
Abstract –– The classical design principle of using high
forward gain to improve performance and accuracy of linear
control systems is examined in a nonlinear context. By
introducing a certain nonlinear gain function into the control
loop, this principle is extended to nonlinear minimum-phase
systems. The results include a solution to a class of nonlinear
approximate model matching problems.

I. INTRODUCTION

In the closed loop control configuration,

C
u yw

(1)

is the system being controlled, C is a controller, and c

is the system represented by the closed loop. For notational
convenience, assume that C is constructed so that c has

the same input space as .

Stability of the Configuration 1 is, of course, critically
important. To investigate stability, we limit our attention to
bounded input signals u. We define the bounded-input
image Imb c as the set of output signals of c generated

by bounded input signals. Similarly, the bounded-input
image Imb of is formed by all responses of to

bounded input sequences. As the output of c is the

output of , one has

Imb c Imb .

Assume that a norm |•| is defined over our spaces, and

consider the following problem.
(2) DEFINITION. THE APPROXIMATE MODEL
MATCHING PROBLEM. Let and be two systems

with a common input space and a common output space.
Given a bounded domain S and a real number > 0,

determine whether there is a controller C such that
| u – cu| for all u S. (3)

If such a controller exists, then c is an -approximant of

over S, and is the model.

When the model is the identity system = I, the

approximate model matching problem reduces to the
classical problem of designing a tracking system, i.e., a
system whose output closely follows its input.

In the present note, we consider the approximate model

matching problem for nonlinear minimum phase systems.
We show that there is a simple solution based on the use of
high forward gain. The solution is easy to visualize and to
implement, and it generalizes to nonlinear systems the
classical control principle of using high forward gain.

Alternative approaches to the control of nonlinear
systems can be found in [11], [12], [6], [7], [8], [9], [4],
[19], [18], [3], [15], [20], [17], [16], [1], [5], [13], and in
other publications.

. BASIC CONSIDERATIONS

A. Preliminaries

We consider here discrete-time systems, but similar
principles apply to continuous-time systems as well. Let R
be the set of real numbers, let Rm be the set of all m-
dimensional real vectors, and let S(Rm) be the set of all
sequences u = {u0, u1, u2, ... } of m-dimensional real
vectors, where ui Rm, i = 0, 1, 2, ... A system with

specified initial conditions induces a map : S(Rm)

S(Rp) that transforms input sequences of m dimensional
real vectors into output sequences of p dimensional real
vectors. We write y = u to represent the output sequence

y generated by the input sequence u. It will be convenient
to assume that 0 = 0.

As usual, a system is causal if its present response

does not depend on future input values. The system is
strictly causal if there is a delay of at least one step before
input changes are reflected in its response. Finally, the
system is bicausal if it is invertible, and if and its

inverse –1 are both causal systems.

We consider systems with a state representation
xk+1 = f(xk‚uk)
yk = h(xk)‚ k = 0‚ 1‚ 2‚ ...

(4)

Here, xk Rn is the state of the system at step k, while uk

and yk are the input value and the output value,
respectively, at that step; f : Rn Rm Rn is the recursion

function and h : Rn Rp is the output function. For

convenience, we use the initial condition x0 = 0 for our
system. A system described by (4) is strictly causal, since
the output function h does not depend on the input value
uk (e.g., [6]).

For a real number a, let |a| be the absolute value of a.
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Given a vector r = (r1, r2, ..., rq) Rq, set

|r| := max {|ri|, i = 1, ..., q}.
The l -norm of an element s S(Rq) is given by

|s| := supi 0 |si|,
where |s| := when the supremum does not exist. A

subset S S(Rq) is bounded if there is a real number M

0 such that |s| M for all s S; when the latter holds, we

write |S| M. For a real number 0, denote by S( q)

the set of all sequences s S(Rq) satisfying |s| , i.e.,

the set of all sequences bounded by .

A system : S(Rm) S(Rp) is BIBO-stable (Bounded-

Input Bounded-Output stable) if, for every real number M
0, there is a real number N 0 such that | u| N

whenever |u| M. The notion of BIBO-stability underlies
all other stability notions.

