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Abstract— This paper computes bounds on the Schur stability
radius for use in designing robust iterative learning controllers. The
discrete Lyapunov equation is used to compute the Schur stability
radius of the ILC system for the case of parametric or interval
perturbations in the system Markov parameters. This paper is distinct
from the existing ILC works in that the interval robustness concepts
are integrated with asymptotic stability and monotonic convergence
conditions to suggest design of the learning gain matrix that makes the
system robust against interval model uncertainties up to a computable
bound. After derivations of the analytical stability radius, optimization
schemes are suggested to design the learning gain matrix. The
proposed approach allows design of causal/noncausal time-varying
learning matrix gains.

Index Terms— Iterative Learning Control, Interval Model Uncer-
tainties, Schur Stability Radius, Monotone Convergence.

I. INTRODUCTION

Iterative learning control (ILC) is an effective technique for
improving the transient performance of systems whose model
is uncertain but which have a repetitive task. ILC has a well-
established research history, described in, for example, [1], [2].
Of particular interest in this paper, the super-vector approach to
ILC has been used to analyze convergence in the iteration domain
[3], [4], [5], [6], [7], with asymptotic stability and monotonic
convergence conditions investigated in [8], [9], [10], and feedback
control and quadratic optimal control methods suggested to design
the super-vector learning gain matrix in [11], [12], [13], [14]. In
this paper we seek to extend these previous results by considering
model uncertainty within the supervector framework. With regard
to model uncertainties or noise considerations, H∞-based ILC
has been used in [15], [16], [17], while stochastic-control-based
ILC was used in [18]. Recently, an algebraic analysis in super-
vector ILC was performed in [19] that suggests the possibility of
applying interval robustness concepts to the ILC problem to make
the system robust against the parameter uncertainties, assuming
there exist interval uncertainties in the system Markov parameters.
For such a situation, it is desirable to design the ILC learning gain
matrix such that the system is stable for the largest possible range
of interval uncertainties on the nominal plant. This is the ultimate
aim of this paper.

We begin in Section II by describing the concept of interval ILC.
In Section III the matrix norm inequality relationship based on the
discrete Lyapunov equation is used to find the (sufficient) Schur
stability radius of an interval Markov matrix for both asymptotic
and monotonic ILC convergence. In Section IV two optimization
schemes are suggested to maximize the stability radius under
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both asymptotic stability and monotonic convergence conditions.
The learning matrices we optimize over include linear, time-
varying, Arimoto-like, causal, and non-causal ILC control laws.
The effectiveness of the suggested methods is verified through
simulation in Section V and conclusions are given in Section VI.

II. INTERVAL ITERATIVE LEARNING CONTROL AND
STABILITY ANALYSIS

In this section, the super-vector approach to ILC is briefly
reviewed and the notion of interval ILC is introduced. The ob-
jective of ILC is to track a repeating reference signal assuming an
unknown or uncertain system model. Assume the nominal system
is given by:

xk(t + 1) = Axk(t) + Buk(t)

yk(t) = Cxk(t)

xk(0) = x0 (1)

where A, B, and C are the matrices describing the system in the
state space and xk(t), uk(t), and yk(t) are the state, input, and
output variables, respectively. The subscript “k” is used to denote
iteration and “t” is used to denote time. The plant is defined as
follows: taking z-transforms in time, define the plant to be H(z),
so that

Y (z) = H(z)U(z) = (hmz−m + hm+1z
−(m+1)

+hm+2z
−(m+2) + · · ·)U(z), (2)

where m is the relative degree of the system, z−1 is the
standard delay operator in time, and the parameters hi are the
standard Markov parameters of the system H(z), defined by
hi = CAi−1B. Note that if we define:

Uk = (uk(0), uk(1), · · · , uk(n − 1)),

Yk = (yk(m), yk(m + 1), · · · , yk(n − 1 + m)),

Yd = (yd(m), yd(m + 1), · · · , yd(n − 1 + m)), (3)

and m = 1, then the linear plant can be described by Yk = HUk,
where H is a matrix of rank n whose elements are the Markov
parameters of the plant H(z):

H =

⎡
⎢⎢⎣

h1 0 · · · 0
h2 h1 · · · 0

...
...

