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Abstract—Time-varying Q-filtering in Iterative Learning 
Control (ILC) has demonstrated potential performance 
benefits over time-invariant Q-filtering.  In this paper, LTV 
Q-filtering of ILC is considered for uncertain systems.  
Sufficient conditions for stability and the important 
monotonic convergence property are developed for the 
uncertain system.  A class of LTV Q-filters that has particular 
benefit for rapid motion trajectories is presented, and 
monotonic convergence conditions are developed.  The 
developed conditions highlight a relationship that the 
bandwidth can be increased locally and decreased elsewhere 
to localize high performance at specific times.  These 
conditions are also iteration-length invariant and allow for 
significant design freedom after analysis enabling online 
modification of the LTV Q-filter.†

I. INTRODUCTION

TERATIVE Learning Control (ILC) is a technique for 
improving the performance of systems that execute the 

same operation multiple times.  The ILC algorithm “learns” 
from previous iterations of the repeated operation to 
generate a customized feedforward control signal.  ILC was 
first introduced to the wider academic community in 1984 
[1] and has since grown into a large body of literature 
including several textbooks [2-5]. 

Much of the work on ILC has focused on converged 
performance, though in [6] it was shown that, under ideal 
circumstances, the simplest P-type ILC can be used to 
obtain zero error tracking for an LTI discrete-time system.  
This same work, however, discusses the problem of 
“learning transients” where stable ILC systems may 
undergo extremely large transients before eventual 
convergence.  These learning transients may be orders of 
magnitude larger than initial errors, which is often 
impractical for implementation on physical systems.  For 
this reason, many learning algorithms have been developed 
for monotonic convergence.  Monotonic convergence not 
only ensures that performance improves each iteration, but 
it can also be easily related to a convergence rate that 
indicates how quickly the ILC will effectively converge. 
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 When the actual system is a perturbation of the modeled 
system, however, stability and monotonic convergence may 
no longer hold.  For this reason a number of authors have 
advocated the use of a low-pass Q-filter in the learning 
algorithm to enhance robustness [7-9].  In [10] a µ-
synthesis design was presented to explicitly guarantee 
monotonic convergence for a set of uncertain plant 
dynamics.  The added robustness of the Q-filter, however, 
comes at the cost of performance.  While large transient-
inducing high frequencies are filtered by Q, so is the 
potential to learn the high frequency components of the 
reference. 

Recently, it is has been shown that a time-varying Q-
filter may have potential to improve performance over the 
traditional time-invariant Q-filter [11,12].  In this work the 
same time-varying Q-filtering scheme will be considered, 
though model uncertainty is explicitly considered.  An 
extension of the stability conditions for time-varying Q-
filtering in [11] is developed for the uncertain model case.  
A class of time-varying Q-filters is also presented that 
allows the large monotonic convergence analysis problem 
to be separated into decoupled, short-time analyses 
problems.  Conditions for monotonic convergence of this 
class of LTV Q-filters are obtained which provide insight 
into TV Q-filter bandwidth tradeoffs.  These results also 
have a number of useful consequences including the ability 
to extend and make modifications to an existing LTV Q-
filter without requiring a complete re-analysis of the 
system. 

The rest of this paper is organized as follows.  The 
uncertain system is described and the ILC problem defined 
in Section II.  In Section III, conditions for stability and 
monotonic convergence of the uncertain system are 
presented.  In Section IV, the class of monotonically 
converging TV Q-filters is presented.  A discussion of the 
results is given in Section VI. 