When a system : S(Rp) S(Rp) is invertible as a set

mapping, its inverse is –1, and –1 = –1 = I, the

identity. If –1 is BIBO-stable, then is a BIBO-

minimum phase system. A system is BIBO-unimodular

if it is both BIBO-stable and BIBO-minimum phase.
For composite systems, a stronger notion of stability is

required. Consider a composite system that consists of

q subsystems. Add an external signal to the output of each
subsystem. This results in a composite system with q+1
external input signals - the original input signal and the q
newly added signals. The composite system is

internally BIBO-stable if the following holds for each one
of the (q+1) external input signals: the map from the
external signal to any signal within the configuration forms
a BIBO-stable system. Internal BIBO-stability guaranties
that a composite system is implementable.

B. Ideas from classical control theory

The classical solution of the tracking problem is based on
the use of high forward gain in the following Black
diagram ([2]).

e+

–

A
u y

(5)

Here, is the system being controlled and A represents

a constant gain. The use of unity feedback requires that the
number of outputs of be equal to its number of inputs,

say : S(Rm) S(Rm) (m = 1 is used in classical

control). Let A denote the input/output relation of the

closed loop (5). A simple calculation yields
y = [(1/A)I + ]–1u, or A = [(1/A)I + ]–1. (6)

Note that (6) remains valid when is a nonlinear system.

Ignoring for a moment mathematical rigor (sections 3 and 4
present a rigorous discussion), one may presume that
limA [(1/A)I + ] = . (7)

If (7) is accepted as correct and substituted into (6), and

if is continuous and invertible, one arrives at the

conclusion
limA [(1/A)I + ]–1 = –1 = I. (8)

In other words, when the gain A is sufficiently large, then
y u,

i.e., for large gain A, Configuration 5 becomes an accurate
tracking system irrespective of the nature of , as long as

is invertible and strictly causal.

This conclusion is, in general, incorrect. A brief
examination of (8) reveals a major difficulty in case is

not a BIBO-minimum phase system. Indeed, the expression
–1 implies that, for large gain A, the input signal of

in (5) is (almost) equal to the output signal of –1. When

is not BIBO-minimum phase, this means that the input of

in (5) is unbounded for at least some input signals u,
invalidating the internal stability of the configuration. This
qualitative argument indicates that Configuration 5 cannot
be used with large gain A when is not BIBO-minimum

phase. We show below that, with a small modification, the
Black diagram is an effective tracking configuration for all
linear and nonlinear BIBO-minimum phase systems.

III. SUBBOUNDED SYSTEMS

Let R+ be the set of all non-negative real numbers. A
bound function is a strictly increasing continuous function

: R+ R, whose image includes R+. Note that the

restriction : R+ Im is an isomorphism with an

inverse –1 : Im R+. Examples of bound functions

include the functions ( ) = a , where a is a positive

constant; ( ) = a 2; or ( ) = a 1/2; or, more generally,

( ) = a b, where a, b > 0 are constants.

Of course, bound functions may take other forms as well.
The following is the basic concept of this section.
(11) DEFINITION. A system : S(Rm) S(Rm) is a sub-

bounded system if there is a bound function satisfying

| w| (|w|) for all w S(Rm). The function is then

called a lower bound function of .

The next statement indicates that (invertible) sub-
bounded systems are BIBO-minimum phase systems.
(12) THEOREM. Let : S(Rm) S(Rm) be a BIBO-

stable invertible system satisfying 0 = 0. Then, is a

BIBO-minimum phase system if and only if it is sub-
bounded.

Proof. Assume first that : S(Rm) S(Rm) is a sub-

bounded invertible system, so there is a bound function

satisfying | u| (|u|) for all u S(Rm). Now, consider a

sequence w S(Rm), and let u := –1w. The previous

inequality then yields | –1w| (| –1w|), or

|w| (| –1w|). (13)

Further, the fact that is strictly increasing implies that
–1 is also strictly increasing. Consequently, applying –1

to both sides of (13) yields –1(|w|) –1 (| –1w|), so that
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–1(|w|) | –1w|. This shows that | –1w| is bounded

whenever |w| is bounded, namely, that is a BIBO-

minimum phase system. The converse direction is proved
in [10].

