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Abstract— We state results on the existence of smooth
Lyapunov functions for hybrid systems whose solutions satisfy
a class-KLL estimate with respect to two measures. The class-
KLL estimate, a natural extension of class-KL estimate, is in
terms of the elapsed time and the number of jumps that have
occurred. The main result is that a smooth Lyapunov function
exists if and only if the class-KLL estimate is robust. In turn,
sufficient conditions for robustness are given. Special cases
include systems with compact attractors. Most of the results
parallel, and unify, what has been developed previously for
differential inclusions and difference inclusions.

I. INTRODUCTION

Hybrid systems are ones whose trajectories can flow in

continuous time and also jump at discrete instants. The

system variables can be dynamical processes (states) and/or

logical processes (modes). The flow can be governed by dif-

ferential equations or differential inclusions, and the jumps

can be described by difference equations or difference

inclusions. Examples of hybrid systems are ubiquitous in

science and engineering [28], [15].

Stability theory for systems depends on the definition

of their solutions. To develop stability theory for hybrid

systems, researchers have proposed several different solu-

tion concepts on (hybrid) time domain/space and provided

related results on solutions (see [26], [20], [17], [28], [3],

[1], [22], [5], [8]). As for the Lyapunov characterization of

asymptotic stability for general or specific hybrid systems,

many sufficient conditions have been proposed in literature

(see [2], [29], [20], [6], [15], [18], [24]), and some nec-

essary conditions (converse Lyapunov theorems) have been

established as well (see [29], [19]). However, few general

statements are available on the robustness of asymptotic

stability for hybrid systems (for example, see [23], [7], [8]),

and to the best of the authors’ knowledge, no results on

the existence of smooth Lyapunov functions have appeared.

Also, converse Lyapunov theorems for stability with respect

to (w.r.t.) two measures have not been addressed in the

literature. In this paper, we provide such converse Lyapunov

results inspired by the previous ones for differential and

difference inclusions in [11], [16], [4], [27], [10], [9].

We list the following definitions and notation:
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• R≥0 = [0, +∞), N≥0 = {0, 1, 2, ...}, N
n
≥0 = N≥0 ×

N≥0 × · · · × N≥0 (n copies).

• Given a vector v ∈ R
n, v′ denotes the transpose of v.

• B is the open unit ball in Euclidean space.

• Given A,G ⊂ R
n, A + G := {a + g : a ∈ A, g ∈ G}.

• Given a set A, A stands for the closure of A, coA
stands for the closed convex hull of A.

• Given A ⊂ R
n and x ∈ R

n, |x|A := inf
y∈A

|x − y|.

• Given an open set X containing a closed set A, a

function ω : X → R≥0 is a proper indicator for
A on X if ω is continuous, ω(x) = 0 if and only if

x ∈ A, and ω blows up when its argument approaches

the boundary of X or goes unbounded.

• Given X1 ⊂ X , X1 is relatively open (respectively,

relatively closed) in X if there exists an open (re-

spectively, closed) set X2 such that X1 = X2 ∩ X .

• The domain of a set-valued mapping M : O ⇒ R
n is

the set domM := {x ∈ O : M(x) �= ∅}.

• A set-valued mapping M : O ⇒ R
n is outer semi-

continuous at x ∈ O if for all sequences xi → x
and yi ∈ M(xi), if limi→∞ yi = y for some y, then

y ∈ M(x). The mapping M is outer semicontinuous
(OSC) if it is outer semicontinuous at each x ∈ O.

• A set-valued mapping M : O ⇒ R
n is locally

bounded if for any compact K ⊂ O there exists

m > 0 such that M(K) :=
⋃

x∈K M(x) ⊂ mB; if M
is OSC and locally bounded, then M(K) is compact.

For locally bounded set-valued mappings with closed

values, OSC agrees with upper semicontinuity.

• A function α : R≥0 → R≥0 is said to belong to

class-K (α ∈ K) if it is continuous, zero at zero, and

strictly increasing. It is said to belong to class-K∞ if,

in addition, it is unbounded.

• A function β : R≥0 × R≥0 → R≥0 is said to belong

to class-KL (β ∈ KL) if it satisfies: ∀t ≥ 0, β(·, t) is

nondecreasing and lims→0+ β(s, t) = 0, and ∀s ≥ 0,

β(s, ·) is nonincreasing and limt→∞ β(s, t) = 0.

