
Cuts and Cycles in Relative Sensing and Control

of Spatially Distributed Systems

Jasmine Sandhu, Mehran Mesbahi, and Takashi Tsukamaki

Abstract— We consider transformations that characterize
equivalent classes of relative sensing and control topologies for
spatially distributed systems. We employ tools from algebraic
graph theory, and in particular, notions associated with cut
and cycle spaces of a graph, to derive explicit formula for such
characterizations. Simulation results, demonstrating the utility
of the developed framework in the context of reconfigurable
control, conclude our presentation.

Index Terms— Distributed sensing; networked control; al-
gebraic graph theory

I. INTRODUCTION

Our goal in this work is to provide a deeper understanding
of how the sensing geometry in a spatially distributed
dynamic system influences the control system design. The
general control configuration is shown in Figure 1 where
the signal z captures the coordination states; signals x, w,
y, and u, denote respectively, the system state comprised of
states of the individual dynamic elements, exogenous signal,
the measurement signal available to the controller (sensed or
communicated), and finally, the control input. The control
objective is assumed to be maintaining a particular coordi-
nation among the states of the various dynamic elements.
In many such scenarios, for example when the distributed
dynamic system corresponds to a multiple vehicle system,
the coordinated states are the relative states among each
pair of elements. In this case, the vector z in Figure 1
consists of vectors of the form xi − xj (i �= j). Since
the control objective is achieving a set of performance
measures defined on the relative states, it is natural to
assume that the information available to the controller also
consists of a subset of these relative states (again either
measured or communicated). The main question that we
would like to address in this paper is as follows: suppose
that a controller has been designed for a spatially distributed
system in order to achieve a particular control objective.
Furthermore, suppose that this controller was constructed
based on a particular underlying information geometry. Are
there transformations that allow for a seamless computation
of an equivalent controller when the underlying information
geometry changes? The solution to this problem turns out to
not only provide a reconfiguration capability in the control
law, but also provide a deeper insight into the problem
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Fig. 1. The feedback confi guration

of sensing and control over spatially distributed dynamic
systems via algebraic graph theory.

A work that is particularly relevant to the present paper
is that of Smith and Hadaegh [17] where the problem of
identifying equivalent information topologies for formation
control was considered.

A. Notation

A graph G = (V,E) consists of a vertex set V (G) and
an edge set E(G), whose elements (i.e., edges) connect
pairs of vertices, making them adjacent to each other. The
graphs that will be of interest to us will be simple; as such,
multiple edges connecting the same pair of vertices and
those starting and ending at the same vertex (i.e., loops)
will not be allowed. Graphs that consist of edges with an
“orientation,” identifying their beginning (tails) and ending
(heads), will be called directed graphs. A complete graph
on n vertices is the graph that has all the potential(

n

2

)
:=

n!
2! (n − 2)!

(1)

edges; we write
(

n
m

)
when “2” in (1) is replaced by another

nonnegative integer “m” not greater than n. If Gi is a
subgraph of Gj with V (Gi) ⊆ V (Gj) and E(Gi) ⊆
E(Gj), then Gj/i is a graph obtained by removing the edges
of Gi from those of Gj. Recall that a walk in a graph
is an alternating sequence of vertices and edges with the
property that the consecutive vertices are the end-vertices
of the edges between them. A walk that touches each vertex
once is called a path. A connected graph is a graph where
there is a path between every pair of distinct vertices. A
connected graph that has the minimal number of edges
is called a tree. Hence, if any edge of a tree is removed
the resulting graph becomes disconnected. It is intuitive to
realize that a tree can not contain a cycle- a subgraph where
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every vertex has exactly two neighbors. A spanning tree of
a graph G is a tree on V (G). The set {1, 2, . . . , n} will be
denoted by [n]. The cardinality of a finite set will be denoted
as in | [n] | = n. The matrix I is used for the identity matrix
of appropriate dimensions; 1 is the vector with all entries
equal to one and span {x} for the vector x denotes the span
of the vector x. For a subset X of an inner product space,
X⊥ denotes the subspace whose elements are orthogonal to
those of X . We denote the direct sum of two subspaces A
and B by A ⊕ B. R(A) and N (A) denote, respectively,
the range and the null spaces of matrix A. Finally, the
composition of operators will be designated as in f ◦ g,
i.e., for all x, (f ◦ g)(x) = f(g(x)). In this paper, we use
the term “information geometry” or “information topology”
when the underlying information graph contains at least one
spanning tree.