. . .
...

hn hn−1 · · · h1

⎤
⎥⎥⎦ .
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We call this matrix the Markov matrix. In this paper, we consider
the case where the Markov parameters have interval uncertainties1

given by hi ∈ [hi, hi]. We call the ILC problem for such a plant
the interval ILC problem.

From the interval Markov parameters we can now define an
interval Markov matrix. In the following the superscript I is
used to denote interval uncertainty and no subscript or superscript
denotes a nominal value. We then make the following definitions:

Definition 2.1: An interval Markov matrix HI is defined as a
matrix that is a member of the interval plant HI defined by:

HI = {HI : hI
ij ∈ [hij , hij ], i, j = 1, · · · , n},

where hij is maximum extreme value of the ith row, jth column
element of Markov matrix, and hij is minimum extreme value of
the ith row, jth column element of Markov matrix. The upper
bound matrix (H) is a matrix whose elements are hij ; and the
lower bound matrix (H) is a matrix whose elements are hij .

Definition 2.2: The nominal Markov matrix is related by the
upper and lower bound matrices as:

H =
H + H

2
Definition 2.3: The interval radius matrix (∆Hr) is defined as:

∆Hr =
H − H

2

The maximum value of ∆Hr for which a given ILC law has
guaranteed asymptotic convergence for all HI ∈ HI satisfying
−∆Hr < HI −H < ∆Hr is called the maximum Schur asymp-
totic stability radius and is denoted ∆Hr

a . The maximum value
of ∆Hr for which a given ILC law has guaranteed monotonic
convergence for all HI ∈ HI satisfying −∆Hr < HI − H <
∆Hr is called the maximum Schur monotonic stability radius and
is denoted ∆Hr

m.
In this paper, first-order ILC is considered, using the following

ILC update equation:

Uk+1 = Uk + ΓEk, (4)

which gives the following evolution of the error vector in itera-
tions:

Ek+1 = (I − HΓ)Ek, (5)

where Ek = Yd −Yk and Γ is the learning gain matrix defined as

Γ = {γij}, i, j = 1, · · · , n. (6)

The ILC algorithm is called Arimoto-like when the ILC gains are
γij = 0, i �= j and γij = γ, i = j. The gains γij are called
causal ILC gains for i > j and non-causal ILC gains for i < j.
If the gains do not exhibit Toeplitz-like symmetry we call the
learning algorithm time-varying. We also refer to the band size of
Γ. For example, if band size is 1, only a diagonal line composed
of Arimoto-like gains is used. If band size is 2, then one causal
diagonal line and one noncausal diagonal line are used in addition
to Arimoto-like gains.

In ILC, there are two stability concepts: asymptotic stability
and monotonic convergence. The asymptotic stability condition is
defined as:

ρ(I − HΓ) < 1, (7)

where ρ represents the spectral radius of (1 − HΓ). The mono-
tonic convergence condition is defined in an appropriate lp-norm
topology of Ek as:

‖(I − HΓ)‖i < 1, (8)

1More generally, the model uncertainties may be considered to be in
A, B, and C and from these uncertainties one might compute correspond-
ing uncertainty bounds on hi. However, in this paper we assume the bounds
on hi are known directly.

where ‖ · ‖i is the appropriate induced operator norm. In this
paper, for monotonic convergence the 2-norm topology is used
used, based the following definition (see page 295 of [20]):

Definition 2.4: If ‖I−HΓ‖2 < 1, then ‖Ek‖ is monotonically
converging to zero in l2-norm topology.

For convenience, the symbols T and T I are introduced, where

T ≡ I − HΓ,

and
T I ≡ I − HIΓ.

Then, the following notation is defined:

∆T = I − HΓ − (I − HIΓ) = (HI − H)Γ = ∆HΓ,

where ∆T is the interval uncertainty of the iterative learning
control system, and ∆H is the interval uncertainty of the nominal
Markov matrix. Using ∆T , optimization schemes will be sug-
gested to maximize ‖∆H‖2 in Section IV. First, however, in the
next section we compute the asymptotic and monotonic stability
radii for the interval ILC problem based on the interval concepts
and stability conditions introduced above.