• A function γ : R≥0 × R≥0 × R≥0 → R≥0 is said to

belong to class-KLL (γ ∈ KLL) if, for each r ≥ 0,

γ(·, ·, r) ∈ KL and γ(·, r, ·) ∈ KL.

II. HYBRID INCLUSIONS

Consider hybrid inclusions on an open set O ⊂ R
n,

H :=

{
ẋ∈ F (x) for x ∈ C,

x+ ∈ G(x) for x ∈ D,
(1)
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where F : O ⇒ R
n describes the flow, which can occur

in the set C ⊂ O, and G : O ⇒ O describes the jumps,

which can occur from the set D ⊂ O. The state x may

include both continuous and discrete variables, the latter

often consisting of logical modes like “on” and “off” which

can be associated with integer values. In Section IV-B we

will partially reconcile such an association with the use of

an open state space in R
n. The treatment of (1) will be based

on the tools developed in [7], [8]. Similar hybrid inclusions

have been addressed in [1], [13], [5].

The solutions to the hybrid inclusion (1) are defined on

hybrid time domains, as used in [7], [8] and [5]. We call a

subset E ⊂ R≥0 ×N≥0 a compact hybrid time domain if

E =
⋃J−1

j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . We say E is a hybrid time
domain if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J})
is a compact hybrid time domain.

A hybrid arc is a function φ defined on a hybrid

time domain, and such that φ(·, j) is locally absolutely

continuous for each j. A hybrid arc φ : domφ �→ O is a

solution to H if (i) for all j ∈ N≥0 and almost all t ∈ R≥0

such that (t, j) ∈ domφ,

φ(t, j) ∈ C, φ̇(t, j) ∈ F (φ(t, j)),

and (ii) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j)).

A solution to H is maximal if it cannot be extended,

and complete if its domain is unbounded. Complete solu-

tions are maximal. Henceforth, we will make explicit the

dependence of the solutions on the initial condition, which

will be denoted by x. By slight abuse of notation, we will

use φ(t, j, x) to denote a solution to H starting at x and

evaluated at (t, j) ∈ domφ. We denote by S(x) the set of

all maximal solutions to H starting from x. H is forward
complete on X ⊂ O if, for all x ∈ X , each φ ∈ S(x) is

complete and φ(t, j, x) ∈ X for each (t, j) ∈ domφ. Given

S(·) and any function ω : X → R≥0, define A(·, ·) as

A(S, ω) :=

⎧⎨
⎩ξ ∈ X : sup

φ∈S(ξ)
(t,j)∈dom φ

ω(φ(t, j, ξ)) = 0

⎫⎬
⎭ .

In order to guarantee that the solutions to H will have

properties suitable for establishing the existence of smooth

Lyapunov functions, we will impose the following basic

hybrid conditions throughout the paper:

Standing Assumption 1 (Hybrid basic conditions):
The data of the system H satisfy

• C ⊂ O and D ⊂ O are relatively closed sets in O;

• F : O ⇒ R
n is OSC and locally bounded, and F (x)

is nonempty and convex for each x ∈ C;

• G : O ⇒ O is OSC and locally bounded, and G(x) is

nonempty for each x ∈ D.

These basic conditions are the weakest ones possible for

our purposes. In particular, if any one of the conditions is

not imposed then examples can be found that don’t satisfy

our converse Lyapunov theorems, i.e., don’t admit a smooth

Lyapunov function. For more details, see Section VI-D.

General statements about the existence of solutions under

the hybrid basic conditions can be found in [1], [5] and [8].

III. KLL-STABILITY, ASYMPTOTIC STABILITY AND

THEIR STRONG SUFFICIENT LYAPUNOV CONDITIONS

A. KLL-stability

Ultimately we will be interested in a property of solutions

called KLL-stability w.r.t. two measures:

Definition 1: Let X ⊂ O be open and ωi : X → R≥0,

i = 1, 2, be continuous. H is KLL-stable w.r.t. (ω1, ω2) on
X if H is forward complete on X and there exists γ ∈ KLL
such that for each x ∈ X , all solutions φ ∈ S(x) satisfy

ω1(φ(t, j, x)) ≤ γ(ω2(x), t, j), ∀(t, j) ∈ domφ.
KLL-stability w.r.t. two measures covers many stability

concepts that have appeared in the literature. It is the gener-

alization to hybrid systems of two measure stability, which

was initially developed in [21] and studied extensively in

[12]. One interesting example is “output stability”, covered

by taking ω2(·) = | · | and ω1(·) = |h(·)| where h : X → X
is an output map; see [25]. The special case where ω1 =
ω2 =: ω is called KLL-stability with respect to a single

measure. In the next subsection, we relate KLL-stability

w.r.t. a single measure to asymptotic stability of a compact

set. Uniform global asymptotic stability of a closed set

A (possibly compact) corresponds to KLL-stability w.r.t.

