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Abstract— The problem of making the output insensitive to
an exogenous input signal known with preview is tackled in the
geometric approach context. Necessary and sufficient construc-
tive conditions for decoupling with minimal preview are proved
by means of simple geometric arguments. The structural and
the stabilizability conditions are considered separately. The
use of self-bounded controlled invariant subspaces enables the
minimal order solution to be straightforwardly derived. A
steering along zeros technique is devised to solve decoupling
in the presence of unstable unassignable dynamics of the
minimal self-bounded controlled invariant subspace satisfying
the structural constraint. The procedure is illustrated by an
example often considered in the literature.

I. INTRODUCTION

In control problems, references and disturbances are usu-
ally assumed to be unknown. Hence, a feedback structure
of the control system guarantees the best performance.
However, in many cases, signals to be tracked or rejected
may be accessible for measurement or known with finite,
or even infinite, preview. For instance, the route followed
by an aircraft is normally planned in advance, the profile
tracked by a machine-tool is typically preprogrammed,
a constant-speed wind blowing on a plane is commonly
forecast, or at least measured. In all these cases, better
performance is achieved by exploiting information on the
future of reference signals and/or disturbances by means of
feedforward actions.

As to the theoretical background of preview control,
many articles dealing with the problem by means of a
wide variety of techniques exist, see e.g. [1], [2], [3], [4]
and references therein. In this paper, we solve decoupling
with preview in linear multivariable systems by using pure
geometric arguments. According to a procedure well-settled
in the geometric approach context, the structural and the sta-
bilizability conditions for decoupling are considered sepa-
rately. On the assumption that the structural condition holds,
two different situations must be considered depending on
the stabilizability properties of the system: i) decoupling can
be achieved exactly, provided that a ‘short’ preview of the
exogenous signal is available, minimal preview; ii) decou-
pling can be achieved exactly, provided that a ‘theoretically
infinite’ preview of the exogenous signal is given, infinite
preview. To be more specific, while the structural condition
for decoupling with preview (H⊆V∗ +S∗ [5], [6]) is the
natural extension of the structural condition for measurable
signal decoupling (H⊆V∗ +B [7]), which extends, in turn,
that for unaccessible signal decoupling (H⊆V∗ [8], [9]), as
far as the stabilizability condition is concerned, we refer to

G. Marro and E. Zattoni are with the Department of Electronics,
Computer Science, and Systems, University of Bologna, I 40136 Bologna,
Italy {gmarro, ezattoni}@deis.unibo.it

that based on the use of the minimal self-bounded controlled
invariant subspace satisfying the structural constraint, i.e.
Vm =V∗ ∩minS(A, C,B+H) internally stabilizable, and
we show that this is valid not only in the case of unaccessi-
ble or measurable exogenous signals [10], [11], [12], [13],
[14], but also in the case where the signals to be localized
are known in advance. Hence, if both the structural and the
stabilizability conditions hold, then, exact decoupling can
be achieved by means of the sole minimal preview, whose
length is connected to the number of steps of the algorithm
for S∗, the minimal (A, C)-conditioned invariant containing
B. Otherwise, if the structural condition holds but the
stabilizability condition does not, it is herein shown that it is
nonetheless possible to achieve decoupling of the exogenous
signals with internal stability, provided that these are known
in advance with infinite preview. Indeed, infinite preview is
not strictly necessary: a preview sufficiently longer than the
longest time-constant associated to the internal unassignable
eigenvalues of Vm enables the problem to be solved with
practically acceptable accuracy. In all cases where either
minimal or infinite preview of the signals to be decoupled
(or, by extension, to be tracked) is available, we face a
noncausal problem.

In the above-described context, it is worth pointing out
the substantial technical differences between our approach
and others dealing with signal decoupling. The first feature
of our work is of a theoretical nature and concerns the use
of Vm for checking stabilizability. In fact, in [6], [8], [9],
the controlled invariant considered for stability is V∗

g , the
maximal internally stabilizable (A,B)-controlled invariant
contained in C. According to [10], [11], here we consider
Vm, the minimal internally stabilizable (A,B)-controlled
invariant self-bounded with respect to C (hence, satisfying
either H⊆Vm, or H⊆Vm +B, or H⊆Vm +S∗). Since
an internally stabilizable Vm is contained in V∗

g , assuming
Vm in place of V∗

g has the advantage of yielding a control
system with the minimum number of internal unassignable
dynamics. The second relevant feature of our work is
connected with implementation: the control laws steering
the states of the controlled system along trajectories defined
by the unstable internal unassignable eigenvalues of Vm are
produced by precompensators including non-conventional
control devices like finite impulse response (FIR) systems.