II. UNCERTAIN SYSTEM DESCRIPTION AND ILC PROBLEM
SETUP

Let an uncertain SISO discrete-time LTI system have the 
frequency domain input-output description 

zUzPzzY m  (1) 

with 

zzWzPzP 1ˆ , (2) 
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where m is the delay of the system, zP̂  is a known, stable 
and rational polynomial with relative degree zero, W(z) is 
known and stable, and (z) is unknown, but stable and 
bounded as 1sup ,0

iez .  Without loss 

of generality, it is assumed that m=1, as is often the case for 
sampled systems.  Let yd(k) be the desired output of the 
system for Nk ,1 .  The actual system output on 

Nk ,1  is given by 

)(1 kdkuqPky , (3) 

where q is the forward time shift operator defined as 
1kfkqf .  The combined effects of any 

disturbances, initial conditions, and other inputs on the 
system are contained in d(k).  The time domain input-output 
relationship in (3) can be written equivalently as the 
convolution

)(1
1

kdukpky
k

, (4) 

where p(k) are the discrete unit impulse response of P(q)
and are sometimes referred to as the Markov parameters of 
P(q) [6].  The Markov parameters can be obtained from 
P(q) by dividing the denominator into the numerator to 
obtain the infinite series. 

The ILC problem is to find a sequence in j, the iteration 
index, of inputs uj(k) with 1,0 Nk  so that the error 

kykyke jdj  becomes small as j .  All 
disturbances acting on the system and the system’s initial 
conditions are assumed to be iteration-invariant so that 

kdkd j .  The 2-dimensional system evolving in time 
and iteration can be written equivalently and compactly as 
the “lifted system” 
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where d is the vector of disturbances, uj is the vector of ILC 
inputs, yj is the vector of plant outputs and P is a lower 
triangular Toeplitz matrix of the plant’s Markov 
parameters. 

Let kp̂ , w(k), and (k) be the Markov parameters of 

qP̂ , W(q), and (q) respectively.  Then the NxN matrices 

P̂ , W, and  can be constructed in the same manner as P
from kp̂ , w(k), and (k), respectively, to yield the 
relationship 

WIPP ˆ . (6) 

Therefore, P̂  and W are known, while  and, by extension, 
P are unknown.  The following theorem from [13] offers 
some relationships between the time and frequency domain 
representations that will be useful for characterizing .

Theorem 1:  Let F(q) be stable, causal, and SISO.  Then if 

ceF i

,0
sup ,

the first Markov parameter satisfies 

cf 0 .

Further, the largest singular value of the NxN lifted system 
matrix of Markov parameters, F, satisfies 

cF .

Proof:  See [13]. 

Theorem 1 allows us to infer that 10  and 1

for any stable (z) with 1z .
Let yd be the vector of desired outputs yd(k) on [1,N], and 

define the error vector as 

jj yye d  (7) 

The most commonly used ILC learning law is the first-
order law given by 

jjj eLuQu e1  (8) 

where NxNRQ  is referred to as the Q-filter and 
NxNReL  is referred to as the learning function.  Here the 

learning function is selected as the inverted plant model, 
1P̂Le  (9) 

where 1,0  is the geometric rate of convergence under 

perfect plant knowledge.  Note that 1P̂  always exists 
because P̂  has full rank and also that 1P̂  will be lower 
triangular Toeplitz. 

The Q-filter of interest is causal and time-varying [11].  
This results in Q having the lower triangular, but not 
Toeplitz, structure given by 

0121
0
00012
00001
00000

333

22

1

NNNN qqNqNq

qqq

qq

q

Q  (10) 

where qk(i) is the ith Markov parameter of the LTV filter 
“frozen” at time k.  The elements qk(i) should not be 
confused with the forward time shift operator q.

III. ILC STABILITY AND CONVERGENCE

The iteration-domain dynamics of uj can be found with 
substitution of (5-7,9) into (8) yielding 
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dyPQuWIQu d
1

1
ˆ1 jj . (11) 

Theorem 2:  The uncertain ILC system described by (5-10) 
is stable for all   with 1z  if 

101
10

w
qk , for all Nk ,1 . (12) 

Proof:  The term dyPQ d
1ˆ  is constant and bounded, 

so uj converges if and only if 

kk 11 WIQ  (13) 

where k is the kth eigenvalue.  Q, W, and  are lower 
triangular, so the kth eigenvalue is given by the diagonal 
elements 

00001 wqq kk .