It is easy to show that every linear BIBO-minimum
phase system : S(Rm) S(Rm) satisfies

| w|
1

| –1|
|w| for all w S(Rm), (14)

where | –1| denotes the norm of the inverse system.

Consequently, has the lower bound function

( ) :=
1

| –1|
. (15)

IV. NONLINEAR MINIMUM PHASE SYSTEMS

A. Tracking

Let : S(Rm) S(Rm) be a BIBO-stable and BIBO-

minimum phase system. In view of Theorem 12, has a

lower bound function . We define a new function : R+

R+, called the lower gain function of , as follows.

Select a real number 0 > 0 for which ( 0) > 0, and set

( ) :=
( )/ for 0‚
( 0)/ 0 for 0 < 0.

(16)

Note that the lower gain function is not unique, as it
depends on the lower bound function and on the number

0. For example, in the case of a linear BIBO-minimum

phase system, it follows by (15) that a lower gain function
is given by the constant function
( ) = 1/| –1|. (17)

Consider now a strictly causal BIBO-stable and BIBO-
minimum phase system : S(Rm) S(Rm) having the

lower bound function and a lower gain function .

Build the control configuration

we+

–

 = 

A
u yz

C = A

(18)

where A > 0 represents a constant gain, and where

represents a static controller given by

wk = (zk) :=
1

( –1(|zk|))
zk, k = 0, 1, 2, ... (19)

(For unstable systems, the block " " in (18) must be

replaced by a closed loop configuration stabilizing ; see

[9].)
In the special case when is a linear system, it follows

by (17) that is simply a constant gain controller, in

which case it can be combined with the constant gain
controller A and eliminated from the diagram. However,
when is a nonlinear system, the compensator may

not represent constant gain. We start our investigation of

by examining its stability properties, showing that it is
BIBO-unimodular. This will require the following auxiliary
technical result. (Note that, by definition, a bound function

: R+ R satisfies R+ Im .)

(20) LEMMA. Let : R+ R be a bound function and let

( ) be a lower gain function of the form (16). Then, the

following are true.
(i) For every vector s Rm, there is a unique vector t

Rm satisfying the relation s = t (|t|).

(ii) s = t (|t|) if and only if t = s/ ( –1(|s|)).

(iii) For a sequence w = {w0, w1, w2, ... } S(Rm), set zk

:= wk (|wk|), k = 0, 1, 2, ... Then, the l -norms satisfy |z| =

|w| (|w|).

Proof. (i) Let t1, t2 Rm be two vectors satisfying

t1 (|t1|) = t2 (|t2|). Calculating norms on both sides, we get

|t1| (|t1|) = |t2| (|t2|). We consider now several cases. (a) |t1|,

|t2| < 0, where 0 is from (16); then, (|t1|) = (|t2|) =

( 0)/ 0, so the equality t1 (|t1|) = t2 (|t2|) clearly implies

that t1 = t2. (b) |t1| < 0 while t2 0; then, |t1| (|t1|) =

|t1| ( 0)/ 0, while |t2| (|t2|) = (|t2|). Now, since |t1| < 0, it

follows that |t1| (|t1|) = |t1| ( 0)/ 0 < ( 0) (|t2|), where

the last inequality follows from the relation 0 |t2|. Thus,

|t1| (|t1|) |t2| (|t2|), so that t1 (|t1|) t2 (|t2|), and case (b) is

not possible under our assumption. (c) |t1|, |t2| 0; then, by

(16), the equality |t1| (|t1|) = |t2| (|t2|) implies that (|t1|) =

(|t2|). From the invertibility of , we conclude that |t1| =

|t2|, so that (|t1|) = (|t2|). The equality t1 (|t1|) = t2 (|t2|)

implies then that t1 = t2, proving part (i).
Turning to part (ii), assume that s = t (|t|) and |t| < 0.

Then, s = t ( 0)/ 0, so that |s| = |t| ( 0)/ 0 < ( 0). Using

the fact that is strictly increasing, the last inequality

implies that –1(|s|) < 0. Thus, s/ ( –1(|s|)) = s( 0/ ( 0) =

t, so that (ii) is valid when |t| < 0.

