

Abstract - Genetic algorithms (GAs) have a wide variety of

applications in control. However, GAs may suffer from slow
convergence rates, and require the user to make difficult
choices of ranking and scaling schemes and subpopulations
that may lead to complexities in implementation. A new com-
putationally inexpensive alternative to GAs, the continuous
adaptive culture model (CACM), is proposed in this paper.
This new optimization algorithm is inspired by sociological
models of culture dissemination and uses operators that act
directly on vectors of real numbers to avoid the computation
associated with binary encoding and decoding in GAs. The
new algorithm does not use global information sharing which
makes it amenable to parallel implementation since computa-
tional bottlenecks are avoided. The De Jong test suite of opti-
mization problems is used to test the new optimization algo-
rithm. Effects of various parameters on the performance of
the algorithm are investigated through simulations.

I. INTRODUCTION
LOBAL search algorithms like genetic algorithms
(GAs) have a wide variety of control applications like

design of fuzzy systems, adaptive and nonlinear control,
neural network training, estimation and routing. However,
GAs sometimes exhibit slow convergence and require a
difficult choice of ranking and scaling schemes and sub-
populations that may lead to complexities in implementa-
tion. When using GAs in problems requiring optimization
of real-valued functions of real variables, the binary repre-
sentation of tentative solutions that is needed for crossover
and mutation is not natural. In this paper, a new continuous
adaptive culture model (CACM) optimization algorithm
that is computationally inexpensive and easy to implement
is proposed as an alternative to GAs. The CACM algorithm
is inspired by sociological models of culture dissemination
and uses operators that act directly on vectors of real num-
bers.

Manuscript received September 27, 2004. This work was supported in

part by the Office of Naval Research under Grant N00014-03-1-0751.
Mathew Mithra Noel is pursuing the Ph. D. in Computer Engineering at

The University of Alabama at Birmingham, Birmingham, Al 35294 USA
(e-mail: mathew.mithra@ gmail.com).

Thomas C. Jannett is Professor of Electrical and Computer Engineering
at The University of Alabama at Birmingham, Birmingham, Al 35294
USA (e-mail: tjannett@uab.edu).

The new CACM algorithm employs a random search, but
instead of generating a sequence of random points in the
solution space as proposed in [1], the new algorithm uses a
population of potential solutions that is evolved to generate
better solutions. The evolution mimics the way animal so-
cieties composed of simple individuals solve complex op-
timization problems, and is based on the adaptive culture
model (ACM) that was published in 1997 by Robert Ax-
elrod [2] as a model of the dissemination of culture. In the
CACM algorithm, the population is organized into
neighborhoods and individuals move towards the best solu-
tion found in their particular neighborhood. This is similar
to the way an ant swarm finds the shortest path to food
sources. The ant system algorithm [3]-[7] is an optimization
algorithm that uses rules copied from the behavior of real
ants to solve routing problems. There is no centralized con-
trol or global sharing of information and individuals act
based on local information alone. Another example of an
optimization algorithm based on models of animal behavior
is the particle swarm optimization (PSO) algorithm [8]-[9]
that was inspired by the behavior of flocking birds.

In the ACM the global fitness of a population rises as
each individual interacts with its neighbors. The ACM
serves as the basis for the classical ACM optimization
scheme in which tentative solutions (represented as strings)
are organized in a rectangular array. Since the individuals
are arranged in a rectangular array the individuals at the
boundary will have only two neighbors instead of four; this
can be avoided by assigning to each boundary individual
another individual which is directly opposite on the oppo-
site boundary as its neighbor. From a geometrical point of
view, this amounts to folding a rectangle into a cylinder and
then folding the resulting cylinder into a toroid. For exam-
ple, to solve the traveling salesman problem (TSP) tentative
solutions could be strings representing cities to be visited.
Each individual is compared to its neighbors (above, below
and on either side) and a non-matching character in the
neighboring string is adopted if the neighbor is fitter. The
process of adopting non-matching characters from fitter
neighbors is repeated for each individual in the population.
The individuals are updated row-wise. Thus, when each
row is updated, good features (characters) from strings in
rows above and below are copied to the individuals in that
row resulting in higher fitness. The classical ACM algo-

A New Continuous Optimization Algorithm
Based on Sociological Models

Mathew Mithra Noel and Thomas C. Jannett

G

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeA08.2

237

rithm can be used to solve only combinatorial optimization
problems like the TSP since tentative solutions are repre-
sented as strings. However, many fundamental problems in
engineering like model fitting, estimation, classification,
training neural networks and controller design require op-
timization of real-valued functions of real variables. Thus,
we consider the following generic function optimization
problem:

()Nxxxf ,...,, minimize 21 (1)
where RRf N →: .

