [5], [6]. The
Predictive Optimal ILC law has been derived in continuous
time only [7]. The absence of a discrete formulation of Pre-
dictive Optimal ILC necessitates its derivation here before
it can be implemented on an experimental non-minimum
phase spring-mass-damper system. The formulation of Pre-
dictive Optimal ILC for discrete systems closely follows
the continuous case, the signal norms used, however, are
the same as those used in the discrete derivation of Norm
Optimal ILC [6].

II. ALGORITHM DERIVATION

The Predictive Optimal ILC problem is set up as in [6],
using k to denote the trial index, and t the elapsed time
during the trial. The trial is of length M samples and the
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reference is denoted by r(t). The ILC process is said to
be convergent if and only if {uk(t)}k≥0, when applied to
the plant, produces an output sequence {yk(t)}k≥0 with the
property that the following limits exist:

limk→∞ yk(t) = r(t) limk→∞ uk(t) = u∞(t)

∀t ∈ [0, M ]
(1)

In this paper the following sampled-time system is consid-
ered
x(t + 1) = Ax(t) + Bu(t) x(0) = x0 0 ≤ t ≤ M
y(t) = Cx(t) x ∈ R

n, u ∈ R
m, y ∈ R

p

(2)
The state-space matrices A, B, C are assumed to be time-
invariant for simplicity. Because only finite time intervals
are considered in ILC, the output can be written in vector
form by defining the supervectors

y =

⎡
⎢⎢⎢⎣

y(1)
y(2)

...
y(M)

⎤
⎥⎥⎥⎦ u =

⎡
⎢⎢⎢⎣

u(0)
u(1)

...
u(M − 1)

⎤
⎥⎥⎥⎦ (3)

An equivalent representation of (2) becomes

y = y0 + Gu (4)

with the matrix G ∈ R
(pM)×(mM) defined as

G =

⎡
⎢⎢⎢⎣

CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CAM−1B CAM−2B . . . CB

⎤
⎥⎥⎥⎦ (5)

with the vector of initial condition response y0 =
[(CA)T (CA2)T . . . (CAM )T ]T x0. The matrix G is
invertible in the SISO case if and only if CB �= 0, and
if it has a delay, can be regularised (see [6]). Consider a
tracking problem with reference trajectory r(t), given for
1 ≤ t ≤ M (a relative degree of 1 is assumed for simplicity
of representation). The tracking error is defined as

e = r − y = r − Gu − y0 = (r − y0) − Gu (6)

where e and r are supervectors. Without loss of generality,
it is possible to replace r by r−y0 in the analysis and thence
assume that y0 = 0 or, equivalently, x0 = 0. On completion
of the kth trial, the Predictive Optimal algorithm calculates
the control input on the (k + 1)th trial as the solution of
the minimum norm optimisation problem:

uk+1 = arg min
uk+1

{Jk+1 : ek+1 = r − yk+1, yk+1 = Guk+1}
(7)
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The discrete form of the cost appearing in [7] is written as

Jk+1,N =
N∑

i=1

λi−1(‖ek+i‖2
Y + ‖uk+i − uk+i−1‖2

U) (8)

and, with N = 1, this reduces to the cost used in [6]. The
parameter λ > 0 is used to determine the importance of
future errors. The norms ‖ · ‖ are appropriate norms for the
input and output U and Y spaces respectively. These spaces
are l2 spaces of m and p vectors on [0, M − 1] and [1, M ].
Written out as sums the index becomes

Jk+1,N =
N∑

i=1

λi−1
( M∑

t=1

[r(t) − yk+i(t)]T Q(t)[r(t) − yk+i(t)]

+
M−1∑
t=0

[uk+i(t)−uk+i−1(t)]T R(t)[uk+i(t)−uk+i−1(t)]
)

(9)

The weighting matrices Q(t) and R(t) must be symmetric
and positive definite for all t. The cost function (8) is
equivalent to (9) if the norms used are induced from the
following inner products

〈y1, y2〉Y = yT
1 Qy2 =

M∑
t=1

y1(t)T Q(t)y2(t) (10)

〈u1, u2〉U = uT
1 Ru2 =

M−1∑
t=0

u1(t)T R(t)u2(t) (11)

Following the reasoning of the continuous case [7], it is
postulated that Jk+1,N is a quadratic form in ek, that is