Next, assume that s = t (|t|) and |t| 0. Then,

calculating norms on both sides, we obtain |s| = |t (|t|)| =

|t| (|t|) = (|t|), according to (16). Consequently, |t| = –

1(|s|); substituting into the equation s = t (|t|), and using the

fact that ( ) > 0 for all > 0, we can write t = s/ (|t|) =

s/ ( –1(|s|)). This proves one direction of part (ii).

For the converse direction of part (ii), assume that
t = s/ ( –1(|s|)). (21)

Consider first the case –1(|s|) < 0. Then, since –1 is

strictly increasing, it follows that |s| < ( 0). Consequently,

in this case, |t| = ( 0/ ( 0))|s| < 0, so that (|t|) =

( ( 0)/ 0). The equation s = ( ( 0)/ 0)t, which follows

directly from (21), implies then that s = t (|t|). This proves

(ii) when –1(|s|) < 0.

In continuation, assume that –1(|s|) 0. Then, |t| =

|s|/ ( –1(|s|)) = |s| –1(|s|)/[ ( –1(|s|))] = –1(|s|), so that |t| =
–1(|s|), or |s| = (|t|). Substituting into (21), we obtain t =

s/ ( –1( (|t|))) = s/ (|t|), or s = t (|t|), which completes the
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proof of (ii).
Finally, regarding part (iii), we again distinguish between

two possibilities. First, if |wk| < 0 for all k, then |w| 0,

and we obtain zk = ( ( 0)/ 0)wk for all k, which implies

that |z| = ( ( 0)/ 0)|w| = |w| (|w|). Next, let K be the set of

all integers k for which |wk| 0, and assume that K .

Then, |w| 0, and, for k K, it follows by (16) that

|zk| = |wk| (|wk|) = (|wk|), k K.

Now, fix an integer k K, and consider the positive real

numbers (|w0|), (|w1|), ..., (|wk|). Let (|wj|) be the

largest of these numbers, that is, (|wj|) (|wi|) for all i =

0, ..., k. The fact that is a monotone strictly increasing

function implies that |wj| |wi| for all i = 0, ..., k, so that
|wj| 0. These facts lead to the following chain of

equalities

|z
k
0| = maxi=0,...,k |zi| = maxi=0,...,k (|wi|) = (|wj|) =

(maxi=0,...,k |wi|) = |w
k
0|) for all k K.

Thus, |z| = (|w|), and our proof concludes.

(22) LEMMA. The controller of (19) is BIBO-

unimodular.
Proof. Combining (19) with part (ii) of Lemma 20 yields

zk = wk (|wk|), k = 0, 1, 2, ... Then, using part (iii) of

Lemma 20, yields |zk| = (|wk|) for all k = 0, 1, 2, ... By

the definition of , this implies that the sequence w is

bounded if and only if the sequence z is bounded, and the
proof is complete.

Defining the system
:= ,

we have A = A. In other words, instead of controlling

the system with the controller A, we can control the

system with the constant gain controller A. The interest

in this interpretation arises from the fact that the
combination = has the following feature, which is

critical to "high-gain" tracking.
(23) DEFINITION. A BIBO-minimum phase system :

S(Rm) S(Rm) is linearly sub-bounded if there are

constants c > 0 and d 0 such that | z| c|z| for all

bounded input sequences satisfying |z| d.

In view of (14), every linear minimum phase system is
also linearly sub-bounded. In general, however, a nonlinear
BIBO-minimum phase system may not be linearly sub-
bounded. We proceed to show that the Black diagram 5
achieves accurate tracking for all linearly sub-bounded
systems, as long as the gain A is sufficiently large. For a
system that is sub-bounded, but not linearly sub-

bounded, we show that the combination := is

linearly sub-bounded. Thus, accurate tracking can be
achieved with by adding the compensator to the

Black diagram.
(24) PROPOSITION. Let : S(Rm) S(Rm) be a BIBO-

stable and sub-bounded system with a lower gain function
, and let : S(Rm) S(Rm) be given by (19). Then, the

composition := is internally BIBO-stable and

linearly sub-bounded.
Proof. Lemma 22 implies that the combination =

is internally BIBO-stable. Thus, it only remains to show
that is a linearly sub-bounded system. Referring to

Configuration 18, note that z is the input signal and w is
the output signal of , i.e., w = z. In addition, w is also

the input signal of . Using Lemma 20, we can write

zk = wk (|wk|), k = 0, 1, 2, ... and |z| = |w| (|w|).