III. STABILITY RADIUS OF INTERVAL ILC

In this section, the Schur stability radius under sufficient stabil-
ity conditions is calculated using the discrete Lyapunov equation.
We introduce the symbol, 〈·〉 to represent the bigger norm value
between a matrix and its transpose:

〈∆T 〉 ≡ max{‖(∆T )T ‖, ‖∆T‖},
where ‖ · ‖ denotes any kind of matrix norm. With this notation
we can present our first result:

Theorem 3.1: Given Γ designed for the nominal plant H , if
there exists a symmetric, positive definite matrix P that satisfies
the constraint

(I − HΓ)T P (I − HΓ) − P = −I,

then the maximum allowable interval uncertainty (AIU), ∆H , for
which (I−(H±∆H)Γ) is guaranteed to have asymptotic stability
is bigger than ∆H that satisfies

〈∆H〉 ≡
−〈I − HΓ〉 +

√
〈I − HΓ〉2 + 1

‖P‖

〈Γ〉 .

Proof: Let us assume that (I − HΓ) is Schur stable, so T
is Schur stable. Then there exists P = P T > 0 such that

T T PT − P = −I. (9)

If the following inequality is true with P = P T > 0 of (9):

(T I)T PT I − P < 0, (10)

then T I is Schur. Using T I = T − ∆T , (10) is changed as:

(T − ∆T )T P (T − ∆T ) − P < 0

⇔ T T PT − T T P∆T − (∆T )T PT

+(∆T )T P∆T − P < 0 (11)

Substituting (9) into (11), we have:

−T T P∆T − (∆T )T PT + (∆T )T P∆T − I < 0

⇔ −T T P∆T − (∆T )T PT + (∆T )T P∆T < I, (12)

where the left-hand side is a symmetric matrix. Therefore, if (12)
is satisfied with P = P T determined by (9), then T I is Schur
stable. Now, taking the matrix norm of both sides of (12), we
have

‖ − T T P∆T − (∆T )T PT + (∆T )T P∆T‖ < 1. (13)
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Recall that if (13) is true, then (12) is true; not vice-versa (see
Appendix for more explanation). Now we change (13) like:

‖T T ‖‖P‖‖∆T‖ + ‖(∆T )T ‖‖P‖‖T‖
+‖(∆T )T ‖‖P‖‖∆T‖ < 1. (14)

Notice that (14) is a sufficient condition for (13). Using ∆T =
∆HΓ and the 〈·〉 operator, the above inequality is changed as

〈T 〉‖P‖〈∆T 〉 + 〈∆T 〉‖P‖〈T 〉 + 〈∆T 〉‖P‖〈∆T 〉 < 1.

⇔ [2〈∆T 〉〈T 〉 + 〈∆T 〉2]‖P‖ < 1

⇔ [2〈∆H〉〈Γ〉〈T 〉 + 〈∆H〉2〈Γ〉2]‖P‖ < 1.

(15)

Also, notice that (15) is a sufficient condition for (14). Let α ≡
〈Γ〉2; and β ≡ 〈Γ〉〈T 〉; and x ≡ 〈∆H〉. Then, (15) is of the form:

(2βx + αx2)‖P‖ < 1

⇒ αx2 + 2βx < 1
‖P‖ . (16)

Here, since α > 0,

−β − √
β2 + α

‖P‖
α

< x <
−β +

√
β2 + α

‖P‖
α

.

Using x > 0,

x <
−β +

√
β2 + α

‖P‖
α

.

Therefore, the following inequality is satisfied:

〈∆H〉 <
−〈Γ〉〈T 〉 +

√
[〈Γ〉〈T 〉]2 + 〈Γ〉2

‖P‖
〈Γ〉2 . (17)

Using 〈T 〉 = 〈I − HΓ〉, (17) is changed as

〈∆H〉 <
−〈I − HΓ〉 +

√
〈I − HΓ〉2 + 1

‖P‖

〈Γ〉 . (18)

Finally, if there exists P = P T such that (9) is satisfied and
inequality (18) is true, then T I is Schur (but still, vice-versa is
not true). Therefore, the maximum interval uncertainty is allowed
more than 〈∆H〉max, which is defined as

〈∆H〉max ≡
−〈I − HΓ〉 +

√
〈I − HΓ〉2 + 1

‖P‖

〈Γ〉 . (19)

From Theorem 3.1, the following corollary is immediate:

Corollary 3.1: If Γ = H−1, the maximum AIU of the interval
ILC is 1

‖Γ‖ = 1
‖H−1‖ .

