
Abstract
In this paper, the discussion of root locus is taken from 

the point of view of field theory by treating root locus as 
some kind of potential flows. This approach throws a new 
light on root locus and suggests a physical modeling of 
root locus in terms of the streamlines in flow field and 
electric field. Based on potential theory we derive the 
governing equations of root locus for time-varying systems, 
in terms of which the force interaction existing within root 
loci can be explained, and root sensitivity and root 
robustness can be defined. Furthermore, the superposition 
of elementary potential flows makes it possible to 
reconstruct open-loop transfer function from the desired 
root locus - the so-called inverse root-locus problem. 
Key words: Root locus, Fluid Dynamics, Field Theory 

I. Introduction 
Though root locus method is so popular and familiar 

to control engineers, we still do not know theoretically 
why some rules of experience for constructing root locus 
should be. For example, a rule of thumb in plotting root 
locus says that adding zeros to the open-loop transfer 
function G s  has the effect of moving the root loci 
toward the left-half of the s-plane and adding a pole to 
G s  in the left half of the s-plane has the effect of 
pushing the original root loci toward the right-half plane. 
Indeed there still lacks a theoretical verification of the 
above phenomena using the existing knowledge about root 
locus. 

For a control engineer who has some experiences 
in fluid visualization, he may find an interesting link 
between the flow pattern of fluids and the trajectory of root 
locus. In fluid laboratory we can see the phenomena that 
adding a source to a flow field will push the streamlines 
away from the source, while adding a sink will pull the 
streamlines toward the sink. The effect of adding a pole in 
root locus is very similar to the effect of adding a source in 
flow field, and the effect of a zero is similar to a sink. 
These analogies motivate the present study. The main 
concept we want to introduce here is that the movement of 
root locus is a phenomenon of potential flow. Like other 
fields of potential flow, such as electric field, magnetic 
field, fluid field, gravitational field, and temperature field, 
etc., the investigation of root locus can be generalized to 
field theory [2].  

II.Generalized Root Locus (GRL) 
Consider a general transfer function 
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where, the parameters i , ia , ib , i , and i  are all assumed 
to be complex numbers with Re i , Re i R . This 
class of transfer function may contain irrational terms such 
as 1s , j

s j , and 1s s
e , etc., where 1j . The 

systems defined by Eq.(1) covers both lumped systems 
governed by ordinary differential equations and some 
distributed systems governed by partial differential 
equations. 

Conventional root loci (CRL) of G(s) are defined by 
the following set 

1 ( ) 0, ( )CRL s kG s k R R         (2) 

The major advantage of using root-locus method is 
that one can examine the effect of changing open-loop gain 
or plant parameters to aid in achieving best overall control 
design. Instead of merely changing the open-loop gain k ,
here we will consider a more practical and general case of 
changing the dynamics compensator ( )K s . In this case the 
roots of 1 0K s G s  for varying dynamic compensator 
K s  are to be determined. In terms of Eq.(2) we can see 
that if the parameter k  is replaced by the compensator 

( )K s , the magnitude and the phase of parameter k are 
varying simultaneously. With this consideration the 
conventional definition of root locus is modified as 
following. 

( ) 1 ( ) 0, ,r r
jkGRL k s kG s k k e k R     (3) 

In this definition k  is no longer restricted to be 
positive real or negative real; instead, k  is released to be 
any complex number.  

To establish this analogue, the complex potential 
function is introduced     

( ) ln ( )s G s             (4) 
and define 

( ) ( , ) ( , )j j        (5) 
Let 0C  be the complex plane excluding the 

singularities contained in s . Since s  is analytical 
within 0C ,  and must be conjugate harmonic 
functions in 0C , satisfying the Laplace equations. 
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            2 2 0                (6) 
The relations imposed by Cauchy-Riemann condition 

,           (7) 

allow the phase function and magnitude function to be 
derived from each other. 

Laplace equations govern many physical phenomena, 
such as steady heat conduction, electrostatics, 
magnetostatics, gravitational field, and flow of an ideal 
fluid. For the present case, it can be seen that behavior of 
root locus is also characterized by Laplace equation. 