Letting be the lower bound function of

corresponding to , and recalling definition (16) of the gain

function, this yields |z| = (|w|) for all |w| 0.

Consequently, | z| = | z| = | w| (|w|) = |z| for all |w|

0. We can then write

| z| |z| for all |z| ( 0). (25)

Whence, is linearly sub-bounded.

The following notions refer to stability properties that are
preserved when a design parameter grows to infinity.
(26) DEFINITION. Let (A) : S(Rm) S(Rp) : u a

(A)u be a system that depends on a real parameter A.
The system (A) is uniformly BIBO-stable if there is a
real number A0 such that the following is true for all A
A0: for every real number M 0, there is a real number N

0 such that | (A)u| N for all input sequences of norm
|u| M.

The system (A) is uniformly BIBO-minimum phase if

there is a real number B0 such that (A) is invertible and
–1(A) is uniformly BIBO-stable for all A B0.

Finally, the system (A) is uniformly BIBO unimodular

if it is both uniformly BIBO-stable and uniformly BIBO-
minimum phase.

(27) DEFINITION. Let (A) be a composite system

composed of subunits 1(A), ..., q(A) that depend on a

parameter A. Insert an adder at the output of each subunit,
and add an external signal ui to the output sequence of

i(A), i = 1, ..., q. Denote by u0 the input sequence of the

composite system. For a given value of the parameter A,
let v0(A) be the output sequence of the composite system,
and let vi(A) be the output sequence of the subunit i(A),

i = 1, ..., q. The composite system (A) is uniformly

internally BIBO-stable if there is a real number A0 such
that the following is true for all A A0: for every real
number M > 0 there is a real number N > 0 such that
|vi(A)| N for all i = 0, ..., q, whenever |ui| M for all i
= 0, ..., q.

Applying these notions to the closed loop configuration
(18), we show subsequently that perfect tracking is
achieved at the limit A , without disturbing internal

stability. To this end, we start with the following.
(28) PROPOSITION. Let : S(Rm) S(Rm) be a strictly

causal, BIBO-stable, and BIBO-minimum phase system
with lower bound function and lower gain function ,

and let be given by (19). Then, Configuration 18 is
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uniformly internally BIBO-stable.
Proof. Denote := , where is given by (19).

Using the notation of (18), we obtain e = u – y, z = Ae, y =
z, so that

u = [(1/A)I + ]z. (29)

Now, define the system := [(1/A)I + ] : S(Rm)

S(Rm), so
z = [(1/A)I + ]z = u, or (30)

z = –1u = [1/A)I + ]–1u. (31)

In Configuration 18, we then have
y = z = [1/A)I + ]–1u.

From (29), we get
|u| = | z| = |(1/A)z + z| |z|/A + | z|. (32)

Now, fix a real number > 0, and consider a sequence z

S( m). As is BIBO-stable by Lemma 22, there is a

real number D 0 such that | z| D. Then, by (32),

|u| /A + D + D

for all A 1. This shows is uniformly BIBO-stable.

Next, we show that is uniformly BIBO-minimum

phase. Rewriting (30) in the form
u = z = z/A + z,

we have

|u| = | z| = |z/A + z| | || z| – |z|/A . (33)

Now, by (25), we have | z| |z| for all |z| ( 0).

Consequently, when A > 1 and |z| ( 0), we can write

| || z| – |z|/A |z| – |z|/A = (1 – 1/A)|z|. Recalling (33), |u|

(1 – 1/A)|z| for all A > 1 and |z| ( 0). Thus,

|z| 2|u| for all A 2 and |z| ( 0).