II. DECOUPLING WITH MINIMAL PREVIEW

The discrete time-invariant linear system

x(k + 1) = Ax(k) + B u(k) + H h(k), (1)
y(k) = C x(k), (2)
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is considered, with state x∈R
n, control input u∈R

p,
controlled output y ∈R

q and exogenous input h∈R
s (ei-

ther unaccessible, or measurable, or known with preview).
Matrices B, H , and C are assumed to be full rank.

With respect to system (1),(2), the symbol B stands for
im B, H for im H , C for ker C, V∗ or maxV(A,B, C) for
the maximal (A,B)-controlled invariant contained in C, S∗

or minS(A, C,B) for the minimal (A, C)-conditioned in-
variant containing B, and RV∗ for the constrained reachabil-
ity subspace on V∗, i.e. RV∗ = minJ (A+ BF,V∗ ∩ B),
where F is such that (A+ BF )V∗ ⊆V∗. Recall that
RV∗ =V∗ ∩S∗. The triple (A,B,C) is left-invertible
if and only if B−1V∗ = {0}, right-invertible if and
only if CS∗ = R

q , both right- and left-invertible if and
only if S∗ ⊕V∗ = R

n. The invariant zeros of (A,B,C)
are the internal unassignable eigenvalues of V∗, i.e.
Z =σ((A+ BF )|V∗/RV∗ ), where V∗/RV∗ is the quotient
space of V∗ with respect to RV∗ . If (A,B,C) is right-
invertible, its relative degree is the least integer ρ such that
C Sρ = R

q, where Si, i= 1, 2, . . . , ρM , is given by the al-
gorithm S1 =B, Si = A (Si−1 ∩C)+B, with i= 2, . . . , ρM

and ρM such that SρM+1 =SρM
. If (A,B,C) is both right-

and left-invertible, its relative degree is the number of steps
for evaluating S∗, i.e. ρ= ρM and Sρ =S∗.

Theorem 1 (Unaccessible Signal Decoupling): If the in-
put to be decoupled h(k) in system (1),(2) is unaccessible,
a state-feedback control law u(k)= F x(k), decoupling the
signal h(k) and stabilizing the system, exists if and only if:
i) H⊆V∗; ii) Vm =V∗ ∩ min S(A, C,B+H) is internally
stabilizable.

Proof: See [10], [11], [12], [13].
Although the cases of h(·) measurable and previewed

have been extensively studied from the structural point of
view, a complete theory of the problem with stability is not
yet available. In fact, while it is well-known that condition
i) in Theorem 1 modifies into H⊆V∗ +B in measurable
signal decoupling [7] and into H⊆V∗ +S∗ in previewed
signal decoupling [5], [6], it is shown herein that the same
stabilizability condition holds not only for unaccessible and
measurable signal decoupling [12], [13], but also if the
signal is previewed.

The block diagram for measurable and previewed sig-
nal decoupling is shown in Fig. 1. Σ stands for the sys-
tem (1),(2), Σc for the feedforward compensator, and the
block ‘kp-delay’ for a cascade of kp unit delays inserted on
the input h signal flow to model its preview of kp steps.

hp(k) =
h(k + kp)

kp-delay
h(k)
u(k) Σ

Σc

y(k)

Fig. 1. Block diagram for previewed signal decoupling.

If h(k) is measurable, kp is equal to zero and h(k) can
be directly used as the input of the precompensator, which
is a dynamic unit reproducing the eigenstructure of the
stable/stabilized resolvent [14]. If h(k) is previewed, kp is
equal to the number of preview samples and h(k + kp) is
processed by a precompensator which, in the most general
case, consists of a dynamic unit reproducing the stable
dynamics of the resolvent and an FIR system reproducing
both the unstable dynamics and the minimal-preview dead-
beat. Details on the design of the precompensator in this
general case will be given in Section III. Instead, in the
remainder of this section we will consider the case where
decoupling can be achieved by means of the sole minimal
preview.

Problem 1 (Signal Decoupling with Minimal Preview):
Refer to Fig. 1. Let Σ be ruled by (1),(2). Let A
be stable. Let x(0)= 0. Let h(k) be known with a
preview of kp steps, with ρM ≤ kp ≤∞. Design a stable
feedforward compensator Σc ≡ (Ac, Bc, Cc, Dc), having
hp(k)= h(k + kp) as input and u(k) as output, such that
y(k) is identically zero.