III. Phaser and Phase flux 
(A) “Phaser” : a moving particle 

In this section we attempt to give a physical 
interpretation of GRL. Root locus GRL k  can be 
considered as a path line traced out by a moving medium 
which is called “phaser” here. Phaser conveys the phase 
k  of k  from one point to another along root locus
GRL k . One k  will determine one path line 
GRL k  as phase k  is varied, we then form a flow 
pattern consisting of many such path lines along which 
phasers carry different values of phase.  
(B) Phase flux 

Next we strive to introduce the concept of flux of 
phaser. Let 0 0( , )A  be a fixed point in the 
plane which has unit thickness and ( , )P  an arbitrary 
point in the same plane. (See Fig.1) Now, two arbitrary 
paths ABP and ACP are drawn between the points P and A. 
Assume that there is no singularity within the region 
bounded by these curves, i.e., there is no phase created or 
destroyed within the region, then the rate of phase flow 
entering the region across the curve ABP is equal to the 
flow rate across the curve ACP. The term flux for the rate 
of phase flow will be used hereafter. The flux across the 
curve ABP is equal to the flux across any curve joining A 
to P. Since the point A is fixed, the flux is a function of the 
position of P. If the root locus passing through P is 
GRL P , then the phase flux across AP is denoted by 

P . It must be borne in mind that the existence of phase 
function is a consequence only of the conservation of 
phase, so a phase function is valid for nonlinear and 
time-varying systems. 

Now consider two points 1P  and 2P  and two curves 
drawn from them to the fixed point A. Let GRL 1 ,
GRL 2  represent the root loci passing through points 

1
P  and 

2
P , respectively (see Fig.2). Then, the flux across 

the curve 
2

AP  is equal to the flux across the curve 
1

AP
plus that across the curve

1 2
PP . Hence, the flux across the 

curve
1 2
PP  is

1 2
. It can be easily seen that if the 

reference point A is replaced by another point
1
A , the value 

of the stream function 
1 2

 changes by a constant, 
namely the flux across 

1 2
A A . Since definition the stream 

function is constant along a root locus, when the point 1P

and 2P  are points of the same root locus (not necessarily 
coincident), the flux across 1 2P P  is 01 2 . It 

turns out that there is no phase flow across a root locus. 
The phase flow rate in any direction (i.e., velocity of 

phaser) can be derived from the phase function. In 
Cartesian coordinates the phaser velocity components q
and q  in the  and -directions are found from the 
following consideration. Let s  be an infinitesimal 
length of the curve AP whose components in the  and 

-directions are  and , respectively (Fig.3). The 
flux across the curve AP is  

AP AP
q nds q d q d         (8) 

where q q q  and n  is the outward unit vector 
perpendicular to ds . The flux across the arc s  is  

d q d q d             (9) 
On the other hand, the phase function ,  in 
general can be expressed by 

d d d            (10)   

Hence, the phaser velocity components q , q  parallel 
to the axes are given by 

,q q            (11) 

Using Cauchy-Riemann condition, flux rate in Eq.(11) can 
be expressed in terms of magnitude function  as  

,   ,q q            (12) 

or in a vector form 
q                  (13) 

Along lines , constant, 0d  and the 
combination of Eq.(9) and Eq.(11) gives 

tancons t

qd

d q
           (14a) 

This result shows that the velocity of phaser q is 
everywhere tangent to curves in the  plane along 
which , constant. This result is consistent with the 
previous assumption that , constant (GRL) is the 
trajectory of a phaser. On the other hand, along 

, constant

0d d d

Therefore 

tancons t

qd

d q
       (14b) 

Since these slopes in Eq.(14a) and Eq.(14b) are negative 
reciprocals, the lines are perpendicular to one another. 
Thus, the constant magnitude lines and GRL form an 
orthogonal set of lines which completely describe the 
phase flow in a two dimensional field. 

IV. Superposition of Elementary Root Loci 
The Laplace equation or Poissin equation, governing 

phase function for two-dimensional potential flows is in 
such a simple form that some elementary solutions to  
these equations can easily be found. Each of these 
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solutions represents a physically possible elementary GRL.
The method of superposition is also used in solving 
problems in electromagnetism, heat conduction and fluid 
dynamics whose governing equations are in the form of 
either the Laplace or the Poisson equation. Some of the 
GRL represented by the linear combination of solutions 
may simulate the root loci originated from linear or 
nonlinear systems such as in Eq.(1). There are four 
elementary GRL that are commonly encountered in 
control problem : The time delay, the pole (or sink), the 
dipole, and the vortex. Although the CRL for pole, sink 
and time delay is well known, the concept of GRL
provides us new physical interpretation for these loci. 
1  Time delay 
    The transfer function of a time delay unit is  

1s
TG s e                 (15) 

where 1
jTe . According to Eq.(5), the phase 

function and the magnitude function now become 
, cos sin

, cos sin

T

T
     (16) 

The GRL  and the constant potential lines are plotted 
in Fig.4. The phaser velocity is calculated via Eq.(11) as 

cos , sinq T q T          (17) 
This shows that the root loci are all parallel straight lines 
making an angle  with the  axis. 
2  Poles and zeros 