Tentative solutions to this problem will be real vectors of
length N. In the classical GA implementation, real vectors
are encoded in binary to perform crossover and mutation in
order to evolve a new population that is fitter than the
original population on the average. Since solutions close to
good solutions are likely to be good as well, mutation of a
given binary encoded individual should in general produce
a new individual that is close (Hamming distance) to the
original individual. This is because most functions that
arise in practical applications are discontinuous on only a
small subset of the solution space. Thus if 1xr is close to 2xr ,
then f(1xr) will be close to f(2xr) in most parts of the solu-
tion space. Also, recombination of two individuals should
in general produce a new individual that is close to either of
the parent individuals with higher probability; this is be-
cause an individual that is midway between two fit indi-
viduals will in general not be fit.

In this paper, we introduce new operators that offer the
desired behavior described above while operating directly
on real vectors. The new operators avoid computation asso-
ciated with binary coding and decoding by acting directly
on vectors of real numbers. The new operators are used to
generalize the classical ACM algorithm resulting in the
CACM algorithm that is useful for continuous optimiza-
tion. The De Jong test suite of optimization problems is
used to test the new optimization algorithm. Effects of vari-
ous tuning parameters on the performance of the algorithm
are investigated through simulation.

II. OPERATORS THAT ACT DIRECTLY ON VECTORS OF REAL
NUMBERS

A. A New Crossover Operator
Consider two vectors 1xr and 2xr . The following crossover

operator is proposed to achieve recombination of 1xr and

2xr to produce xr :

 IUr
rrr 5.0−= (2)

 rx r

rr
σ∆ =

 IF u < 0.5

xxx rrr

∆+= 1
ELSE

xxx rrr
∆+= 2

END

Where

rr -Random vector with each component distributed
independently and uniformly between -0.5 to 0.5
U
r

-Vector of dimension N with each component uniformly
distributed between 0 and 1
u -Uniform random variable between 0 and 1
I
r

 -Vector of dimension N with each component 1
rσ -Scaling constant which controls size of recombination

(distance from parent).

The behavior of the crossover operator (2) can be under-
stood as follows. Given two vectors 1xr and 2xr , choose one
with probability 0.5 (both are equally likely). Then a new
vector close to the selected parent vector is computed by
adding to the selected vector a random vector which can
point in all directions with equal probability and whose
length is controlled by rσ . Thus, the new individual gener-
ated by recombination will be close to either of the parents
with a high probability. A uniform probability distribution
was used to create rr because it is symmetric and has the
highest entropy. A symmetric distribution is used since
there is no reason to expect individuals on any side to be
better. A large value of rσ means that the new individual
has a higher probability of being far from a parent; thus
higher values can be used to perform a more random search
since information contained in the parents is ignored. How-
ever, computational time will be wasted if a pure random
search is made so an intermediate value has to be chosen.

Note that the new operator (2) will be referred to as a
“crossover” operator although a portion of each parent in-
dividual is not copied directly to the resultant individual
(offspring); the new operator takes two parent individuals
and produces another individual that is close to either of the
parents in a probabilistic sense just like the GA crossover
operator. Given the parents, as long as the offspring pro-
duced by the new operator (2) and the classical crossover
operator have the same probability distributions, there are
no differences between the new and classical operators with
respect to convergence properties.

B. A New Mutation Operator
Mutation is a device to search locally around a given

point in the solution space. An individual mutation should
produce a new individual that is close to the parent individ-
ual. Given a real vector xr , a new vector that is close prob-
abilistically can be computed as follows:

238

IUr
rrr

5.0−= (3)

rx m
rr

σ∆ =

xxx rrr
∆+=

Where

rr - Random vector with each component distributed
independently and uniformly between -0.5 to 0.5
U
r

 - Vector of dimension N with each component uni-
formly distributed between 0 and 1
I
r

 - Vector of dimension N with each component 1
mσ - Scaling constant which controls size of mutation.

Larger values of mσ allow the new individual to be distant
from its parent.