Lemma 1: For any Q⊆R
n,

min S(A, C,B + Q) = min S(A, C,S∗ + Q).
Proof: By construction, the subspaces generated by

the standard algorithms for the minimal (A, C)-conditioned
invariants respectively containing B+Q and B satisfy the
inclusions:

S ′
1 = B + Q ⊇ S1 = B

and

S ′
i = A(S ′

i−1 ∩ C) + B + Q ⊇ Si = A(Si−1 ∩ C) + B,

for i= 2, 3, . . . , ρM , where ρM is the number of steps
for evaluating S∗. These algorithms do not necessarily
converge within the same number of steps, but the last
inclusion implies min S(A, C,B+Q)⊇S∗. Hence, it
implies min S(A, C,B+Q)⊇S∗ +B+Q⊇S∗ +Q.
The latter inclusion means that min S(A, C,B+Q)
is an (A, C)-conditioned invariant containing S∗ +Q,
therefore min S(A, C,B+Q)⊇ min S(A, C,S∗ +Q).
On the other hand, B+Q⊆S∗ +Q implies
min S(A, C,B+Q)⊆ min S(A, C,S∗ +Q), which
completes the proof.

Theorem 2 (Signal Decoupling with Minimal Preview):
Problem 1 is solvable if and only if: i) H⊆V∗ +S∗;
ii) Vm =V∗ ∩ min S(A, C,B+H) is internally stabilizable.

Proof: Since condition i) is well settled in the literature,
this proof will focus on condition ii).

If. First note that, owing to condition i), subspaces
HS∗ ⊆S∗ and HV∗ ⊆V∗ exist such that H=HS∗ +HV∗ .
By superposition, assuming h(k)= ei δ(k− ρM ), with
k = 0, 1, . . . and ei (i= 0, 1, . . . , s) denoting the generic
i-th vector of the main basis of R

s, does not cause any loss
of generality. The input h(k) is assumed to be previewed of
ρM time instants. Let τ be defined as τ =H ei δ(k− ρM )
with k = ρM . Then, τ can be expressed as τ = τS∗ + τV∗
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with τS∗ ∈HS∗ and τV∗ ∈HV∗ . The decomposition of τ as
τS∗ and τV∗ is not unique if HS∗ ∩HV∗ 	= {0}, which may
occur if the system is not left-invertible, but the arguments
herein presented hold for any decomposition considered. By
definition of S∗, any state belonging to HS∗ can be reached
from the origin in ρM steps at most, along a trajectory
belonging to C, therefore invisible at the output, until the
last step but one. Hence, the component τS∗ can be nulled
by applying the control input sequence driving the state
from the origin to its opposite, −τS∗ . On the other hand,
the component τV∗ can be localized on V∗, since both the
conditions of Theorem 1 are satisfied. In fact, HV∗ ⊆V∗ by
construction, and V∗ ∩ min S(A, C,B +HV∗) is internally
stabilizable since, by Lemma 1,

V∗ ∩ min S(A, C,B + HV∗)
= V∗ ∩ min S(A, C,S∗ + HV∗)
= V∗ ∩ min S(A, C,S∗ + H)
= V∗ ∩ min S(A, C,B + H)
= Vm,

and Vm is internally stabilizable by assumption.
Only if. If H 	⊆V∗ +S∗, then the effect of the input

h(k) cannot be made invisible at the output because of the
maximality of the respective subspaces V∗ and S∗. In fact,
V∗ is the maximal set of initial states in C corresponding to
trajectories indefinitely controllable on C, while S∗ is the
maximal set of states that can be reached from the origin in
a finite number of steps with all the intermediate states in C
except the last. On the other hand, if the structural condition
holds, but Vm is not internally stabilizable, since Vm is the
minimal (A,B+H)-controlled invariant self-bounded with
respect to C, no internally stabilizable (A,B)-controlled
invariant V exists satisfying both V ⊆C and H⊆V +S∗.

Remark 1: The assumption that A is stable is not re-
strictive with respect to the assumptions of stabilizability
of (A,B) and detectability of (A,C) usually considered. In
fact, on these hypotheses, a stable system can be obtained
by dynamic output feedback according to the scheme shown
in Fig. 2. It can be shown that in the extended state space of
the stabilized system, the internal unassignable eigenvalues
of the minimal self-bounded controlled invariant satisfying
the structural condition are the same as those in the state
space of the original system. Hence, the minimal order of

++

v1

v2

u

ΣF

Σ

Σ̂

y

uF

h

Fig. 2. Block diagram for prestabilization.

the dynamic precompensator is preserved [15].
Remark 2: The assumption of zero initial state causes no

loss of generality due to linearity, hence to superposition.
Remarks 3–6 below focus on consequences of Theorem 2.