From Theorem 1, 10 .  Then 

.010

00010

00001

wq

wqq

wqq

k

kk

kk

If 0kq  satisfies (12), then 

100001 wqq kk . (14) 

Therefore uj converges and convergence of yj and ej

follows from (5) and (7). 

Remark 1:  The restrictions placed on the TV Q-filter by 
the stability condition in (12) will depend on the specific 
type of digital filter used and also on the uncertainty 
weighting.  These restrictions can be classified into three 
situations:
1. If the Q-filter has a zero-order hold, then 00kq .

In this case, the system will always be stable, but 
performance may suffer due to the delayed response. 

2. If the Q-filter does not have a zero-order hold 
( 00kq ), but 10w , then the system will 
always be stable for any LTV low-pass filter without 
ripple in the pass band.  The reason is that when 

10w , then (12) reduces to 10kq .  If the 
frozen filter does not have ripple in the pass band, then 

1zQk  and by Theorem 1, 10kq .

3. Otherwise, (12) will result in a maximum bandwidth 
restriction on the frozen filters.  For many digital 
filters, 0kq  increases monotonically with 
increasing bandwidth.  Therefore, above some upper 
bandwidth 0kq  will no longer satisfy (12).  This 
effect can be somewhat alleviated by choosing a small 

 in the learning function. 

If the ILC system is stable, the fixed point that the ILC 
control converges to can be found by replacing uj and uj+1
in (5-8) with u , and manipulating the equations yields 

dyPQWQIu d
1ˆ1 . (15) 

Further, the converged error can be found as 

.ˆ1

ˆ

11 dyPQWIQI

WIPIe

d

 (16) 

Of particular interest may be the necessary conditions for 
convergence of the uncertain plant to zero error.  If the 
system converges, then from (16) it can be shown that a 
necessary condition for e =0 is that Q=I.  Therefore this 
result, along with Theorem 2, demonstrates that zero error 
convergence can be achieved for the uncertain system if 

10w , or equivalently 1zW

As was discussed earlier, stability may be of little value if 
learning transients are impractically large.  To avoid large 
transients, monotonic convergence conditions can be 
imposed.  

Definition 1:  The uncertain ILC system is monotonically 
convergent if  

221 jj uu  (17) 

for all  with 1z , where 1jj uuu .

Using the solution for the fixed point in (15) and the uj

dynamics in (11), the uj dynamics can be found as 

jj uWIQu 11 . (18) 

Theorem 3:  The uncertain ILC system described by (5-10) 
is monotonically convergent for all  with 1z  if 

2
2

11 Q
QW . (19) 

Proof: From (18), the ILC system is monotonically 
convergent if and only if  

11 2WIQ . (20) 

From Theorem 1, 12 . Therefore, by (18), 

11

11

22

2222

QWQ

QWQWIQ
.

Remark 2:  Because Q is an LTV filter whose frozen 
behavior is such that 1zQk , then one would expect 

that in general, 12Q .  Then, from (19), the least 

restrictive monotonic convergence condition occurs when 
1 .  Therefore, for the remainder of this work, it is 

assumed that  is selected as 1. 
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Remark 3:  Suppose that 1zW  and IQ  for zero 

error convergence.  Then by Theorem 1, 12W  and by 

Theorem 3 with 1 , the system is monotonically 
convergent.  Therefore the Q-filter design problem is trivial 
if the multiplicative uncertainty is less than 100% at all 
frequencies.  However, for most physical systems, this will 
not be the case, particularly at high frequencies.  In these 
cases it is likely that performance must be sacrificed to 
gaurantee good learning transients. 

While the monotonic convergence condition in (19) is a 
simple expression, numerical evaluation of 2QW  may be 
difficult in practice because of the large size of the matrices 
involved.  For long time durations such as those 
encountered in robotic manufacturing applications, N may 
be on the order of O(105).  Calculations involving matrices 
this large is challenging with today’s computational 
machinery.  This motivates the class of LTV Q-filters that 
is presented in the next section which can be separated into 
short-time blocks yielding a decoupled small matrix 
analysis.