ω1(x) = ω2(x) = |x|A on X = R
n. KLL-stability w.r.t.

two measures can be phrased in a slightly different way:

Proposition 1: Let X ⊂ O be open and ωi : X → R≥0,

i = 1, 2, be continuous. We have the equivalent statements:

1) H is KLL-stable w.r.t. (ω1, ω2) on X .

2) All of the following hold:

• H is forward complete on X .

• (Uniform stability and global boundedness):

∃α ∈ K∞ s.t. ∀x ∈ X , all φ ∈ S(x) satisfy

ω1(φ(t, j, x)) ≤ α(ω2(x)), ∀(t, j) ∈ domφ.

• (Uniform global attractivity): ∀r > 0, ∀ε > 0,

∃T (r, ε) > 0 s.t. ∀x ∈ X , all φ ∈ S(x) satisfy

ω2(x) ≤ r, (t, j) ∈ domφ, t + j ≥ T

=⇒ ω1(φ(t, j, x)) ≤ ε.

B. Asymptotically stable compact sets

Let A be a compact subset of O. The set A is stable
if for each ε > 0 there exists δ > 0 such that for each

x ∈ (A+δB)∩(C∪D), each solution φ ∈ S(x) is complete

and satisfies |φ(t, j, x)|A ≤ ε for all (t, j) ∈ domφ; it is

attractive if there exists µ > 0 such that for each x ∈
(A + µB) ∩ (C ∪ D), each solution φ ∈ S(x) is complete

and satisfies lim
(t,j)∈dom φ, t+j→∞

|φ(t, j, x)|A = 0; and it is

asymptotically stable if it is both stable and attractive. The

set of points from which all maximal solutions are complete
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and converge to A is called the basin of attraction for A
and is denoted XA. The set A is globally asymptotically
stable if A is asymptotically stable and XA = R

n.

In [8, Proposition 6.1] it is established that the basin of

attraction is open relative to C ∪D when local existence of

solutions is guaranteed. In this paper we focus mainly on the

situation where the basin of attraction is open. It is clear that

if ω is a proper indicator for A on an open set X ⊂ O and

the hybrid system H is KLL-stable w.r.t. (ω, ω), then A is

asymptotically stable with the basin of attraction containing

X . Theorem 6.2 in [8], specialized to the case where

the basin of attraction is open, establishes that asymptotic

stability implies KLL-stability with respect to any proper

indicator on the basin of attraction. It parallels known results

for differential inclusions and difference inclusions (see [27,

Proposition 3] and [10, Proposition 2]).

C. Strong sufficient Lyapunov conditions

1) KLL-stability w.r.t. a single measure:
Definition 2: Let X ⊂ O be open and ω : X → R≥0

be continuous. A function V : X → R≥0 is said to be a

smooth Lyapunov function w.r.t. ω on X for H if V is

smooth and there exist class-K∞ functions α1, α2 such that

α1(ω(x)) ≤ V (x) ≤ α2(ω(x)) ∀x ∈ X , (2)

max
f∈F (x)

〈∇V (x), f〉 ≤ −V (x) ∀x ∈ X ∩ C , (3)

max
g∈G(x)

V (g) ≤ e−1V (x) ∀x ∈ X ∩ D . (4)

We first establish that when X is forward complete the

existence of a smooth Lyapunov function is a sufficient

condition for asymptotic stability, albeit a restrictive one.

For weaker sufficient conditions for asymptotic stability see

[6], [18], [24]. The two last papers contain generalizations

of LaSalle’s invariance principle to hybrid systems.

Proposition 2: Let ω : X → R≥0 be continuous on X .

If H is forward complete on X and there exists a smooth

Lyapunov function for KLL-stability w.r.t. ω on X for H,

then H is KLL-stable w.r.t. ω on X .

When X ⊂ (C ∪D) and ω is a proper indicator function

for a compact set, the forward completeness is guaranteed

by the existence of a smooth Lyapunov function. Thus, the

following corollary of Proposition 2 ensues.

Corollary 1: Suppose there exists a smooth Lyapunov

function w.r.t. ω on X for H where ω is a proper indicator

for the compact set A on the open set X . If X ⊂ (C ∪D)
then, for H, the set A is locally asymptotically stable with

a basin of attraction containing X .