For a pole at 
p p p
s j with multiplicity 

0
m

(positive and not limited to integer), the corresponding 
complex potential function is 

0 ln ps m s s j           (18) 
Hence, phase function and potential function are obtained, 
respectively, as  

1
0 0, tan

p

p

m m          (19a) 

1 22 2
0 0, ln lnp pm m r  (19b) 

We can verify by direction substitution that both  and 
 satisfy Laplace equation and Poisson equation. The 

curves c  are sketched in Fig.5. From the observation 
of this figure, a pole at point ,p p  can be conceived 
of as a point from which phaser emanates in equal amounts 
along radial paths. Hence the GRL in this case be straight 
radial lines, i.e., 

0, r rq q q r            (20) 
where rq r  can be found from Eq.(13) using polar 
coordinate expression. 

01
r

m
q

r r
             (21) 

3  Dipole 
Consider a pole-zero pair (see Fig.6) which is 

assumed to be part of the open-loop transfer function 
Eq.(1). We are interested in the case where other poles and 
zeros of G s  are far removed from the pole-zero pair, 
in which case the distance 0s  of Fig.6 is much smaller 
than the distance between the pole-zero pair and any other 
pole or zero of G s . Such an isolated pole-zero pair is 
called a dipole. When dipoles occur on or very near the 
stability margin, the hidden modes may cause stability 
problems if not properly anticipated [4]. It is then worth 
taking a close look on this kind of locus. An special GRL
results when the distance 

0
s  between pole and zero of 

equal multiplicity 0m  (not limited to integer) approaches 
zero while their multiplicity approached infinity in such a 
way that their product 0 0m s  remains constant. In 
the limiting the resulting GRL is called a dipole of 
strength .

Let 0 0
js s e ,  is called the direction angle of 

the dipole. The superposition of the complex potential 
functions of a pole at origin and a zero at 0s  gives 

0
0

0 0
lim ln

j

s

s e
s m j

s s s
    (22) 

In polar coordinate we have 

, sin , cos,r r
r r

  (23) 

The equation above represent a family of circles which 
pass through origin with centers on the axis for 

c  and with centers on axis for c . The 
GRL for a dipole with 0  is shown in Fig.7. From 
Eq.(22) the transfer function corresponding to a dipole has 
the form, as appeared in Eq.(1), 

2 s
G s e             (24) 

where 2
je .Obviously, this transfer function is 

originated from a nonlinear element. 
4  Vortex 

This type of GRL stems from poles oz zeros with 
imaginary power in Eq.(1), i.e., from the existence of 
Im i  and Im i . The complex potential function for 
vortex can be written as 

0ln
2

s j s s j         (25) 

where  is a real number and 0 0 0s j  is the 
center of the vortex. Therefore,  and  for vortex 
becomes 

1 0

0

, ln ,   , tan
2 2 2

r (26) 

It can be seen that GRL are circles, and equi-magnitude 
lines are radii (Fig.8). Note if we interchange  and ,
we obtain the GRL for pole. The phaser velocities are 

1 1
0,   

2
rq q

r r r r r
   (27) 

It turns out that phasers in this type of GRL moves in 
circular paths with the velocities being inversely 
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proportional to the radii of the circles.  
The GRL for any pole-zero configurations with delay 

or dipole can be obtained by linear combinations of this 
four elementary GRL. Hence, Eq.(3) can be rewritten in 
an alternate form for GRL k  as 

1 2 3 4, ,delay pole dipole vortex il l l l k l R   (28) 
Fig.9 shows part of the GRL for the delay system with a 
dipole at origin. The CRL is composed of the  axis and 
the big circle centering at origin. It is seen that the loci of 
dipole are isolated from those of time delay by this big 
circle and thus form a phase flow pattern very similar to 
the fluid flow pattern caused by a uniform flow via a 
cylinder with infinite length [3, 6].  

IV. Inverse Root-Locus problem 
Let G s C s P s , where P s  denotes the plant 

model and C s  denotes the compensator. The 
root-locus problem is that given the compensator C s ,
plot the roots of 1 0kG s  as k  is varied, while the 
inverse root-locus problem is that given one segment of 
the root loci of 1 0kG s , find the compensator 
C s . Quite often, in designing regions or to follow some 
prescribed paths as k  is varied. Thus the inverse 
root-locus problem is practically important. This problem 
can be solved by using the property of superposition of 
root loci, introduced in the last section where it has been 
shown that any shape of loci can be synthesized by the 
four elementary root loci.  