Proof: When Γ = H−1, I − HΓ = 0; and from (9), since
T is zero, P equals to I . Also, since ‖Γ‖ = ‖ΓT ‖, from (19), the
maximum AIU is

‖∆H‖ =
1

‖Γ‖ =
1

‖H−1‖ .

Now, let us consider the monotonic convergence condition. For
this we need the following definitions:

Definition 3.1:

T I
s =

[
0 (I − HIΓ)T

(I − HIΓ) 0

]
;

Ts =
[

0 (I − HΓ)T

(I − HΓ) 0

]
.

Also let ‖·‖2 be the matrix 2-norm; 〈Γ〉k ≡ max{‖Γ‖k, ‖ΓT ‖k};
and 〈∆H〉k ≡ max{‖∆H‖k, ‖∆HT ‖k}. Then we have the
following result.

Theorem 3.2: Given Γ designed for the nominal plant H , if
there exists a symmetric, positive definite matrix Ps that satisfies
the constraint

T T
s PsTs − Ps = −I2n×2n

then the maximum AIU, ∆H , for which (I − (H ± ∆H)Γ) is
guaranteed to have monotonic stability is bigger than ∆H that
satisfies

〈∆H〉k ≡
−‖Ts‖2 +

√
‖Ts‖2

2 + 1
‖Ps‖2

〈Γ〉k ,

where k is 1 or ∞.
Proof: The ILC system is given as:

Ek+1 = (I − HIΓ)Ek (20)

In Theorem 3.1, the condition for guaranteeing ρ(I − HIΓ) <
1 (i.e., spectral radius less than 1) using the discrete Lyapunov
inequality was found. The maximum singular value is defined as:

σ(I − HIΓ) =
√

ρ[(I − HIΓ)T (I − HIΓ)].

So, the following relationship is true:

[σ(I − HIΓ)]2 = λ
[

0n×n (I − HIΓ)T

(I − HIΓ) 0n×n

]
= λ(T I

s ),

where λ is the maximum eigenvalue. Therefore, since the maxi-
mum eigenvalue of the right-hand side equals the spectral radius,
if ρ[(I −HIΓ)T (I −HIΓ)] < 1, then σ(I −HIΓ) < 1. So, the
singular value stability problem is changed to eigenvalue problem
by Definition 2.1. Since the eigenvalues of (I − HIΓ)T (I −
HIΓ) are equal to the eigenvalues of T I

s , the discrete Lyapunov
inequality can be applied to T I

s . If Ts is Schur stable, then the
following is true:

T T
s PsTs − Ps = −I2n×2n, (21)

with Ps = P T
s > 0. If T I

s is stable, following is also true:

(T I
s )T PsT

I
s − Ps < 0. (22)

Thus the following relationships can be derived:

Ts − T I
s = ∆Ts

=
[

0n×n (I − HΓ − (I − HIΓ))T

(I − HΓ − (I − HIΓ)) 0n×n

]
=

[
0n×n (∆HΓ)T

(∆HΓ) 0n×n

]
.

(23)

Note, Ts and ∆Ts are symmetric matrices. So, ‖Ts‖2 = ‖T T
s ‖2

and ‖∆Ts‖2 = ‖∆T T
s ‖2. Now, let us change (22) to be:

(Ts − ∆Ts)
T Ps(Ts − ∆Ts) − Ps < 0

⇔ T T
s PsTs − T T

s Ps∆Ts − (∆Ts)
T PsTs

+(∆Ts)
T Ps∆Ts − Ps < 0 (24)

Using (21), the above inequality is changed as:

−T T
s Ps∆Ts − (∆Ts)