IV. A MONOTONICALLY CONVERGENT TIME-VARYING Q-
FILTER

Consider an LTV Q-filter that consists of long segments 
of a constant bandwidth and short segments of a non-
constant, TV bandwidth like that shown in Fig. 1.  Such a 
profile may be particularly useful for stepping motion 
profiles like that shown in Fig. 2 where high frequencies 
might be necessary to capture the short-time stepping 
motions.  At other locations where no motion is desired, a 
lower bandwidth may be sufficient.  In this section we seek 
to determine the relationship between the low-bandwidth, 
long-time segments and the high-bandwidth, short-time 
segments under a monotonic convergence constraint. 

Time (k)

F
ilt

er
 B

an
dw

id
th

 Ω
(k

)

Fig. 1.  Time-varying bandwidth profile with long segments of constant 
bandwidth. 
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Fig. 2.  Stepping motion profile. 

Mathematically, a TV bandwidth profile like that shown 
in Fig. 1 can be written as 
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with

NTT ii2 , for i odd, (22) 

where N  is the minimum length of the constant 
bandwidth, long-time segments.  Note that while Fig. 1 
shows the constant bandwidth segments having the same 
length and the non-constant bandwidth segments being 
identical, this need not be the case.  Let the total length of 
the time-varying, short-time segments be given by 

.
1

122

m

i
iiTV TTN . (23) 

Let the “template filter” be an LTI filter which accepts its 
bandwidth as one of its arguments.  This template will be 
used to generate the LTV Q-filter.  The template filter is 
assumed to be a finite impulse response (FIR) filter and is 
defined as 

11 110, QN
Q qNfqffqF  (24) 

where NQ<<N is the length of the impulse response and 
is the bandwidth of the filter.  Assuming that this low-pass 
filter has unit DC gain, then 

1,
1

0

QN

i

if . (25) 

Then, the TV Q-filter can be expressed as 
kqFkqQ ,,  (26) 

and the Q-filter matrix generated by Q(q,k) is given by 

0100
00
0001
000
000001

NQN

NQN

fNf

fNf

f

QQ
Q .(27) 

When the time-varying segments are spaced sufficiently 
far apart, they no longer have a combined effect on the 
monotonicity of the learning.  Instead, it will be shown that 
only the “worst” segment determines whether the system 
converges monotonically.  Therefore, if the ILC system 
converges monotonically with one time-varying segment, 
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then it will converge monotonically for multiple time-
varying segments.  This feature is important because it 
gives the designer the ability to easily extend or modify a 
bandwidth profile that is already known to be 
monotonically convergent without having to re-analyze the 
system.  Further, this separation has the additional benefit 
that the numerical calculation of the impact that each time-
varying segment has is reduced to a small, computationally 
manageable size.  First some matrix manipulation is 
necessary before this decoupling feature becomes apparent. 

Let an LTI filter with bandwidth 0 be defined by 

0,qFqQLTI . (28) 

The lifted system representation of QLTI(q) is then 

0100
00
0001
000
00000

00

00

0

fNf

fNf

f

Q

QLTIQ . (29) 

Now define the “delta Q-filter” as given below in (30-32). 
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 (30) 

02
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00
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00
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,

ff
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Q

i

i

i

i

N

N

N

N

i  (31) 

.011 ffNf Qf  (32) 

The matrices Q ,i have size 122122 x iiQii TTNTT .

To decouple the short-time TV segments in the 
monotonic convergence analysis, it is necessary to 
approximate the IIR W(q) dynamics as FIR dynamics.  
Because W(q) is assumed stable, there exists a convergent 
geometric sequence that upper bounds the impulse response 
of W(q) as 

k
WWkw , for NNk W ,1 , (33) 

where 0W , 1,0W , and NW is the length of the FIR 
approximation.  We may write W as the sum of the FIR 
portion of the filter and the remaining portion as 

FIR WWW , (34) 

where WFIR and W  are NxN and given in (35) and (36), 
respectively.