2) KLL-stability w.r.t. two measures:
Definition 3: Let X ⊂ O be open and ωi : X →

R≥0, i = 1, 2, be continuous. A function V : X → R≥0

is a smooth Lyapunov function for KLL-stability w.r.t.
(ω1, ω2) on X for H if V is smooth and there exist class-

K∞ functions α1, α2 such that

α1(ω1(x)) ≤ V (x) ≤ α2(ω2(x)) ∀x ∈ X , (5)

and (3)-(4) hold, and

V (x) = 0 ⇐⇒ x ∈ A(S, ω1). (6)

Remark 1: When ω1 = ω2 = ω, the bounds (5) and the

decrease conditions (3)-(4) automatically imply (6).

Proposition 3: Let ωi : X → R≥0, i = 1, 2, be continu-

ous on X . If H is forward complete on X and there exists a

smooth Lyapunov function for KLL-stability w.r.t. (ω1, ω2)
on X for H, then H is KLL-stable w.r.t. (ω1, ω2) on X .

Remark 2: Proposition 3 generalizes Proposition 2 and

holds even without imposing (6) in Definition 3. Condition

(6) will be used later to show that a smooth Lyapunov

function, as we have defined it, is sufficient for robust KLL-

stability as defined later in Section VI. Proposition 3 holds

when smoothness is relaxed to continuous differentiability.

IV. CONVERSE LYAPUNOV THEOREMS FOR

ASYMPTOTICALLY STABLE COMPACT SETS

In this section, we establish that a smooth Lyapunov

function exists for an asymptotically stable compact set

when the basin of attraction is open. The results that can

be stated are more subtle when the basin of attraction is

not open, like for the bouncing ball [28], the rocking block

[18], and control systems with logic variables.

A. Open basin of attraction

Our first converse Lyapunov theorem is the following:

Theorem 1: If the compact set A is locally asymptoti-

cally stable with an open basin of attraction XA and ω is

a proper indicator for A on XA, then there exists a smooth

Lyapunov function w.r.t. ω on XA for H.

Theorem 1 will follow from our general converse Lya-

punov theorem w.r.t. two measures and robustness results

on KLL-stability in Subsection VI-C. If C = O and D = ∅
(respectively, D = O and C = ∅), then Theorem 1 covers

converse Lyapunov theorems for locally asymptotic stability

in differential (respectively, difference) inclusions; see [4,

Theorem 1.2], [27, Corollary 3], and [10, Corollary 1].

B. Non-open basin of attraction

To construct smooth Lyapunov functions for the situation

where the basin of attraction is not open, we extend the

definition of the system data so that the basin of attraction

becomes open, without changing S(x) for x in the original

basin of attraction. While it is not clear how to do this

generally, it can be done for a wide class of systems. Rather

than attempting an exhaustive classification, we will only

discuss a class of systems that covers switching nonlinear

systems and systems with discrete logic variables.

Using (v1, v2) for [v′1 v′2]
′, consider the hybrid system

H0 :=

{
ξ̇ ∈ Fq(ξ) for ξ ∈ Cq ,

(ξ+, q+)∈ Gq(ξ) for ξ ∈ Dq ,

with state space O0 :=
{
(ξ, q) : ξ ∈ Oq, q ∈ N

nq

≥0

}
under

the following assumption :

Assumption 1: For each q ∈ N
nq

≥0,
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• Oq ⊂ R
nξ is open, Cq ⊂ Oq and Dq ⊂ Oq are

relatively closed in Oq , and Cq ∪ Dq = Oq;

• Fq : Oq ⇒ R
nξ is OSC and locally bounded, and

Fq(ξ) is nonempty and convex for each ξ ∈ Cq;

• Gq : Oq ⇒ Oq × N
nq

≥0 is OSC and locally bounded,

and Gq(ξ) is nonempty for each ξ ∈ Dq.

A special case that is frequently considered is when Fq

and Gq are single-valued continuous maps for each q, and

perhaps the first nξ components of Gq equal ξ so that only

the variable q makes jumps.