Jk+1,N (uk+1) = 〈ek, QNek〉Y (12)

where QN ∈ R
(pM)×(pM) is a symmetric matrix. We can

then write

Jk+1,N = ‖ek+1‖2
Y

+ ‖uk+1 − uk‖2
U

+ λ

N−1∑
j=1

λj−1(‖ek+1+j‖2
Y + ‖uk+1+j − uk+j‖2

U)

= ‖ek+1‖2
Y

+ ‖uk+1 − uk‖2
U

+ λJk+2,N−1 (13)

The controller on the (k +1)th trial is obtained with vector
differential calculus from the required stationary condition,

1
2

∂Jk+1,N

∂uk+1
= −GT Qek+1+R(uk+1−uk)+

λ

2
∂Jk+2,N−1

∂uk+1

= 0 (14)

The postulate (12) allows the substitution Jk+2,N−1 =
〈ek+1, QN−1ek+1〉Y so that

∂Jk+2,N−1

∂uk+1
= −2GT QQN−1ek+1 (15)

Inserting this into (14) and rearranging produces

uk+1 = uk + R−1GT Qek+1 + λR−1GT QQN−1ek+1

= uk + G∗ek+1 + λG∗QN−1ek+1 (16)

The substitution G∗ = R−1GT Q can be made since
R−1GT Q is equivalent to the adjoint operator with respect
to the weighted inner product equations (10,7) [8]. Equation
(16) is identical to the continuous time case and, setting
N = 1, equates to the discrete Norm Optimal solution, since
Q0 = 0. Manipulation of (16) yields the error evolution

ek+1 = LNek, LN = [I + GG∗(I + λQN−1)]−1 (17)

where LN ∈ R
(pM)×(pM). To determine QN , (16) is used

to write

‖uk+1 − uk‖U =
(R−1GT Q(I + λQN−1)ek+1)

T R(R−1GT Q(I + λQN−1)ek+1)
= (GT (I + λQN−1)ek+1)

T Q(R−1GT Q(I + λQN−1)ek+1)
= 〈ek+1, (I + λQN−1)GG∗(I + λQN−1)ek+1〉Y

(18)
so that (13) becomes

Jk+1,N = 〈ek+1, ek+1〉Y + λ〈ek+1, QN−1ek+1〉Y
+〈ek+1, (I + λQN−1)GG∗(I + λQN−1)ek+1〉Y
= 〈ek+1, (I + λQN−1)[I + GG∗(I + λQN−1)]ek+1〉Y
= 〈ek, LN(I + λQN−1)ek〉Y

(19)
Comparison with (12) yields the following recursive equa-
tion for QN :

QN = LN (I + λQN−1)
= [I + GG∗(I + λQN−1)]−1(I + λQN−1)

(20)
It is then possible to express LN as a recursive relation by
eliminating QN

LN(H, λ) = [(1 + λ)I + H − λLN−1]−1, N = 1, 2, . . .
(21)

where L0 = I , and H := GG∗ has been used for
conciseness. LN (H, λ) is a symmetric matrix and, if H
is positive and bounded in norm, is positive according to
the bound

LN (H,λ) ≥ (I +λ+H)−1 > 0, ∀ 0 < λ < ∞, N = 1, 2, . . .
(22)

The upper bound of LN (the norm of LN ) is important
to ILC convergence since the norm of the error at the k th

trial can be bounded by ‖ek‖ ≤ ‖LN‖k‖e0‖. Therefore it
is sufficient for convergence that ‖LN‖ is less than one. If
the plant is bounded below such that

〈e, He〉Y ≥ σ2‖e‖2
Y ∀ e ∈ Y (23)

then LN ≤ lN (σ2, λ)I with

lN (σ2, λ) =
1

1 + λ + σ2 − λlN−1(σ2, λ)
, l0 = 1 (24)

and the error sequence is bounded by ‖ek+1‖ ≤
lN (σ2, λ)‖ek‖. If σ > 0 then ‖LN‖ < 1 ∀N ≥ 1 then
geometric convergence is assured. In the case of N = 1
then L1 = [I +H ]−1 and l1 = 1

1+σ2 which agrees with the
rate of convergence seen in [6]. In the case of N = 2 then
L2 = [(1 + λ) + H − λ(I + H)−1)]−1 and we can write
l2 = 1

1+λ+σ2−λ( 1
1+σ2 )

which will later be compared with

the convergence rate seen experimentally. As discussed in
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[6], σ can be changed by the design rates Q and R since
the definition of σ can be written as

eT GT QGe ≥ σ2eT Re ∀ e ∈ Y (25)

III. CAUSAL ALGORITHM FORMULATION

In this section the cost function (9) is transformed until
it is in the form of

Jk+1,N = ‖ek+1‖2
Y

+ ‖uk+1 − uk‖2
U

(26)

which is the cost function used in the discrete Norm Optimal
ILC derivation [6]. The corresponding causal solution can
then be applied to form the necessary update. In order to
do this (9) is written out in full as

Jk+1,N =
M∑
t=1

⎡
⎢⎢⎣

ek+1

ek+2

.