Remark 3: If H= R
n, then Problem 1 is solvable if and

only if (A,B,C) is right-invertible.
Remark 4: If conditions i) and ii) are satisfied with

H⊆V∗ +B, Problem 1 reduces to measurable signal de-
coupling. Hence, the algorithmic setting considered in Sec-
tion III can also be used for continuous-time systems with
no need for differentiators.

Remark 5: Since the internal unassignable eigenvalues of
Vm are part of the invariant zeros of (A,B,C), condition ii)
is satisfied if (A,B,C) is minimum-phase.

Remark 6: If condition ii) is not satisfied, infinite pre-
view is required to solve Problem 1 and the compensator
should include an FIR system with an infinitely large
window. Although infinite preview may be available, the
FIR system window must be finite. Hence, the solution is
approximate, due to truncation error.

III. DECOUPLING WITH INFINITE PREVIEW:
AN ALGORITHMIC SETTING

In this section, an algorithmic solution to a relaxed
version of Problem 1 is devised, where the preview available
is not necessarily finite and the precompensator Σc is not
necessarily a standard dynamic system defined by a quadru-
ple (Ac, Bc, Cc, Dc). However, the algorithmic procedure
herein presented encompasses also the case of decoupling
with minimal preview as a special case. The structural
condition of Theorem 2 is assumed to be satisfied. Two
different strategies are outlined according to whether the
stabilizability condition is satisfied or not: in the former
case, the minimal preview is required to obtain exact
decoupling, in the latter an infinite preview is theoretically
demanded.

The algorithmic setting presented in this section is built
on the following basic concepts of the geometric approach.
Recall that Vm is a locus of initial states in C corresponding
to trajectories indefinitely controllable in C and that S∗ is
the maximal set of states that can be reached from the origin
in ρM steps along trajectories with all the intermediate
states in C. Then, suppose that an impulse is applied to the
input h at the time ρM , thus producing a component of the
state xh ∈H, which is decomposable as xh = xh,S + xh,V ,
with xh,S ∈S∗ and xh,V ∈Vm (note that H⊆Vm +S∗ is
implied by the structural condition [10], [11], [13]). The
component xh,S can be nulled by applying the control
sequence that drives the state from the origin to −xh,S

along a trajectory in S∗. The component xh,V can be
maintained on Vm by a suitable control action in the time
interval ρM ≤ k <∞ while avoiding state divergence, if
all the internal unassignable modes of Vm are stable (or
stabilizable). Otherwise, xh,V must be further decomposed
as xh,V = xh,VS

+xh,VU
, with xh,VS

belonging to the sub-
space of the stable (or stabilizable) internal modes of Vm
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and xh,VU
belonging to that of the unstable modes. The

former component can be maintained on Vm, avoiding state
divergence, by a suitable control action in the time interval
ρM ≤ k <∞, while the latter can be nulled by reaching
−xh,VU

with a control action, applied in the time interval
−∞< k≤ ρM − 1, corresponding to a trajectory in Vm

from the origin.
The hypothesis that Vm does not have internal

unassignable eigenvalues on the unit circle is implicit in
order to discriminate between stable and unstable modes,
when Vm is not internally stabilizable. Moreover, Algo-
rithms 1 and 2 require that system (1),(2) is left-invertible
with respect to the control input: Algorithm 3 provides a
means to deal with non left-invertible systems. Algorithms 1
and 2 provide the control and state sequences for motions
on S∗ and Vm, respectively, assuming h(k)= I δ(k− ρM ).
This particular choice of the input h directly yields the FIR
system convolution profiles and the matrices of the dynamic
unit.

Matrix H must be decomposed as H = V H ′
1 + SH ′

2,
where V and S denote basis matrices of Vm and S∗,
respectively. Let F be such that (A+ BF )Vm ⊆Vm and
let T = [V S T1] be a state space basis transformation. The
system matrices in the new basis have the structures

A′ =

⎡
⎣ A′

11 A′
12 A′

13

0 A′
22 A′

23

0 A′
32 A′

33

⎤
⎦ , (3)

B′ =

⎡
⎣ 0

B′
2

0

⎤
⎦ , H ′ =

⎡
⎣ H ′

1

H ′
2

0

⎤
⎦ , (4)

C ′ =
[

0 C ′
2 C ′

3

]
, F ′ =

[
F ′

1 F ′
2 F ′

3

]
. (5)

Algorithm 1 (Motion on S∗): The controls U1(k),
k = 0, . . . , ρM − 1, and the corresponding states X1(k),
k = 1, . . . , ρM , are derived through the following steps.