In general, if root loci with closed boundary are to be 
synthesized, dipole (or pole-zero pair with equal 
multiplicity and finite distance apart) would be the best 
elementary loci to meet this purpose, while if loci with 
open boundary are to be synthesized, time delay and 
combination of isolated poles or zeros with different 
multiplicities would be appropriate. The former will be 
considered here. We use a continuous distribution of 
dipoles, of strength  per unit length along the  axis, 
within the range between a  and b , to synthesize 
the given loci ( , ) 0f  by properly adjusting the 
distribution . As shown in Fig.10, at a point ,P

the dipoles contained within the small interval d ,
located at a distance  from the origin, contribute d
to the phase function at that point. Use Eq.(23) with 

0 , we find that 

22

d
d              (29) 

Then, the ( )CRL GRL , obtained from the superposition 
of the dipoles distributed from a  to b , becomes 

,
22

b

a

d      (30) 

Where  and  is related by the relation ( , ) 0f .
Dipole distribution  is determined by the solving 
above integral equation, which is known as the Fredholm 
equation of the first kind. One way to obtain the analytical 
expression for  is to explore successive 
approximations, but for a realizable compensator design, a 

numerical approach using discretized  would be 
more desirable. We divide the dipole region into n
segments of equal width , as shown in Fig.11. We 
designate by j , the total dipole strength within the j
segment, whose center is at a distance j  from the origin; 
j  is taken as constant, equal to the average of the exact 

distribution within the segment. j  will of course vary 
from one segment to another. The dipoles within the j
segment will contribute phase j  to the phase function 
at a given point P in the field. This contribution may be 
written as  

2 2

j p
j

p j p

            (31) 

Hence, the approximate formula corresponding to the 
exact form of Eq.(15) is  

2 2
1

n
j

p p j pj

         (32) 

We now apply this formula to n points on the desired CRL
to obtain a set of n simultaneous linear algebraic equations, 
the solution of which yields the dipole strength 

1 2
T

X n , i.e., 
AX B                (33) 

where ijA a  is a n n  matrix with its elements 
aij  given by  

2 2ij

j j i

a

and iB b  is a n-dimensional vector with its element ib
given by i ib y . As n approaches infinity the numerical 
result for the dipole strength distribution j  approaches 
the exact solution. By utilizing a program for solving 
simultaneous linear equations, the solution for a 
reasonably large number of segments can readily be found 
on a digital computer. Once 

j
 is known, the phase 

function at any point can be computed by 

,
2 21

n j

j
j

          (34) 

Finally, the open-loop transfer function for this phase 
function is obtained as  

1

n jsn j j
G s C s P s

sj j

      (35) 

where 
j
 is the distance between the pole and zero of 

the j th dipole, which, in the limiting, must be an 
infinitesimal quantity; however, to obtain a realizable 
compensator, it is approximated by a finitely small value 
satisfying j j j jn .

V. Equations of Motion for Phasers 
(A) Phaser Fluid 

In our experience of plotting root loci, the phenomena 
has been learned that adding zeros in the left-half s-plane 
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to open-loop transfer function has the effect of moving the 
root loci toward the left half of the s-plane and that adding 
poles in the left-plane s-plane has the effect of pushing the 
original loci toward the right-half plane. These phenomena 
can be well explained by the concept of phase flow. From 
the observation of GRL for poles we have known that a 
pole can be conceived of as a point from which phasers 
emanate along all radial directions. When added to the 
original loci, these phasers emanating from the pole create 
a pressure on the loci and cause it to move away from the 
pole; while from the observation of GRL for zeros, we 
have known that a zero is a point into which phasers flows 
radially from all directions. Thus, the phasers on the 
original loci in the neighborhood of the zero will be sucked 
into the zero and cause the loci to move toward the zero. In 
the following paragraph, we will give a quantitative 
description of above phenomena. 
 (B) The Continuity Equations 

Consider the two-dimensional phase flow in the 
complex plane, and cut out a control volume of 
infinitesimal dimensions (see Fig.12). Consider the total 
phase rate across the control surface, and the rate of 
change of phase storage within, for a unit depth normal to 
the complex plane. In terms of density  and phase flux 
rate (velocity of phaser) q of phaser fluid, the mass flux 
rate Q can be defined accordingly as  

Q Q Q q q q        (36) 
Application of the principle of conservation of phase, 
yields 

0
Q Q

t
           (37) 

or, in vector form 

0              (38) 

This continuity equation must be satisfied for any control 
systems including nonlinear and time-varying systems. If 
we assume that phaser fluid is “incompressible”, i.e., 

=constant, we have 
               (39) 