.

.

ek+N

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

Q 0 . . . 0

0 λQ . . . 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 . . . λN−1Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ek+1

ek+2

.

.

.

ek+N

⎤
⎥⎥⎦

+
M−1∑
t=0

⎡
⎢⎢⎣

uk+1 − uk

uk+2 − uk+1

.

.

.

uk+N − uk+N−1

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

R 0 . . . 0

0 λR . . . 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 . . . λN−1R

⎤
⎥⎥⎦

⎡
⎢⎢⎣

uk+1 − uk

uk+2 − uk+1

.

.

.

uk+N − uk+N−1

⎤
⎥⎥⎦

(27)

Using the substitution

⎡
⎢⎢⎢⎢⎣

uk+1 − uk

uk+2 − uk+1

uk+3 − uk+2

...
uk+N − uk+N−1

⎤
⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

uk+1 − uk

uk+2 − uk

uk+3 − uk

...
uk+N − uk

⎤
⎥⎥⎥⎥⎦

(28)
the difference-in-input vector of (27) can be rewritten. The
implementation uses a number of parallel plants, only the
first of which is the actual plant which produces uk+1.
The other ‘virtual’ plants are simulated, their only purpose
being to contribute to the calculation of uk+1. The errors
are written in vector form as

⎡
⎢⎢⎣

ek+1

ek+2

...
ek+N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r
r
...
r

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

G 0 . . . 0
0 G . . . 0
...

...
. . .

...
0 0 . . . G

⎤
⎥⎥⎦

⎡
⎢⎢⎣

uk+1

uk+2

...
uk+N

⎤
⎥⎥⎦ (29)

According to the block diagonal plant matrix from (29) the
extended plant matrices are defined

AN = diag{A, A, . . . A}, BN = diag{B, B, . . .B}
CN = diag{C, C, . . . C}

(30)

and also the following extended weight matrices

QN = diag{Q, λQ, . . . λN−1Q},

RN =

⎡
⎢⎢⎢⎢⎣

(1 + λ)R −λR 0 . . . 0
−λR (λ + λ2)R −λ2R . . . 0

0 −λ2R (λ2 + λ3)R . . . 0
...

...
...

. . .
...

0 0 0 . . . λN−1R

⎤
⎥⎥⎥⎥⎦

(31)
The optimisation problem is now in the form of the causal
LQR prblem proposed in [6] which has the following
solution

⎡
⎢⎢⎣

uk+1
uk+2

...
uk+N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

uk
uk
...

uk

⎤
⎥⎥⎦−

[{BT
NK(t)BN+RN (t)}−1BT

NK(t)

× AN

⎛
⎜⎜⎝

⎡
⎢⎢⎣

xk+1
xk+2

...
xk+N

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

xk
xk
...

xk

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎤
⎥⎥⎦ + R−1

N (t)BT
N ξk+1,N (t)

(32)

where the state feedback gain matrix K(t) is the solution
of the discrete matrix Riccati equation on the interval t ∈
[0, M − 1]

K(t) = AT
NK(t + 1)AN + CT

NQN(t + 1)CN − [AT
NK(t + 1)

×BN{BT
NK(t + 1)BN + RN (t + 1)}−1BT

NK(t + 1)AN ]
(33)

with the terminal condition K(M) = 0. The feedforward
term ξk+1,N (t) is generated by

ξk+1,N (t) = {I + K(t)BNR−1
N (t)BT

N}−1

×{AT
Nξk+1,N (t + 1) + CT

NQN (t + 1)

⎡
⎢⎢⎣

ek(t + 1)
ek(t + 1)

...
ek(t + 1)

⎤
⎥⎥⎦}

(34)
with the terminal condition ξ(M) = 0. The algorithm uses
N − 1 models of the plant in parallel with the actual plant
for the computation of the optimal input for the N -step
predictive algorithm. Only knowledge of the state xk+1(t)
of the actual plant is a potential problem as the others are
directly available from the simulated plants. If it is not
available an observer can be constructed to estimate it.