1. Compute basis matrices Mi of the subspace Si ∩C for
i= 1, . . . , ρM − 1.

2. Compute the sequences β(i) and U1(i),
i= 1, . . . , ρM − 1, as[

β(ρM − j)
U1(ρM − j)

]
=

[
AMρM−j B

]#
MρM−j+1β(ρM − j + 1),

for j = 1, . . . , ρM − 1, with MρM
= S and

β(ρM )=−H ′
2.

3. Compute U1(0) driving the states from the origin to
M1β(1) as

U1(0)= B#M1 β(1).

4. Compute the states X1(i), i= 1, . . . , ρM , as

X1(i)= Mi β(i), i= 1, . . . , ρM .

Algorithm 2 (Motion on Vm): Two different strategies
must be implemented depending on whether Vm is inter-
nally stabilizable or not.

1. If Vm is internally stabilizable, the motion on Vm

is provided by the pair (A′
11,H

′
1) in (3),(4), i.e.

the states restricted to R
nV , nV = dim(Vm), are

X2(ρM + i)= (A′
11)

i
H ′

1, i= 0, 1, . . ., and the con-
trols are U2(ρM + i)= F ′

1 (A′
11)

i
H ′

1, i= 0, 1, . . ..
2. If Vm is not internally stabilizable, a second state

space basis transformation T ′, whose aim is to separate
the stable and unstable modes of Vm, is required. The
matrices A′′

11, H ′′
1 and F ′′

1 , respectively corresponding
to A′

11, H ′
1 and F ′

1 in the new basis, have the structures

A′′
11 =

[
AS 0
0 AU

]
, H ′′

1 =
[

HS

HU

]
,

F ′′
1 =

[
FS FU

]
.

A preaction, nulling the unstable component of
the state HU at the time instant ρM must
be computed backwards through the matrix AU .
The states restricted to R

nu , nu = dim(VU
m), are

X3(ρM − j)=−A−j
U HU , j = 0, 1, . . ., and the con-

trols are U3(ρM − j)=−FUA−j
U HU , j = 1, . . .. The

stable component of the state HS is managed as in the
case of Vm stabilizable.

Algorithms 1 and 2 directly yield the compensator. If all
the internal modes of Vm are stable, decoupling is achieved
by means of the minimal preaction (dead-beat, motion on
S∗) and postaction (motion on Vm along the stable zeros).
The first can be obtained as the output of a ρM -step FIR
system with suitable convolution profiles, the latter can be
realized as the output of a stable dynamic unit. Hence, the
compensator turns out to be the parallel of a ρM -step FIR
system and a dynamic unit. The input/output equation of
the FIR system is

uF(k) =
ρM−1∑
�=0

Φ(�)h(k − �), k = 0, 1, . . . , (6)

with Φ(�)= U1(�), �= 0, . . . , ρM − 1. The equations of the
dynamic unit are

w(k + 1) = N w(k) + Lh(k − ρM ), k = 0, 1, . . . ,(7)

uD(k) = M w(k), (8)

where N =A′
11, L= H ′

1, M = F ′
1. Hence, the control input

is u(k)= uF(k)+ uD(k), k = 0, 1, . . ..
Otherwise, if unstable modes are also present in Vm,

infinite preaction is required. Since the evolution of the
state along the unstable modes of Vm can only be computed
backwards in time and reproduced through an FIR system,
the FIR system window is enlarged to include the preaction
time ka, where this latter should be large enough to make
the truncation error negligible. In this case, the compensator
is the parallel of a (ka + ρM )-step FIR system and a
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−ka 0 ρM

preaction

dead-beat

postaction

Fig. 3. A scalar input sequence for decoupling an impulse applied at time ρM .

dynamic unit. Equation (6) is modified into

uF(k) =
ρM−1∑
�=−ka

Φ(�)h(k − �), k = 0, 1, . . . , (9)

with Φ(�)= U1(�)+ U3(�), �= − ka, . . . , ρM − 1, (with a
slight abuse of notation the control sequences are assumed
to be zero wherever they are not explicitly defined). The
dynamic unit is described by (7),(8) with N = AS , L= HS ,
M = FS .