We now let ε ∈ [0, 1/2) and define the extended state

space Oε :=
{
(ξ, q) : ξ ∈ OΠ(q), q ∈ N

nq

≥0 + εB
}

where

Π(q) denotes the unique (since ε < 1/2) closest point in

N
nq

≥0 to q. Note that Oε is open for each ε ∈ (0, 1/2). For

ε = 0, the definition matches the definition of the original

state space. We also define

Cε :=
{

(ξ, q) ∈ Oε : ξ ∈ CΠ(q) , q ∈ N
nq

≥0 + εB
}

,

Dε :=
{

(ξ, q) ∈ Oε : ξ ∈ DΠ(q) , q ∈ N
nq

≥0 + εB
}

,

and, for each x ∈ Oε, we define

F ε(x) :=
{
(f1, f2) : f1 ∈ FΠ(q)(ξ),

f2 = −q + Π(q), (ξ, q) = x} ,

Gε(x) :=
{
g : g ∈ GΠ(q)(ξ) , (ξ, q) = x

}
,

Hε :=

{
ẋ∈ F ε(x) for x ∈ Cε ,

x+ ∈ Gε(x) for x ∈ Dε .

The following observations motivate the next theorem:

• The component q satisfies q̇ = −q+Π(q), the solutions

of which from q◦ converge to Π(q◦).
• The behavior of H0 on O0 is captured by using

the state space Oε for some ε ∈ (0, 1/2) and the

data (F ε, Gε, C0, D0). Because of Assumption 1, the

data satisfy the hybrid basic conditions. Therefore,

our earlier discussions about local asymptotic stability

apply to H0. In particular, if there is a compact set

that is locally asymptotically stable for H0, its basin

of attraction is open relative to C0 ∪ D0.

• For each ε ∈ (0, 1/2), the data (F ε, Gε, Cε, Dε)
for Hε with state space Oε satisfy the hybrid basic

conditions. Moreover, since Cq ∪ Dq = Oq for each

q ∈ N≥0 it follows that Cε ∪ Dε = Oε. Thus, since

Oε is open for each ε ∈ (0, 1/2), if there is a compact

set that is locally asymptotically stable for Hε, then its

basin of attraction is open.

• If, for H0, the compact set A0 is asymptoti-

cally stable with the basin of attraction X 0
A ={

(ξ, q) : ξ ∈ Xq, q ∈ N
nq

≥0

}
then, for Hε, A0 is also

asymptotically stable with the basin of attraction

X ε
A :=

{
(ξ, q) : ξ ∈ XΠ(q) , q ∈ N

nq

≥0 + εB
}

. This is

because, for each x ∈ Oε, the projection of a solution

of Hε to O0 is exactly the corresponding solution of

H0 from the initial condition projected to O0.

Theorem 2: Let Assumption 1 hold. For H0, suppose

the compact set A0 ⊂ O0 is asymptotically stable with the

basin of attraction X 0
A. Then:

1) for each q ∈ N≥0, there exist a compact

(possibly empty) set Aq and an open (pos-

sibly empty) set Xq such that Aq ⊂ Xq ,

A0 =
{

(ξ, q) : ξ ∈ Aq, q ∈ N
nq

≥0

}
and X 0

A ={
(ξ, q) : ξ ∈ Xq, q ∈ N

nq

≥0

}
;

2) for each q ∈ N
nq

≥0, let ωq : Xq → R≥0 be a proper

indicator function for Aq on Xq . Then there exist

α1, α2 ∈ K∞ and, for each q ∈ N
nq

≥0, a smooth

function Vq : Xq → R≥0 such that

α1(ωq(ξ)) ≤ Vq(ξ) ≤ α2(ωq(ξ)) ∀ξ ∈ Xq,

max
f∈Fq(ξ)

〈∇Vq(ξ), f〉 ≤ −Vq(ξ) ∀ξ ∈ Xq ∩ Cq,

max
(g1,g2)∈Gq(ξ)

Vg2(g1) ≤ e−1Vq(ξ) ∀ξ ∈ Xq ∩ Dq.

V. CONVERSE LYAPUNOV THEOREMS FOR

KLL-STABILITY W.R.T. A SINGLE MEASURE

Like in the continuous-time and discrete-time cases, it

is unknown whether the existence of a smooth Lyapunov

function is necessary, in general, for KLL-stability w.r.t. a

single measure. We will establish that the existence of a

smooth Lyapunov function is necessary for KLL-stability

w.r.t. a single measure when an additional assumption

holds. This assumption parallels what is used in continuous-

time systems, respectively discrete-time systems, when not

assuming that F is locally Lipschitz, respectively G is

continuous. It can be seen as the hybrid counterpart of the

one on the backward completability by ω-normalization for

differential inclusions (see Proposition 2 in [27]) or, of the

one for difference inclusions (see Proposition 1 in [10]).