T PsTs + (∆Ts)
T Ps∆Ts < I2n×2n

(25)

and taking the 2-norm to both sides, we get[
2‖∆Ts‖2‖Ts‖2 + ‖∆Ts‖2

2

]
‖Ps‖2 < 1. (26)
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Here, it is necessary to separate ‖∆Ts‖2 into ‖∆H‖ and ‖Γ‖.
For this purpose, the following inequality is used:

‖∆Ts‖2 ≤
√

‖∆Ts‖1‖∆Ts‖∞ (27)

So, from the following relationship:

‖∆Ts‖1 =

∥∥∥[
0n×n (∆HΓ)T

(∆HΓ) 0n×n

]∥∥∥
1

= max{‖∆HΓ‖1, ‖(∆HΓ)T ‖1} (28)

‖∆Ts‖∞ =

∥∥∥[
0n×n (∆HΓ)T

(∆HΓ) 0n×n

]∥∥∥
∞

= max{‖∆HΓ‖∞, ‖(∆HΓ)T ‖∞}, (29)

and using the 〈·〉 operator, we have

〈∆HΓ〉 = max{‖∆HΓ‖1, ‖(∆HΓ)T ‖1}
= max{‖∆HΓ‖∞, ‖(∆HΓ)T ‖∞} (30)

However, notice that in 〈∆HΓ〉 only the 1 and ∞ norms are
effective. Thus, (27) is changed as:

‖∆Ts‖2 ≤
√

‖∆Ts‖1‖∆Ts‖∞
=

√
〈∆HΓ〉〈∆HΓ〉

= 〈∆HΓ〉
≤ 〈∆H〉〈Γ〉 (31)

Now, let us substitute 〈∆H〉〈Γ〉 into ‖∆Ts‖2 of (26) to obtain
the following sufficient inequality:[

2〈∆H〉〈Γ〉‖Ts‖2 + (〈∆H〉〈Γ〉)2
]
‖Ps‖2 < 1. (32)

Then, using the same procedure as in the Theorem 3.1, we have

〈∆H〉 <
−‖Ts‖2 +

√
‖Ts‖2

2 + 1
‖Ps‖2

〈Γ〉 .

Therefore, the maximum allowable interval uncertainty is calcu-
lated as:

〈∆H〉max =
−‖Ts‖2 +

√
‖Ts‖2

2 + 1
‖Ps‖2

〈Γ〉 , (33)

where 〈∆H〉max and 〈Γ〉 are restricted to 1 and ∞ norms.
In Theorem 3.2, the AIU, 〈∆H〉max, is calculated in 1 or ∞
norms. If the following relationship is used, then the AIU can be
calculated using the 2 norm:

〈Γ〉1 = max{‖Γ‖1, ‖ΓT ‖1}
= max{‖Γ‖∞, ‖ΓT ‖∞}
= 〈Γ〉∞. (34)

Thus we have the following corollary:
Corollary 3.2: The 2-norm based AIU is calculated as:

〈∆H〉2 ≡
−‖Ts‖2 +

√
‖Ts‖2

2 + 1
‖Ps‖2

〈Γ〉k , (35)

where k = 1 or ∞. Notice that the right-hand side of (35) is
equivalent to the right-hand side of (33).

Proof: By Theorem 3.2 and (34), the following is true:

〈∆H〉1 ≡ 〈∆H〉∞
Also, the following inequality is satisfied:

〈∆H〉2 ≤
√

〈∆H〉1〈∆H〉∞

and the followig relationship is immediate:

〈∆H〉2 ≤
−‖Ts‖2 +

√
‖Ts‖2

2 + 1
‖Ps‖2

〈Γ〉k . (36)

For convenience, let us denote the right-hand side of (19) as
∆Hasym and the right-hand side of (35) as ∆Hmono. Then, it
is our conclusion that if the interval uncertainty in ILC is less
than ∆Hasym, the ILC system is asymptotically stable and, if the
interval uncertainty in ILC is less than ∆Hmono, the ILC system
is monotonically convergent in the l2-norm topology of Ek.