The organization of the paper is as follows. We formally
introduce the main problem considered in the paper in §II.
The notions of cut and cycle spaces of a graph are intro-
duced in §II.B. §III characterizes the sought transformations
among the equivalent sensing or control topologies. Some of
the ramifications of these characterizations are also explored
in §III. Simulation results conclude our presentation in §IV.

II. PROBLEM SETUP

We consider a distributed dynamic system that has col-
lectively been represented as

Σ : ẋ(t) = f(x(t), u(t), w(t)) (2)

y(t) = Cx(t) (3)

z(t) = g(x(t), w(t), u(t)), (4)

where as in §I, x represents the state of the system Σ,
y is the information vector (measured or communicated)
available to the controller, and z is the set of variables
that are to be controlled. The dynamic system is connected
to the controller in the feedback configuration as shown
in Figure 1. In this paper we will assume the absence
of noise in measurements available to the controller. The
main assumption that we make at this early stage is that
the information geometry represented by matrix C in (3)
is associated with a relative state information structure.
Therefore the vector y is juxtaposition of vectors of the
form

xij(t) := xj(t) − xi(t)

for some distinct indices i, j ∈ [n]; we note that xji = −xij .
This information geometry can naturally be represented
in terms of a directed graph. For example, the graph in
Figure 2 corresponds to the situation where the information
vector is

y(t) = [x12(t) x13(t) x14(t) x23(t) x24(t) x34(t) ]T

that is available to the controller. Let us assume that a
control law has been designed for a particular informa-
tion geometry represented by oriented graph Gi in order
to satisfy a given stability or performance criteria (e.g.,
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Fig. 2. Formation on n = 4 nodes
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Fig. 3. Controller Ki is designed for information geometry Gi

H2/H∞). Denote this control law by Ki. Note that we are
not making any assumption on the linearity of plant nor of
the controller at this stage. Now consider a scenario where
the information geometry represented by Gi is changed to
one that is represented by Gj . One of the main objectives
of this paper is the parametrization of the transformation
Tij such that

Kj = Ki ◦ Tij ;

see Figures 3 and 4.

A. Incidence Matrix

For the oriented information graph G, the incident matrix
D(G) is defined as the |V (G)| × |E(G)| such that:

• [D(G)]k,l = 1 if vk is the head of el

• [D(G)]k,l = −1 if vk is the tail of el

• [D(G)]k,l = 0 if edge el is not incident on vertex vk .
The incidence matrix proves to be a convenient way to
represent the information geometry as

yG(t) = (D(G)T ⊗ Ini
)x(t), (5)

where D(G) is the incidence matrix associated with a given
oriented information graph on n dynamic elements with
xi ∈ Rni , Ini

is the ni×ni identity matrix, and “⊗” denotes
the Kronecker product [8]. To simplify our notation, we will
use D(G) to denote both the incidence matrix as well as
its inflated version D(G) ⊗ I . For example, the incidence
matrix for Figure 2 is

D(G) =

⎛
⎜⎜⎝

e1,2 e1,3 e1,4 e2,3 e2,4 e3,4

v1 −1 −1 −1 0 0 0
v2 1 0 0 −1 −1 0
v3 0 1 0 1 0 −1
v4 0 0 1 0 1 1

⎞
⎟⎟⎠.

Consider now two arbitrary information geometries Gi and
Gj that are related by Tij via yi = Tijyj . This implies that

DT
i x(t) = Tij DT

j x(t)

for all x; we will adopt the convention of denoting D(Gi) as
Di. Thus the desired transformation Tij satisfies the matrix
equation

Tij DT
j = DT

i . (6)
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Fig. 4. Transform Ki for use with information geometry Gj

The existence and characterization of solutions to (6) is
addressed in §III.

B. Cut and cycles spaces of a graph

Let us denote by T (G) and C(G) the cut and cycle
spaces of graph G. These subspaces can be defined via the
incidence matrix as follows:

T (G) := R(DT ), C(G) := N (D),
T (G)⊥ = C(G), and C(G)⊥ = T (G).