IV. NON-MINUMUM PHASE PLANT

The experimental test-bed has previously been used to
evaluate a number of ILC schemes (see [9], [10] for details)
and consists of a rotary mechanical system of inertias,
dampers, torsional springs, a timing belt, pulleys and gears.
The non-minimum phase characteristic is achieved by using
the arrangement shown in Figure 1 where θ i and θo are the
input and output positions, Jr and Jg are inertias, Br is
a damper, Kr is a spring and Gr represents the gearing.
A further spring-mass-damper system is connected to the
input in order to increase the relative degree and complexity
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Fig. 1. Non-minimum phase section

of the system. A 1000 pulse/rev encoder records the ouput
shaft position and a standard squirrel cage induction motor
drives the load. The continuous time transfer function used
to model the plant is given by

G(s) =
1.202(4− s)

s(s + 9)(s2 + 12s + 56.25)
(35)

A PID loop around the plant is used in order to act as a pre-
stabiliser and provide greater stability. The PID gains used
are Kp = 137, Ki = 5 and Kd = 3. The resulting closed-
loop system constitutes the system to be controlled. The
values of the Kalman covariance matrices, Qe and Re, used
to construct the observer, were set at 10 and 1 respectively.

V. PRACTICAL IMPLEMENTATION

The implementation of the N = 1 case has been
achieved using a sampling frequency of 100Hz. The two
demands used, appearing as signals in Figures 6 and 7, are
each six seconds long, giving M = 600. The first three
seconds of each demand is zero in order to reduce the
large values of initial input that would be necesssary to
achieve an arbitary non-zero initial output. This is due to
the combination of the presence of a deadzone between the
input and output, the non-minimum phase charcteristic, and
the large time constant of the system. The discrete plant
is SISO and has 4 states which means that the matrix
K = [K(0) K(1) . . .K(M − 1)] has 600 × 4N × 4N
elements and the matrix ξ = [ξ(0) ξ(1) . . . ξ(M − 1)] has
600 × 4N elements. A matrix with 600 × 4N elements
is also required to store the system states from trial to
trial. Each K(t) only needs to be calculated once before
the experiment begins. However, in order to reduce the
calculations performed, each value can be overwritten by

K ′(t) = {I+K(t)BNR−1
N (t)BT

N}−1 t ∈ [0, M−1] (36)

which is also iteration independent. The only other oc-
curance of K(t) occurs in the input update expression (32)
and is given by

V (t) = {BT
NK(t)BN + RN (t)}−1BT

NK(t)AN (37)

which also contains 600× 2N elements. Therefore, before
overwriting K with K ′, V = [V (0) V (1) . . . V (M − 1)] is
stored in memory. This increased storage is justified by the
simpler structure of K ′ in comparison with K which is a

result of the zero entries in B. For the present plant this
allows each value of K ′(t) to be written as the sum of a
2N ×2N identity matrix plus a matrix in which only every
forth column is non-zero. In the present case, the memory
requirements for storing K ′ and V can thus be reduced in
comparison with storing K by a factor of 4N

N+1 .
Furthermore, if there is the capacity for extra calculation

time within each sample instant, the value of K(t) can be
calculated and stored only at those sample instants 0 ≤ t ≤
c, where c ≤ M − 1. This negates the necessesity for the
storage of M−1−c values of K ′ and V . The missing values
of these can then be calculated between samples without
ever being stored. Even using these methods, it has been
necessary to reduce the sampling frequency from 100Hz to
70Hz in the case of N = 2.

VI. RESULTS

Figures 2 and 3 show results obtained for a sinewave
and a repeating sequence demand. The total error incurred
during each trial over the course of 200 iterations is plotted
against the trial number in each case. The normalised error
(NE) is simply the total error produced in a trial multiplied
by a scalar chosen so that a constant zero plant output
produces a NE value of unity. Without learning, a NE of
1 would constantly be incurred. Tests have been stopped if
excessive vibration of the plant output makes it unsafe to
continue, this can occur at fairly low levels of NE. Different
values of Q are used, the value of R being fixed at unity.
It can be seen that increasing Q increases the convergence
speed but leads to large transients and divergence of error
if set too high. The repeating sequence demand, which
includes higher frequency components, exhibits slower con-
vergence, greater transients, and a greater value of the
minimum error. In both cases a value of Q = 2 produces
good results. Figures 4 and 5 show similar results, but
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Fig. 2. Cycle error results for sinewave demand, N = 1