Fig. 3 shows a typical scalar control input sequence for
decoupling an impulse applied to one entry of input h at
the time ρM in the most general case where both infinite
and minimal preview are present.

If the triple (A,B,C) is not left-invertible, the previous
procedure can be applied anyhow, provided that a prelim-
inary manipulation is performed to obtain a left-invertible
triple and the results thus obtained are adapted to fit the
original system. The proofs of the results exploited by the
following algorithm can be found in [15], [16].

Algorithm 3 (Extension to Non Left-Invertible Systems):
If the triple (A,B,C) is not left-invertible, the previous
procedure should be applied to (A∗, B∗, C), with

1. A∗ = A+ BF ∗, where F ∗ is a state feedback matrix
such that (A+ BF ∗)V∗ ⊆V∗ and all the elements of
σ(A+ BF ∗)|RV∗ are stable;

2. B∗ = B U∗, where U∗ is a basis matrix of the subspace
U∗ = (B−1 V∗)⊥, the orthogonal complement of the
inverse image of V∗ with respect to B.

Let Ūi(k) and X̄i(k), with i= 1, 2, 3 and k consistently
defined, be the sequences of controls and states provided by
Algorithms 1 and 2 applied to (A∗, B∗, C). The correspond-
ing control sequences for (A,B,C) must be computed as
Ui(k)= U∗Ūi(k)+ F ∗X̄i(k), i= 1, 2, 3.

MM Flexible rod
F W

x2 x1

Fig. 4. Example system.

IV. AN ILLUSTRATIVE EXAMPLE

The proposed method is illustrated by an example often
considered in the literature (see e.g. [17] and references
therein). The system consists of two masses connected by
a flexible rod (Fig. 4). The manipulable input is a force F
applied to the mass with displacement x2. In addition, we
consider a disturbance W , which is a force acting on the
mass with displacement x1. Assuming x3 = ẋ1 and x4 = ẋ2,
the state equations turn out to be

ẋ(t) = Ax(t)+ B u(t)+ H h(t),
y(t) = C x(t),

with

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−0.0909 0.0909 −0.0091 0.0091
0.0909 −0.0909 0.0091 −0.0091

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0
0

−0.0070
0.0839

⎤
⎥⎥⎦ , H =

⎡
⎢⎢⎣

0
0

−0.0839
0.0070

⎤
⎥⎥⎦ ,

C =
[

1 0 0 0
]
.

The system is stabilized by feedback of the displacement
x2 on the manipulable variable, i.e. we consider a state
feedback matrix K = [ 0 20 0 0 ], so that the new system
matrix is As = A−BK. The poles of the stabilized system
are σ(As)= {− 0.0055± 1.2653 j, − 0.0036± 0.2775 j}.
A discrete-time model is derived by ZOH-sampling with
T = 0.1 s. The invariant zeros of the sampled data system
are Z = {1.1205, 0.9014, −0.9916}. Hence, the system has
nonminimum-phase dynamics. Standard computations pro-
vide S∗ =S1 =B and V∗ =Vm = im [ e2 e3 e4 ], where ej ,
with j = 2, 3, 4, denotes the j-th vector of the main basis
of R

4. The relative degree is ρM = 1. Hence, the minimal
preaction (or dead-beat control) consists of one single step.
Exact decoupling requires infinite preaction, due to the
unstable internal unassignable eigenvalue z = 1.1205 of Vm.
Stable dynamics are managed through infinite postaction.
Software developed by means of the standard geometric
routines [13] allows an output error amplitude of about
10−5 to be achieved with a 60-sample preview. The control
sequence decomposed into its different contributions is
shown in Fig. 5.
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Fig. 5. Decomposition of the control sequence with a preview of 60 samples.

V. CONCLUSIONS

The problem of making the output totally insensitive
to an exogenous input signal known a certain amount of
time in advance has been solved in the geometric context,
by exploiting the properties of the minimal self-bounded
controlled invariant subspace satisfying the structural con-
straint. An algorithmic procedure was detailed for designing
the compensator both in the case where the stabilizability
condition is satisfied, and in the case where unstable inter-
nal unassignable eigenvalues of the minimal self-bounded
controlled invariant are present. In the former case only
the minimal preview is required, while in the latter case a
theoretically infinite preview is necessary. Indeed, from the
practical point of view, a preview amounting to about three
times the greatest time constant associated to the unstable
internal unassignable eigenvalues of Vm is sufficient to
guarantee a negligible truncation error. The precompensator
devised includes an FIR system working in connection with
a standard dynamic unit.
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