 (C) The Momentum Equations 
Cut out an infinitesimal stationary control volume of 

unit depth, and consider the phase pressure p acting on this 
control volume in the  direction and the 
momentum fluxes across the control surface (see Fig.13). 
Applying the momentum theorem [1], in the  direction, 
we have 

Outflow of momentum 

Q q Q q Q q Q q

Inflow of momentum x xQ q Q q

Increase of momentum storage /a Q t

External force
p

p p

Combining together and simplifying, we have 

x x

q p
Q q Q q

t
        (40) 

Expanding the left-hand terms and using Eq.(36) and 
Eq.(37), yields 

1q q p p
q q

t
        (41a) 

Similarly, applying the momentum theorem in the 
direction, we have 

1q q p p
q q

t
        (41b) 

Eqs.(41) can be put into a compact vector form as 

0
q p

q q
t

             (42) 

This can be simplified further by noting from vector 
analysis that 

21

2
q q q q q           (43) 

Substituting Eq.(43) into Eq.(42), we obtain for 
incompressible phaser fluid 

2

2
q p q

q q
t

       (44) 

VI. Force Action of Root Loci 
Let 1 1( )L GRL  is a segment of the root locus with 

phase 1 . We now want to find the force exerted by the 
remaining loci of GRL on 1L . The phase pressure force 
acting on the surface element ds (which has a unit 
thickness perpendicular to the complex plane) is pds and is 
perpendicular to ds. The two components of the phase 
pressure force dF  and dF  in the positive and

directions are 
sin ,   cosdF p ds pd dF p ds pd

Where  is the angle that ds makes with the positive 
axis. These two differential force components may be 

written in complex form as 
dF jdF p d jd jpds       (45) 

in which ds d jd  is the conjugate of ds. For an 
irrotational time-invariant system, the pressure p on the 
surface element ds can be determined as 

2 / 2p H q               (46) 
where the constant H may be evaluated from the known 
conditions at a reference root on 1L  and q is the 
magnitude of phase flux rate at ds. From Eq.(5) and 
Eq.(12), we can express 2q  in terms of complex potential 
function s  as 

2 ( ) ( )
q q jq q jq

d s d s
ds ds

    (47) 

Substituting Eq.(47) into Eq.(46), yields 
1

2

d s d s
p H

ds ds
         (48) 

so that Eq.(45) becomes 
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Fig.8.GRL for vortex 
are circles 

Fig.7. GRL for dipole is a 
family of circles passing 
through origin.

1

2

d s d s
dF jdF jHds j ds

ds ds
 (49) 

Noting that along
1
L , 0d  and ddd ,

therefore, Eq.(49) can also be written as 
2

1

2

d s
dF jdF jHds j ds

ds
     (50) 

which, upon integrating along 1L , becomes 
2

1

2 L

d s
F jF jH s j ds

ds
     (51) 

where s  is the difference between the starting point and 
the end point of 1L . When 1L  is a closed path, Eq.(51) 
reduces to the Blasius formula [3, 5]. 

1

2

2

L
F jF j ds

d s

ds
        (52) 

which was originally used as a method for determining the 
force exerted by the fluid on a cylinder of any 
cross-section shape in a steady two-dimensional potential 
flow. Given the transfer function ( )G s  of an irrotational 
system, we can evaluate the complex potential function 

s  from Eq.(4) and after the substitution of s  into 
Eq.(51) or Eq.(52), we obtain the force action upon any 
portion of root loci, immediately. 

VIII. Conclusions 
This paper presents a potential flow formulation of 

root locus for irrotational time-varying systems and gives a 
vivid description of root locus in terms of the phenomena 
of potential flows existing in the real world. Dynamic 
model and governing equations for root locus are 
developed and used in the derivation of force action 
among root loci and used in relating root sensitivity to root 
robustness. The introduced concept of generalized root 
locus broadens the view of root locus and gives a clue to 
the inverse root-locus problem. It is shown that the 
superposition of elementary generalized root loci can 
synthesize root locus in control system design and to 
extend the above results to rotational systems whose 
transfer functions do not exist. 
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Fig.3  and  compo- 
nents of phase flux rate. 

Fig.4 Time-delay GRL are 
parallel straight lines. 

   
Fig.5 GRL for poles are 
radial lines. 

Fig.6 A pole-zero pair. 

   

Fig.9. GRL for a delay system with a dipole at origin 

   
Fig.10 Continuous dipole 
distribution. 

Fig.11 Discrete dipole 
distribution. 

Fig.12 Conservation of 
phase. 

Fig.13 Conservation of 
phase momentum. 

Fig.1. Phase across ABP 
equals phase across 
ACP

Fig.2. Phase across 1 2P P

is 1 2
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