using a predictive horizon, N = 2. In this case the number
of iterations performed has been increased to 400. Three
values of λ are used, each with two different values of Q.
R is again fixed at unity throughout. It is clear that lower
values of λ lead to a reduced convergence rate and reduced
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Fig. 3. Cycle error results for repeating sequence demand, N = 1

transients. This is expected since λ dictates the amount of
data used from the future trials. In practice the increase
of λ produces a large change in u(t) at the beginning of
each trial meaning that frequently tests must be discontinued
due to the possibility of damage to the plant. This effect
is due to the presence of a deadzone in the plant and
occurs whether the plant output position is reset inbetween
trials, or whether the next trial follows immediately on from
the preceeding one. Figures 6 and 7 show the reference,
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Fig. 4. Cycle error results for sinewave demand, N = 2

input and output signals for the sinewave and repeating
sequence demands respectively. These were recorded on the
400th cycle of the test which used the parameters N = 2,
λ = 0.1 and Q = 1. The demand is seen to be tracked
accurately without excessive control action. Figures 8 and
9 compare results for varying amounts of prediction, using
Q = 1 and Q = 5 respectively. Only the repeating sequence
demand is used and the N = 1 result is compared with
the N = 2 used in conjunction with varying λ. It can
be seen that prediction (N = 2) is capable of adding
robustness to the algorithm with a suitable value of λ since
the error shows reduced transients and more trials can be
performed before the tests are halted. Only a slight increase
in convergence rate is evident from the experimental results.
The following statements can hence be made concerning
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Fig. 5. Cycle error results for repeating sequence demand, N = 2
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Fig. 6. Signals at 400th cycle for sinewave demand, N = 2, λ = 0.1,
Q = 1

the design paramaters:

• Use of prediction can increase robustness
• The level of Q dictates convergence speed for a fixed

R but causes instability if excessively high
• The convergence of the repeating sequence demand is

slower than for the sinewave demand
• Increasing the predictive horizon increases the conver-

gence speed
• Increasing λ causes large input changes at the start of

a trial

The bound on the H given by (23) does not provide useful
information for the plant in question since σ 2 is very large
in this case. However using the l∞ norm in place of the l2
norm allows the approximation

σ2 ≈ 1
2 minw |G(w)| (38)

for the case that Q = R = 1, which is considered next.
If the assumption is made that frequencies present in the
demand dominate the learning process, then the bound on
H alters depending on the demand. The sinewave demand
has negligible frequency content above 3.8 rad−1 and so
the magnitude plot of G(w) can be consulted to give an
approximate value of σ2 = 1.25. Similarly the repeating
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Fig. 7. Signals at 400th cycle for repeating sequence demand, N = 2,
λ = 0.1, Q = 1
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Fig. 8. Cycle error results for repeating sequence demand, Q = 1

sequence demand yields σ2 = 0.56. For the case of N = 1
these values, when inserted in (24), lead to convergence
rates of l1 = 0.44 and 0.6 respectively, and Q = 1. These
are close to the initial learning rates observed in practice.
For the case of N = 2 the convergence rates for the two
sequences become l2 = 0.443 and 0.64 for λ = 0.01, l2 =
0.43 and 0.625 for λ = 0.1, and l2 = 0.36 and 0.51 for λ =
1. The convergence rates are plotted in Figure 10 for the
repeating sequence. Comparison with the experimental rates
seen in Figure 8 shows these theoretical bounds are accurate
models for early trials. The lack of robustness with respect
to high frequency modelling then reduce the learning rates
significantly.

VII. CONCLUSIONS

Predictive Optimal ILC has been derived for discrete-time
systems. The algorithm has been used on an experimental
non-minimum phase spring-mass-damper system. Two val-
ues of predictive horizon have been investigated. Excellent
results have been achieved and the effect of parameter
variation has been investigated. Practical implementational
issues have been discussed and methods for increasing the
computational efficiency have been proposed. The conver-
gence rates observed have been compared to theoretical
values.
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Fig. 9. Cycle error results for repeating sequence demand, Q = 5
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Fig. 10. Theoretical convergence rates for repeating sequence with Q = 1

VIII. FUTURE WORK

The effect of varying the sampling frequency is a natural
area of future study. The results presented here will also be
compared with those achieved using the same algorithm on
an industrial gantry robot. The algorithm robustness is an
open area for further study.
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