Moreover, C(G)⊕ T (G) = R|EG|. The cycle space is also
referred to as the flow space. For a connected graph, the
rank of the incidence matrix is n−1. Hence, the dimension
of the cutspace is n−1. Analogously, the dimension of the
cycle space is m−(n−1), where m is the number of edges
in G. Each row of D(G) is called a cut of the graph G.

III. T-TRANSFORMATIONS

In this section we characterize the transformation Tij

shown in Figure 4. We proceed by considering the following
two cases in sequence: (a) the initial graph is a spanning tree
and the final graph is any connected graph, (b) the initial
and the final graphs are two arbitrary connected graphs.

A. From a spanning tree to any connected graph

Recall that the transformation Tji satisfies

TjiD
T
i = DT

j ,

where in this section, Di corresponds to a spanning tree
on n nodes. The target graph Dj , on the other hand, repre-
sents a different information topology on these same nodes
with m edges. A moment reflection on this transformation
reveals that it essentially uses

(
n−1

2

)
linearly independent

cycles to rewrite the remaining unknown relative states; this
is shown by an example in Figure 5 for a four nodes case.
The sought matrix Tji, transforming a measurement topol-

1

i

Tji

j Construct graph: G
4

33

1 2
2

4

Given Measurement Tree: G

Fig. 5. Transforming a spanning tree to the complete graph

ogy associated with a spanning tree to another connected
topology, is characterized by the following proposition.

Proposition 3.1:

Tji =
{[

(DT
i Di)−1DT

i

]
Dj

}T
. (7)

The relation (7) is obtained by taking the appropriate
pseudo-inverses in solving the matrix equation

DiT
T
ji = Dj . (8)

B. Existence of transformation Tji

To show that such a transformation Tji exists and is cor-
rectly characterized by proposition (7), it suffices to show
that the following two properties hold: (1) DT

i Di is positive
definite. This holds since the graph Gi is assumed to be a
tree, rank Di = n−1, and size DT

i Di = (n−1)×(n−1).
(2) Dj ∈ R(Di); let us provide both a linear algebraic as
well as a graphical justification for this relation. Since both
graphs Gi and Gj are connected, rank DT

i = rank DT
j =

(n − 1), size DT
i = (n − 1) × n, and size DT

j = m × n.
This implies that dim N (DT

i ) = dim N (DT
j ) = 1. In the

meantime, for any connected graph one has 1 ∈ N (DT ).
Thus each column of Dj is an element of the range space of
Di. Figure 5 illustrates this algebraic proof via a graphical
construction. Given any spanning tree Gi on n nodes, the
graph Gj is obtained by completing the subsequent cycles.

Remark 3.2: As a consequence of above result it is
natural to identify a spanning tree with a basis for the set
of information graphs on n nodes.

C. From a connected graph to any other connected graph

Consider now the general transformation Tji satisfying

TjiD
T
i = DT

j ,

where Di and Dj are incidence matrices corresponding
to arbitrary information graphs on n nodes. Note that
the justification for Proposition 3.1 is no longer valid in
this case as the matrix product DT

i Di, although positive
semidefinite, is not necessary positive definite.

Theorem 3.3: Any n − 1 cuts of a connected graph are
linearly independent and span the cut space.

Proof: Let Di be the incidence matrix associated with
Gi. Denote by vi the cut at vertex i, i.e., vk is the k-th row
of Di. As it was pointed out in §III.B,

DT
i 1 = 0 and thus vn = −v1 − v2 − · · · − vn−1.

Pick arbitrary n − 1 cuts of Gi (i.e., rows of Di), say
{v1, . . . , vn−1}. We show that whenever α1v1 + · · · +
αn−1vn−1 = 0, one can conclude that α1 = · · · = αn−1 =
0. Note that the cut vk at vertex k assigns {+1,−1} to
incoming/outgoing edges. Since Gi is connected, for some
k ∈ {1, . . . , n − 1}, there exists an edge between vertex k
and n. Moreover, there exists a cut vk, k ∈ {1, . . . , n− 1},
such that for some l ∈ 1, . . . ,m, |vkl| = 1, where m =
|E(Gi)|. In addition, for all k = 1, . . . , n − 1, vkl = 0.
This is true since the l-th column of Di defines an edge
connecting vertex k and n. Thereby among the indices
appearing in

α1v1 + α2v2 + · · · + αn−1vn−1 = 0,
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there exists vk such that αk = ±αk. This implies that αk =
0. Applying the above procedure recursively results in the
conclusion that α1 = . . . = αn−1 = 0.