III. A NEW CONTINUOUS OPTIMIZATION ALGORITHM
This paper uses the new continuous mutation operator

(3) to generalize the classical ACM algorithm for continu-
ous optimization. The new CACM algorithm is similar to
ACM algorithm in that the average fitness of the population
increases as a result of local interactions of individuals with
their neighbors. Tentative solutions are directly represented
as real vectors arranged in a rectangular array as in the clas-
sical ACM algorithm. The population of tentative solutions
is evolved as follows. Each vector is either mutated with
probability mutP or it is replaced with probability xovP by a
mutated copy of its most fit neighbor. Replacing an indi-
vidual by a mutated version of its best neighbor will be
referred to as fitness adoption. The σ associated with each
mutation operation (see (3)) will be referred to as mσ and

fσ , respectively. Consider a population of size P of ten-

tative solution vectors arranged as a rectangular array of
size ROWS*COLUMNS = P . The vector (tentative solu-

tion) at row i and column j is denoted by ijxr . The new con-
tinuous optimization algorithm proposed is as follows:

The CACM Algorithm

Initialize mutP , xovP , mσ and fσ . (4)

FOR i = 1 to ROWS
 FOR j = 1 to COLUMNS

Randomly initialize ijxr (choose a point in the so-

lution space with uniform probability).
 END

END

Do the following until convergence or maximum iteration
is reached.

FOR i = 1 to ROWS
 FOR j = 1 to COLUMNS

Step 1: Mutate ijxr using (3) with probability mutP

and sigma equal to mσ in (3).

Step 2: Find the best individual ijb
r

 in the

neighborhood containing ijxr .

Step 3: Do the following with probability xovP .

Replace ijxr by a mutated copy of ijb
r

 found in

step 2 with sigma equal to fσ in (3).

 END
END

In the above algorithm the neighborhood of ijxr refers to

individuals in positions (i, j), (i+1, j), (i-1, j), (i, j+1) and (i,
j-1). Thus when the individual at (i, j) is updated in step 3,
its fitness increases since it moves closer to the best indi-
vidual in that neighborhood. Since the population is up-
dated row-wise the next individual to be updated after (i, j)
will be (i, j+1). Thus the individual at (i, j+1) has a chance
to learn (be updated) from individuals on its left and on top
(on previous row) which have already been updated and
hence are fitter than the individual at (i, j+1). In this way,
as the population is updated row-wise, each individual prof-
its from the individuals in its neighborhood that have al-
ready been updated. This positive feedback mechanism,
which is present in many complex biological systems, is
responsible for faster convergence compared to GAs. In
GAs two good solutions are recombined to produce an in-
dividual that is more fit than the parent individuals on the
average. However, in the CACM algorithm an individual
being updated has a chance to learn from all previously
updated individuals leading to faster convergence.

Thus, it is unlikely that an individual being updated is the
best individual in its neighborhood because of the presence
of other individuals that have already been updated. How-
ever, if an individual is the best individual in its neighbor-
hood, it cannot learn from other individuals in its neighbor-
hood; the algorithm converges prematurely (to a local mini-
mum) if the best individual is not allowed to change. In (4)
if ijxr happens to be the best individual in its neighborhood,

it will be replaced with probability xovP by a mutated ver-
sion of itself.

In GAs, “elitism” refers to the strategy of allowing good
solutions to stay unchanged from one iteration to the next

239

to prevent good solutions from getting lost. The following
experiment was done to study the effects of using elitism in
the CACM algorithm. Algorithm (4) was modified so that
when ijxr is the best individual in its neighborhood it is
replaced by a mutated copy of itself only with a certain
probability, elitistP . For the sphere test function in the De
Jong test suite, the average cost over 100 runs for different
values of elitistP is shown in Fig. 1. It was found that con-
vergence was slowed for elitistP < 1. Thus, use of elitism is
not beneficial in case of the CACM algorithm.

Fig. 1. Effect of elitistP on the convergence rate of the CACM algorithm
for sphere test function. Convergence is slowed if locally best solutions are
not allowed to change. elitistP is the probability that the best individual is
changed (solid line: elitistP = 0.3 and plus: elitistP = 1).

A xovP of 0.9 was found to work well for all test func-

tions.

Fig. 2. Effect of mutP on the convergence rate of the CACM algorithm for
sphere test function. The average cost was taken over 100 independent
runs. mutP higher than 0.3 resulted in slower convergence. A choice of 0.3
for mutP was found to work for all test functions (solid: mutP = 0, plus:

mutP = 0.1, and square: mutP = 0.3).

The mutation probability mutP has a larger effect on per-
formance for the CACM algorithm than for GAs; this is

because better solutions found by mutation are adopted
while bad solutions are rejected on the average. Thus, the
CACM algorithm provides a better way of incorporating
the mutation operator than GA. In the new CACM algo-
rithm, larger values of mutP (mutP = 0.3) were needed to
achieve high convergence rates than are used in GAs. Fig. 2
shows the average cost over 100 runs of the CACM algo-
rithm with different mutation rates for the sphere test func-
tion in the De Jong suite.