0100
00
0001
000
00000

wNw

wNw

w

W

WFIRW  (35) 

00
0
00
0000
0000
000000

W

W

NwNw

Nw
W  (36) 

Define a short-time matrix for each short-time segment as 

0100
00
0001
000
00000

~
,

wNw

wNw

w

W

WiFIRW  (37) 

with size x1122 iiQW TTNN

1122 iiQW TTNN .  Also define a short-time delta 

Q-filter matrix for each short-time segment as 

iNxTTi Wii ,1, 122

~ Q0Q  (38) 

with size 1x 122122 iiQWii TTNNTT .
The following theorem establishes monotonic convergence 
for the proposed class of TV Q-filters. 

Theorem 4:  Let an ILC system be described by (5-9) with 
1 , the TV Q-filter (21-32) and the FIR approximation 

(33-37).  Then the ILC system is stable and monotonically 
convergent if 

1WQ NNN , (39) 

and

,1
1

2

~~max

)(

1

2,
,1

errorionapproximatFIRqW

W

TV
N

WW

segmentsLTV

i
mi

filterLTI

LTI

N

zWzQ

W

FIRWQ

. (40) 

Proof:  Monotonic convergence implies stability because 
AA , so it will be sufficient to show only 

monotonic convergence.  From Theorem 3, monotonic 
convergence is assured if 12QW .  Now, 
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The system QLTIW is LTI and therefore equivalent to the 
filter qWqQLTI . By Theorem 1, 

zWzQLTI2WQLTI . (41) 

It can be shown that if A is an NxN matrix with M non-zero 
rows, then AA M2  where 

N

j iji a
1

maxA .  The NxN matrix Q  has a non-

zero row for each time instant where the frozen filter 
bandwidth is not 0.  That is, the number of non-zero rows 
in Q  is equal to the sum of the lengths of the time-varying 
segments as given by NTV in (38).  Therefore, 

WQWQ TVN2 . (42) 

Then, 
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WW NW

1
2 1

2WQ . (43) 

Finally, FIRWQ  has the block diagonal structure 

000
0~~0

0~~0
000

0~~0
000

,,

2,2,

1,1,

mm FIR

FIR

FIR

WQ

WQ

WQ

.

Therefore, 2FIRWQ  is the largest singular value of the 
individual blocks, or 

2,,
,12

~~max ii
mi

FIRFIR WQWQ . (44) 

Therefore, 2QW  is less than or equal to the left side of 

the expression in (37) and, hence, (37) implies monotonic 
convergence and stability of the ILC system. 

Remark 4:  While (37) is a more complicated expression 
than (17), it is numerically much easier to solve for long 
iteration durations.  The most computationally taxing part 
of the expression is the 2-norm of the short-time matrices.  
These matrices are approximately the size of the FIR length 
of the Q-filter which is typically no larger than O(102).  
Calculations involving this size matrix are quite tractable 
on current computational machinery. 

Remark 5:  The condition in (37) offers insight into several 
tradeoffs that occur with this class of LTV Q-filters.  First, 
the larger the baseline bandwidth 0 is, the larger 

zWzQLTI  will be.  Therefore the constraint on the 

short-time bandwidth profile will become more restrictive.  
Consider a situation where the bandwidth 0 is increased 
until 1zWzQLTI .  In this case, the short-time 

bandwidth deviations must decrease until they are 0.  
Therefore, the maximum bandwidth LTI Q-filter is a 
special case of the presented LTV Q-filter class.  As the 
baseline bandwidth is reduced, it can be allocated into the 
short-time segments to improve performance locally. 

A second tradeoff occurs in the FIR approximation of 
W(z).  Note that this term can be made arbitrarily small by 
choosing larger FIR lengths NW.  Larger NW, however, 
increase the amount of spacing required between the short-
time segments (36). 