Proposition 3.4:

Tji =
{[

D̂T
i (D̂iD̂

T
i )−1

]
D̂j

}T

, (9)

where D̂i and D̂j correspond to any n − 1 linearly inde-
pendent cuts.

Proof: Existence: As shown in previous section
R(Di) = R(Dj) spans the cut space. By Proposition 3.4,
any n−1 cuts associated with Di and Dj also span the cut
space.

Correctness: The transformation Tji that satisfies the
matrix equation TjiD̂

T
i = D̂T

j also satisfies TjiD
T
i = DT

j .
This is due to the structure of the incidence matrix. Define
the n − 1 cuts for each graph as follows:

DT
i = [v1, v2, . . . , vn−1, vn],

DT
j = [u1, u2, . . . , un−1, un].

Given that TjiD̂
T
i = D̂T

j , and from the incidence relation,
vn = −v1 − · · · − vn−1 and un = −u1 − · · · − un−1. Thus

Tjivn = Tji[−v1 − · · · − vn−1] = −u1 − · · · − un−1 = un,

as required.

D. Controller projection

Now consider the situation where the controller is linear
as in Figure 1, i.e.,

u(t) = KiD
T
i x(t),

and Ki has been designed for the information graph Gi.
In order to keep the same control input at all times, even
when the information topology changes to Gj , we can use
the transformations of the previous sections to write

u(t) = Ki Tij DT
j x;

thus Kj := KiTij . Viewing Tij as left transformation on the
controller Ki, we arrive at a equivalent way of representing
our result in terms of a transformation for the controller
reconfiguration. Hence Ki � Kj via the transformation
Tij . Figure 6 illustrates the Tij-transformations in action.
These transformations can be applied to either the relative
information graph incident matrix Dj (from the left-hand
side) or to the controller Ki (from the right-hand side). The
transformation Tij effectively captures the transformation
on the controller spaces making them robust with respect
to variations in the information topology.

E. Robustness

Assume that the linear control law Ki(s) has been
designed for the relative sensing geometry Gi for a linear
system

ẋ(t) = Ax(t) + Bu(t), (10)

y(t) = DT
i x(t). (11)

K  1
K  3

DT

3x
DT

1x

DT

2x

DT

4x
T14

T43

T13

T12 T23

T12 T23

T13

T14
T43

T42

T42

K  4

K  2

Fig. 6. T -transformation in action

u

i

Κi

Μ

∆ji

y

Fig. 7. Controller robustness for uncertain sensing geometries

Denote by Pi(s) the transfer matrix from u to y, assuming
the form Pi(s) := DT

i (sI −A)−1B. Now let Gj denote an
uncertain relative sensing graph having the same number
of edges as Gi. Furthermore, let ∆ji = I − Tji where
TjiD

T
j = DT

i ; Tji is the corresponding T -transformation
between Gi and Gj .

Theorem 3.5: The linear control law Ki(s) robustly sta-
bilizes the system (10) for an uncertain sensing graph Gj

as long as

‖∆ji‖ <
1

‖S(Mi,Ki)‖
where

Mi(s) :=
[

0 Pi(s)
I Pi(s)

]
,

S(M,K) denotes the lower linear fractional transformation
of M(s) and K(s), and the norm for a transfer matrix is
its maximum singular value across all frequencies (i.e., its
H∞ norm).

Proof: This follows from the small gain theorem [5].
See Figure 7.

F. Controller transformation at each node

Recall that the control input to the distributed system
has the form u(t) = Kz(t). Denote each row of the K
matrix by a bracketed superscript. Thus the i-th row of K,
K(i), defines the control input ui(t) = K(i)z(t) for node
i. Figure 8 shows a block diagram, including the controller
reconfiguration capability on each node in the absence of
an external reference signal.

76



I

y
2

y
1

y
1K (1)

K (2)

u1

u2

y
1K (n)un

y
n

u(t) z(t)

x(t)

required varying sensing topology
for each node

x(t)

transformations

DT

1

D

D
T

1

..