It was found that convergence as well as the quality of
the final solution was improved by letting fσ go to zero

linearly. Also, a linearly decreasing fσ was found to yield

better results than a random or constant fσ (Fig. 3). The

following formula was found to yield good results:

 1+−= maxf K/k)k(σ (5)

where
k - Iteration number

maxK - Maximum iterations allowed.

Thus, the parameters fσ and mσ control the amount of
movement towards best neighboring solution and mutation,
respectively. For functions with many local minima, a lar-
ger mσ is needed to avoid getting trapped in local minima.

0 10 20 30
0

5

10

15

ITERATION

A
V

E
R

A
G

E
 C

O
S

T

Fig. 3. The effects of various choices of fσ on convergence of the CACM
algorithm for the sphere test function. The average cost was taken over
100 independent runs. A linearly decreasing fσ results in faster conver-
gence and better quality of the final solution than a constant or ran-
dom fσ . (solid: fσ = 0.1, min = 2.2819e-004; plus: fσ = 0.5u, min =
8.3487e-004; square: fσ = -k/50+1, min = 7.3796e-005).

The nature of the cost function is not usually known be-
forehand, so a random selection has to be made for mσ .

240

This allows the amount of mutation to vary from iteration
to iteration. The following selection of mσ gave good re-
sults for all test functions.

NU(k)m 32 +=σ (6)

Where

k - Iteration number
U - Uniform random variable between 0 and 1
N - Normal random variable with mean 0 and variance 1.

IV. PERFORMANCE OF CACM ALGORITHM ON
BENCHMARK COST FUNCTIONS

The CACM algorithm was found to converge in signifi-
cantly less iteration than classical GAs for functions in the
De Jong test suite. For functions with few local minima
convergence to 0.1 accuracy was achieved within 10 itera-
tions. Since the CACM algorithm avoids the fundamental
problem of binary encoding this represents a significant
reduction in flops. The CACM algorithm avoids the rank-
ing problem inherent in GAs. Thus good solutions are kept
in the population without sacrificing diversity due to use of
local neighborhoods alone instead of global information
sharing. The performance of the new CACM algorithm for
some benchmark test functions found in the De Jong suite
is shown in Fig. 4-6. The test functions have a global
minimum of zero. Fig. 4 shows the performance of the
CACM algorithm on a test function with flat regions
(Rosenbrock’s valley test function).

0 5 10 15
0

1000

2000

3000

4000

5000

6000

7000

ITERATION

A
V

E
R

A
G

E
 C

O
S

T

Fig. 4. Performance of CACM algorithm on a test function with a flat
region surrounding the global minimum. The average cost was taken over
100 independent runs. Flat regions pose a challenge to optimization algo-
rithms; since the gradient is zero, there are no good search directions.
Consequently, a random walk is the best approach to search flat regions.

Flat regions are difficult to search since there are no
good search directions like the gradient. However, the

CACM algorithm is able to find the global minimum em-
bedded in a flat region by performing a random walk when
it encounters flat regions. The performance of the CACM
algorithm on test functions with large numbers of local
minima is shown in Fig. 5 and 6.

Fig. 5. Performance of CACM algorithm on a function with a large num-
ber of uniformly distributed local minima (Rastrigin's function). Average
cost is not used because of the large number of iterations required to find
the minimum.

0 5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ITERATION

A
V

E
R

A
G

E
 C

O
S

T

Fig. 6. Performance of the CACM algorithm on a test function with large
numbers of local minima (Griewangk's function). The average cost was
taken over 100 independent runs.

The best individuals in the population are close to various
local minima. The global minimum is found by a stochastic
search around the local minima. Local minima pose serious
challenges to GAs since individuals near local minima have
higher fitness and have a higher tendency to get repro-
duced. Thus the population might converge to a local
minimum leading to stagnation of the evolutionary process.
For the CACM algorithm, since each individual is updated
based on neighboring individuals alone, information about
the best solution found so far takes some time before it
reaches all individuals. Since during this delay random
changes can occur due to movement towards the best

241

neighbor, mutation, and change in the best individual itself,
traps due to local minima are avoided.

V. COMPARISON OF GA AND ACM ALGORITHM

Figure 7 shows the performance of the ACM algorithm
and a classical GA. A four dimensional Rastrigin function
was used as the test function since it has multiple local min-
ima. The GA used 40 bits accuracy per variable and a sin-
gle population. It is seen that the CACM algorithm con-
verges faster on the average than the classical GA.