Remark 3.1: Theorem 3.1 and Corollary 3.1 are satisfied with
any kind of norms. In Theorem 3.2, 〈∆H〉 is the 1-norm or the
∞-norm, and in Corollary 3.2, 〈∆H〉 is 2-norm. In Theorem 3.2
and Corollary 3.2, ‖Ts‖ and ‖Ps‖ are 2-norms, and 〈Γ〉 is the 1
or ∞ norm.

Remark 3.2: In Definition 2.3, the maximum Schur stability
radius was defined. ∆Hasym and ∆Hmono provide sufficient sta-
bility radii for the interval ILC. “Sufficient” means that the actual
maximum stability radii, ∆Hr

a and ∆Hr
m, may be bigger than the

calculated stability radius, ∆Hasym and ∆Hmono, respectively.
Thus, following inequalities should be noticed:

∆Hasym ≤ ‖∆Hr
a‖; ∆Hmono ≤ ‖∆Hr

m‖2.

So, ∆Hasym and ∆Hmono will be conservative compared with
the actual maximum stability radius.
So far, we have found AIUs for both the asymptotic stability and
the monotone convergence. In next section, optimization methods
are used to design Γ in order to maximize the stability radius.

IV. OPTIMIZATION

In this section, two optimization schemes are designed based
on Section III. The purpose of optimization is to maximize
‖∆Hasym‖ and ‖∆Hmono‖ by designing Γ, with which the ILC
system is either asymptotically stable or monotonically convergent.

To find the optimal Γ that allows more interval uncertainties in
terms of asymptotic stability, the following optimization scheme
is suggested:

max
Γ

∆Hasym (37)

s.t. (I − HΓ)T P (I − HΓ) − P = −I.

The same optimization idea can be used for increasing the uncer-
tainty interval of the system in terms of monotonic convergence.
It is designed as:

max
Γ

∆Hmono (38)

s.t. T T
s PsTs − Ps = −I2n×2n.

Remark 4.1: It is easy to see that the maximum interval uncer-
tainties occur when Γ = 0, because when Γ = 0, there could be
infinity interval uncertainties in H . From

I − HIΓ,

it is easy to observe that as Γ → 0, even though HI → ∞, the
following is true:

‖I − HIΓ‖ < 1.

Thus, in the optimization problem, the required maximum spectral
radius and singular value should be fixed. In other words, we
should add one more constraint in the optimization schemes such
as

ρ(I − HΓ) < ρmax

or
σ(I − HΓ) < σmax,
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where ρmax < 1 and σmax < 1.

Note, in above two optimization schemes, ρmax and σmax are
the design parameters. If these values are near to zero, the system
converges quickly, but with the trade-off that there could be a small
AIU. On the contrary, if these values are near to 1, the system is
converges slowly, but allows a large AIU. Thus we must choose
ρmax and σmax before applying optimization schemes.

V. SIMULATION ILLUSTRATION

The following discrete system is considered in this paper:

xk+1 =

[−0.50 0.00 0.00
1.00 1.24 −0.87
0.00 0.87 0.00

]
xk +

[
1.0
0.0
0.0

]
(39)

yk = [ 2.0 2.6 −2.8 ] xk, (40)

which has poles at [ 0.62 + j0.62, 0.62 − j0.62,−0.50 ] and zeros
at [ 0.65,−0.71 ]. We assume a zero initial condition.

A. Test Setup

The simulation test is performed with the following reference
sinusoidal signal:

Yd = sin(8.0j/n),

where n = 10 and j = 1, · · · , n. The band size is fixed at
3, and learning gains are determined by optimization problems
described in Section IV. Since the gains of each band are not
fixed at the same value, the ILC algorithm is considered to be
linear, time-varying, and non-causal. The uniformly distributed
random number generator of MATLAB was used to make interval
uncertainties in Markov parameters according to:

hi = hi + δ|hi|w,

where w ∈ [−1, 1] is a uniformly distributed random number;
and δ is tuned to limit the interval amount (in matrix 2 norm).
First the optimal learning gain matrices are designed from the
optimization problems suggested in Section IV. In MATLAB, the
nonlinear optimization command fmincon was used to solve
these problems. Then, using the resulting learning gain matrix,
an ILC experiment was performed with each of 1000 different
random plants. For each random plant, 20 iterations were carried
out as shown in Table I. The design parameters ρmax and σmax

TABLE I
SIMULATION TEST SETUP

for i = 1 : 1 : 1000

Pick a random plant

for j = 1 : 1 : 20

Repeat iterative test

end

end

were selected as 0.9. The monotonic convergence optimization
scheme was designed assuming an l2-norm topology for Ek.
So, if there exists an optimization solution for ‖∆Hmono‖, then
(
∑n

i=1
|Ek(i)|2)1/2 will be monotonically convergent.