.

1

22

nDT

T12

1nT

T

y
1

n

x = z

x = z

x = z

..

.

Σ

Fig. 8. Controller implementation on each node.

G. Controllability and spanning trees

We next consider the special case where each node of
our spatially distributed system is described by a point mass
model. Thus we have ui(t) = fi(t)/mi, where mi is the
mass of each node. Denote by xi the inertial position of
node i and let z(t) = DT x(t). In this case, a reduced
system model describing the dynamic evolution of the
relative state z assumes the form

z̈(t) = DT ẍ(t) = DT u(t). (12)

We note that the system (12) is not controllable unless DT

corresponds to a spanning tree.

H. Minimal realization and controller implementation

When the objective of the feedback system is assumed
to be controlling the relative states {z(t), ż(t)} in (12), a
controller can be designed based on a variety of methods.
However as most control synthesis techniques require that
the underlying system is stabilizable, we note that the
relative state equation should correspond to a spanning tree.

Theorem 3.6: Suppose that Σ is a dynamical system that
describes the time evolution of relative states in a network
of n elements. Then the minimal system associated with Σ
corresponds to a relative state geometry that is defined by
a spanning tree.

IV. SIMULATION RESULTS

Let K1 denote the optimal LQ control gain assuming an
information tree G1 in Figure 9, i.e., u(t) = K1D

T
1 x(t). In

other words, the controller on each node expects as input the
sensing graph given by G1. In this simulation two systems
are propagated. For system 1, the information tree is what
the controller is designed for. For system 2, each node
senses the relative state with respect to its neighbors. Thus
the sensing graph for each node j is Gj for j = 1, . . . , 5;
see Figure 9. The control for system 2 with varying sensing
geometries is labeled as ũ.

, x
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1312
, x
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} , x
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53
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= { , xx

32
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}

31

2

G
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3
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4
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Fig. 9. Sensed graphs G1, . . . , G5 in the simulation example

A. Case 1:

Consider a scenario where the transformation T1j is not
applied for nodes 2, 3, 4, and 5, to make Gj consistent with
the sensing graph G1 for which the controller had been
designed. Figure 10 (a) depicts the control u applied by
each node in this case. Moreover, Figure 10 (b) shows the
time history of the difference ‖ũ(t)− u(t)‖ in the controls
input for the two systems. Note that since the second system
has a varying sensing geometry and the transformation T1j

is not applied to each node, the controls time history for
the two systems are different. It is interesting to note that
even though the required T1j is not applied, the control
ũ(t) is nevertheless stabilizing. The control performance
can also be compared in the inertial motion of each node.
Figure 10 (a) shows that both systems achieve the desired
relative states. However, since the applied control forces
are different, the inertial states of the two systems have
a difference trajectory; see Figure 11. Figure 11 depicts
the motion of the nodes in the xy-plane. In this figure,
the asterisk represents the initial condition and the circle
represents the final state.

B. Case 2:

For case 2, the control input for both systems is the
same and the appropriate T1j transformations are applied for
nodes 2, 3, 4 and 5. Hence, the control for each node, given
different information graphs, is equivalent to the control for
the system with G1 as its information graph. Figure 13 (b)
shows the error time history ‖ũ(t) − u(t)‖ where ũ(t) =
K1T1jD

T
j x(t) and u(t) = K1D

T
1 x(t). Similarly, Figure 14

shows the inertial positions of all five nodes. As expected,
the trajectories of the nodes are the same for the case when
G1(t) �= Gj(t), since the appropriate transformation are
correctly applied. These transformations make the varying
sensing geometry consistent with the geometry for which
the controller was designed for. Equivalently, these transfor-
mations effectively reconfigure the corresponding controller,
making it consistent with the updated information geometry.

REFERENCES

[1] B. Bamieh, F. Paganini, and M. Dahleh. Distributed control of
spatially-invariant systems, IEEE Transactions on Automatic Control,
47 (7): 1091-1107, July 2002.

77



0 1 2 3 4 5

−6

−4

−2

0

2

4

6

8

u
x

u y

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

Time

u er
ro

r

Fig. 10. (a) Control input u(t) on each node (b) ‖ũ(t) − u(t)‖
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