Specifically, when |u| , we get |z| = | –1u| 2 for all

A 2 and |z| ( 0). Consequently,

Either |z| < ( 0) or |z| = | –1u| 2 for all A 2. (34)

This proves that –1 is uniformly BIBO-stable, so that

is uniformly BIBO-minimum phase. Combining with our
earlier observation, we conclude that is uniformly

BIBO-unimodular.
We can now prove that Configuration 18 is uniformly

internally BIBO-stable. To this end, note that additive
signals added at the points u, e, and y in (18) all have
similar effects on the output of the configuration's adder.
Also, a signal z added to z is equivalent to a signal z /A

added to u. Furthermore, since is BIBO-unimodular

(Lemma 22) and independent of A, it follows that w is
uniformly bounded if and only if z is uniformly bounded.
The last sentence implies that it suffices to investigate the
impact of the signal z and of signals added to z; the
effects of the signal w and of signals added to w do not
need to be considered separately (see [8] for more details).

Additionally, since e = z/A, it is clear that e is
uniformly bounded as A if the signal z is uniformly

bounded as A . Finally, since y = z and and

are both BIBO-stable and independent of A, it follows that
the transmission from u to y is uniformly BIBO-stable if

so is the transmission from u to z. Thus, in order to prove
that (18) is uniformly internally BIBO-stable, it only
remains to show that the transmission from u to z is
uniformly BIBO-stable. However, the latter is a direct
consequence of (31) and our earlier conclusion that –1 is

uniformly BIBO-stable.

We examine next the tracking capabilities of
Configuration 18 with high gain A. The tracking error for
a gain A is given by (A) := |u – y| = |e|. The next

statement shows that Configuration 18 yields accurate
tracking for BIBO-minimum phase systems, linear or not.
(35) THEOREM. Let : S(Rm) S(Rm) be a strictly

causal, BIBO-stable, and BIBO-minimum phase system,
having the lower bound function and the lower gain

function . Enclose in Configuration 18 with the

controller C = A, where is given by (19). Then, for

every bounded input sequence u, the tracking error satisfies
limA (A) = 0.

Proof. Let u S(Rm) be a bounded input sequence of

Configuration 18 with norm |u| = . Then, e = y – u = z/A,

so that (A) = |e| = |z|/A for all A > 0. Using (34), this

implies that (A) (1/A)max { ( 0), 2 } for all A 2, so

that limA (A) = 0.

Thus, Configuration 18 extends the tracking prowess of
the Black diagram to nonlinear BIBO-minimum phase
systems.
(36) EXAMPLE. Consider the (scalar) system
xk+1 = xk/2 + uk, x0 = 0,
yk = exp(|xk|).

A simple calculation shows that, in this case, we can use
the lower bound function ( ) = exp(2 /3) – 1. The

corresponding lower gain function can then be taken as
( ) = [exp(2 /3) – 1]/ , 0,

using the continuous extension at = 0. The compensator

, in this case, is given by

(zk) =

3
2log(|zk| + 1)

|zk|
zk.

B. Approximate model matching

Let and be two causal BIBO-stable and BIBO-

minimum phase systems, and consider the configuration

we+

–

A
u yz

c

v

(37)

Here, is the strictly causal system being controlled, is

used as a feedback compensator, A represents a constant
gain amplifier, and c is a static compensator. Denoting by

A the input/output relation of the diagram, we have

A = cA(I + cA)–1.

As and are both BIBO-minimum phase systems,
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so is the combination . It follows then by Theorem 12

that has a lower bound function c. Let c be a lower

gain function corresponding to c. In analogy with (19),

define the compensator c by

wk = c(zk) :=
1

c( c
–1(|zk|))

zk , k = 0, 1, 2, ... (38)

The next statement shows that, with this compensator,
Configuration 37 matches the model –1 as A .

(39) THEOREM. Let : S(Rm) S(Rm) and : S(Rm)

S(Rm) be two BIBO-stable and BIBO-minimum phase

systems, where is strictly causal and is bicausal.

Assume that the inverse system –1 is continuous with

respect to the l -norm. Then, with the compensator c of

(38), Configuration 37 has the following properties:
(i) It is uniformly BIBO-internally stable, and
(ii) limA | Au – –1u| = 0 for every bounded input

sequence u; moreover, the limit converges uniformly over
all input sequences of norm |u| , where is any

positive real number.

The proof of Theorem 39 is similar to the proof of
Theorem 35 (see [10] for details).

To summarize, we have seen that the Black diagram,
with the modification described by Configuration 37,
facilitates tracking and approximate model matching for
nonlinear BIBO-minimum phase systems.
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