For the CACM algorithm, since each individual is up-
dated based on neighboring individuals alone, information
about the best solution found so far takes some time before

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

ITERATION

A
V

E
R

A
G

E
 C

O
S

T

Fig. 7. Performance of GA (upper) and CACM algorithm (lower) for a test
function with large numbers of local minima (Rastrigin function). The GA
used 40 bits per variable. The average cost was taken over 50 independent
runs.

it reaches all individuals. During this delay random changes
occur in the population due to movement towards the best
neighbor, mutation, and change in the best individual itself.
This phenomenon helps avoid premature convergence and
traps due to local minima. Also, use of local neighborhoods
alone without use of global neighborhoods preserves the
diversity of the population; global competition among indi-
viduals might result in the loss of less fit individuals result-
ing in loss of diversity. When using GAs, problems due to
local minima can be alleviated by using multiple popula-
tions and sharing individuals periodically [10]. However,
for the CACM algorithm this is achieved with less compu-
tation by updating each individual based only on its
neighbors. Thus the more complex multipopulation ap-
proach and associated information sharing problems are
avoided.

VI. CONCLUSION
In this paper a new computationally inexpensive alterna-

tive to GAs referred to as the CACM algorithm has been
proposed. The CACM algorithm uses new operators that

act directly on real vectors and generalize the classical op-
erators in a geometrically intuitive way. This approach is
more natural and avoids the disadvantages of binary encod-
ing and decoding. In GAs two good solutions (parent solu-
tions) are recombined to produce two offsprings that are
fitter on the average. In the CACM algorithm, when an
individual is updated it has a chance to learn from all previ-
ously updated individuals; this positive feedback effect
leads to higher convergence rates compared to GAs. The
effect of various parameters on the performance of the
CACM algorithm was studied. Also, the CACM algorithm
does not require global information sharing thus avoiding
computational bottlenecks and facilitating parallel imple-
mentations. The new operators introduced in this paper can
also be used in GAs to avoid binary coding.

VII. ACKNOWLEDGEMENT
Parts of this effort were sponsored by the Department of

the Navy, Office of Naval Research. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the Office of Naval Research.

REFERENCES

[1] F. J. Solis and J. B. Wets, “Minimization by random search tech-
niques,” Mathematics of Operations Research, vol. 6, pp. 19 -30,
1981.

[2] R. Axelrod, “The dissemination of culture: A model with local
convergence and global polarization,” Journal of Conflict Resolu-
tion, vol. 4, pp. 203-226, 1997.

[3] M. Dorigo, V. Maniezzo, and A. Colorni, "The ant system: opti-
mization by a colony of cooperating agents," IEEE Transactions on
Systems, Man, and Cybernetics, Part B, vol. 26, no. 1, pp. 29-41,
1996.

[4] S. Johnson, Emergence: The Connected Lives of Ants, Brains, Cit-
ies, and Software. New York: Scribner, 2001.

[5] Wang Lei and Wu Qidi, “Performance evaluation of ant system
optimization processes,” Proceedings of the 4th World Congress on
Intelligent Control and Automation, vol. 3, 10-14, pp. 2546 – 2550,
June 2002.

[6] Wang Lei, Xiao-Ping Wang and Wu Qidi, “Ant System algorithm
based Rosenbrock function optimization in multi-dimension space,”
Proceedings of the International Conference on Machine Learning
and Cybernetics, vol. 2, pp. 710 – 714, 4-5 Nov. 2002.

[7] Wang Lei and Wu Qidi, “Further example study on ant system
algorithm based continuous space optimization,” Proceedings of
the 4th World Congress on Intelligent Control and Automation,
2002, vol. 3, pp. 2541 – 2545, 10-14 June 2002.

[8] J. Kennedy and R. Eberhart, Swarm Intelligence. Morgan Kauf-
mann Academic Press 2001.

[9] Xiaohui Hu, R. C. Eberhart and Yuhui Shi “Engineering optimiza-
tion with particle swarm,” Proceedings of the Swarm Intelligence
Symposium, IEEE 24-26, pp. 53 – 57, April 2003.

[10] B. Carse, A. G. Pipe and O. Davies, “Parallel evolutionary learning
of fuzzy rule bases using the island injection genetic algorithm,”
Systems Man and Cybernetics, IEEE International Conference on
Computational Cybernetics and Simulation, vol. 4, 12-15, pp. 3692
– 3697, Oct. 1997.

242

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