The relationship that monotonicity depends only on the 
largest short-time filter and not a combination of the short-
time filters offers a number of interesting possibilities.  
Conceivably a controls engineer could design an array of 
special purpose short-time filters with each one satisfying 
(37).  For instance, some filters could have very high 
frequency, but very short duration while others could have 
mid-level frequency, but longer durations.  These short-
time filters can then be assembled to rapidly generated a 
customized LTV Q-filter for a given desired trajectory.  
The only requirement that would need to be fulfilled is the 
minimum filter spacing (36). 

V. CONCLUSIONS

This paper considered the use of LTV Q-filters in ILC of 
uncertain systems.  Sufficient conditions for stability and 
monotonic convergence of the uncertain system were 
developed.  Additionally, more specific and 
computationally feasible monotonic convergence 
conditions were developed for a specific class of LTV Q-
filters.  This class was composed of filters that have a 
baseline fixed bandwidth with short-time deviations that 
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may be particularly useful for rapid motion applications.  
The monotonic convergence condition highlighted the 
tradeoff between the baseline bandwidth and the maximum 
short-time deviation.  Additionally, if the short-time 
deviations are sufficiently separated from one another, then 
they do not have a compounding effect.  Instead, only the 
“worst” deviation is used in determining monotonicity.  
This result has important implications in design by 
allowing a virtually limitless number of short-time 
deviations, and by allowing the ability to rearrange the 
bandwidth profile online or extend the iteration length and 
add additional short-time deviations without additional 
analysis.

An important question that remains open regards the 
theoretically maximum performance enhancement that the 
proposed LTV Q-filter class might have over LTI Q-filters 
for uncertain systems.  Investigation of this question will be 
the focus of future work. 

APPENDIX

NOMENCLATURE

Symbol Meaning 
d(k) Output disturbance at time k

d Vector of output disturbances
ej(k) Error on iteration j at time k

ej Vector of errors for iteration j
e Vector of converged error 

f (i) ith Markov parameter of template filter for bandwidth 
f Vector of Markov parameters of template filter 
j Iteration index 
k Time index 
Le Lifted system representation of LTI learning function 
N Length of iteration 
NQ Length of FIR of Q-filter 
NTV Total length of time-varying, short-time segments 
NW Length of approximation of W 
N Minimum length of long-time segments 

P(z) Transfer function of actual plant 
p(k) Markov parameters of P
P Lifted system representation of P

)(ˆ zP Transfer function of plant model 

)(ˆ kp Markov parameters of P

P̂ Lifted system representation of P̂
Q Lifted system representation of LTV Q-filter

QLTI(z) Transfer function of LTI Q-filter with bandwidth 0

QLTI Lifted system representation of QLTI(z)
Q Mathematical difference of Q and QLTI 

Q ,i Truncated Q matrix for the ith short-time segment 

i,
~Q Extended Q ,i matrix 

qk(i) Ith Markov parameter of frozen Q-filter at time k
Ti Time index marking beginning of filter segments 

uj(k) Control input on iteration j at time k
uj Vector of control inputs for iteration j
u Vector of converged control inputs 
uj Mathematical difference of uj and u

W(z) Transfer function of uncertainty weighting 
w(k) Markov parameters of W
W Lifted system representation of W

WFIR Lifted system representation of FIR approximation of W

i,
~

FIRW Truncated WFIR matrix for ith short-term segment 

W Mathematical difference of W and WFIR 

Symbol Meaning 
yj(k) Output on iteration j at time k

yj Vector of outputs for iteration j
yd(k) Desired output at time k

yd Vector of desired outputs for iteration j
 Learning rate 

W Constant in bounding function for w(k)
(z) Transfer function of uncertainty 
(k) Markov parameters of 

Lifted system representation of 
W Constant in bounding function for w(k)
0 Baseline bandwidth for long-time segments of Q-filter 

(k) LTV Q-filter bandwidth at time k
i(k) Bandwidth for Ith short-time segment at time k
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