B. Test Results

From the optimization problems of (37) and (38), the learning
gain matrices were designed using the nominal plant such that
the calculated maximum AIUs become ∆Hasym = 0.737, and
∆Hmono = 0.6954. The physical meaning of ∆Hasym = 0.737
is that ILC gain matrix designed from optimization (37) allows
interval uncertainty for the nominal Markov matrix by the amount
of ‖∆H‖2 < 0.737 while ensuring asymptotic stability. The

physical meaning of ∆Hmono = 0.6954 is that ILC gain matrix
designed from optimization (38) allows interval uncertainty for
the nominal Markov matrix by the amount of ‖∆H‖2 < 0.6954
while still ensuring monotonic convergence.

The results are illustrated in Fig.1 for the asymptotic conver-
gence case and Fig. 2 for the monotonic convergence case. In
both figures, the left-hand side of the figures show plots of the
2-norm of the various random plants used (the index of the 1000
different plants is shown on the horizontal axis with the resulting
2-norm of the plant given on the vertical axis). The right-hand
side of the figures shows the maximum and minimum l2 norm of
the super-vector error plotted as a function of iteration.

First, let us check the validity of ∆Hasym = 0.737. To check
the validity of this value, we gave random intervals to each Markov
parameter, and we selected interval plants ‖∆H‖2 are less than
0.737. The results shown in Fig. 1.1.a meet our expectation
that all these plants should converge asymptotically. However, as
commented in Remark 3.2, there could exist interval plants with
‖∆H‖2 > 0.737 that are asymptotically stable with the ILC gain
matrix designed from (37), because our result is only sufficient.
Fig. 1.2.a and 1.2.b show such a situation. But, as the perturbation
grows beyond our bound ∆Hasym eventually we encounter plants
for which our designed learning gain no longer gives asymptotic
stability. This is shown in Fig. 1.3.a and 1.3.b.

Similarly, we can check the validity of ∆Hmono = 0.6954.
Fig. 2.1.a and Fig. 2.1.b show the situation when ‖∆H‖2 <
∆Hmono = 0.6954. We see that the ILC gain matrix designed
from (38) guarantees the monotone convergence. As in the asymp-
totic stability example, the remaining plots in Fig. 2 show the
sufficiency of the condition and the final instability.

VI. CONCLUDING REMARKS

In this paper we have considered the interval ILC problem.
We calculated bounds on the the maximum allowable uncertainty
in the plant Markov parameters for both asymptotic stability and
monotonic convergence. These bounds were then used to design
the ILC learning gain matrix to maximize the asymptotic and
monotonic stability radii of the nominal plant. Simulation results
illustrated the ideas. This approach, though conservative, provides
an effective scheme for designing robust ILC system.

VII. APPENDIX

Here we prove why (13) is a sufficient condition for (12). We
use the following simple inequalities:

A < I and ‖A‖ < 1, (41)

where A is a symmetric matrix. Note that A < I can be written
as 0 < I − A. Then, since I − A is a positive definite matrix,
the eigenvalues of I −A are all positive by Theorem 3.7 of [21].
However, from the following relationship: λ(I−A) = 1−λ(A), if
and only if λ(A) < 1, then again we have I−A is positive definite.
Now consider ‖A‖ < 1. From the fact that A is symmetric and
ρ(A) ≤ ‖A‖, if ‖A‖ < 1, then ρ(A) < 1 ⇔ max{|λ(A)|} < 1.
Therefore, if ‖A‖ < 1 is true, then A < I . However, vice-versa
is not true. So, (13) is a sufficient condition for (12).
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