Assumption 2: The open set X ⊂ O, the continuous

function ω : X → R≥0, and the hybrid system H satisfy

(i) for each α, α ∈ K∞, there exists a locally bounded

function ψ : X → R≥0 such that, for each x ∈ X ,

φ ∈ S(x) and (t, j) ∈ domφ with t + j ≤ 1

α(ω(x)) ≤ ω(φ(t, j, x)) ≤ α(ω(x))

=⇒ |φ(t, j, x) − x| ≤ ψ(φ(t, j, x));

(ii) for any (finite) point z on the boundary of X ,

zi ∈ X , zi → z =⇒ max

{
1

ω(zi)
, ω(zi)

}
→ ∞.

Under Assumption 2, we have the following result.

Theorem 3: Let Assumption 2 hold and H be KLL-

stable w.r.t. ω on X . Then there exists a smooth Lyapunov

function w.r.t. ω on X for H.

The downside of Assumption 2 is that item (i) is ex-

pressed in terms of solutions. The following sufficient

condition for Assumption 2 is expressed in terms of the

data (F, G, C, D), the set X , and the function ω on X .

Assumption 3: The open set X ⊂ O, the continuous

function ω : X → R≥0, and the hybrid system H are such
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that there exists a decomposition of the state x = [x′
1 x′

2]
′ ∈

X satisfying the following:

• there exist c ≥ 0 and θ ∈ K∞ such that

|x1| ≤ θ(ω(x)) + θ(|x2|) + c, ∀x ∈ X ;

• there exist l ≥ 0 and b ≥ 0 and a locally bounded

function ϕ : X → R≥0 such that, for each x ∈ X ,

g =

[
g1

g2

]
∈ G(x), x ∈ D ⇒ |g2 − x2| ≤ ϕ(g),

v =

[
v1

v2

]
∈ F (x), x ∈ C ⇒ |v2| ≤ l|x2| + b;

• item (ii) in Assumption 2 holds.

Proposition 4: Assumption 3 implies Assumption 2.

Remark 3: Assumption 3 can also be applied to hybrid

systems with constant parameters and time-varying hybrid

systems. Space limitation prevents doing this here.

VI. ROBUST KLL-STABILITY AND CONVERSE

LYAPUNOV THEOREMS

All of the converse Lyapunov theorems presented so far

are enabled by the fact, established in Subsection VI-C,

that a smooth Lyapunov function exists if and only if the

KLL-stability is robust, and by showing that the situations

considered so far guarantee robustness. In this section, we

define robust KLL-stability.

A. Robust KLL-stability w.r.t. a single measure

Let the function σ : X → R≥0 be continuous on X such

that {x}+σ(x)B ⊂ X for all x ∈ X . Given a hybrid system

H, define its σ-perturbed hybrid system Hσ by

Fσ(x) := coF ((x + σ(x)B) ∩ C) + σ(x)B, ∀x ∈ X ,

Gσ(x) := {v ∈ X : v ∈ {g} + σ(g)B,

g ∈ G((x + σ(x)B) ∩ D)}, ∀x ∈ X ,

Cσ := {x ∈ X : (x + σ(x)B) ∩ C �= ∅},

Dσ := {x ∈ X : (x + σ(x)B) ∩ D �= ∅},

Hσ :=

{
ẋ ∈ Fσ(x) for x ∈ Cσ,

x+ ∈ Gσ(x) for x ∈ Dσ.

We denote by Sσ(·) the set of maximal solutions to Hσ .

Remark 4: The perturbation of F agrees with the per-

turbation form of differential inclusions used in [4] and

[27]. The perturbation of G agrees with the one in [10] for

difference inclusions. The perturbations of C and D have

the form of set perturbations; see also [8, Section V].

Definition 4: Let ω : X → R≥0 be continuous. H
is robustly KLL-stable w.r.t. ω on X if there exists a

continuous function σ : X → R≥0 such that

• {x} + σ(x)B ⊂ X for all x ∈ X ,

• Hσ is KLL-stable w.r.t. ω on X ,

• σ(x) > 0 for all x ∈ X \ Aω, where Aω :=
{ξ ∈ X : ω(ξ) = 0}.

Remark 5: We point out robust KLL-stability in Def-

inition 4 automatically implies that Aω = A(S, ω) =
A(Sσ, ω). This fact will be generalized in the definition

of robust KLL-stability w.r.t. two measures below.

Theorem 4: Let ω : X → R≥0 be continuous. If H is

forward complete on X and there exists a smooth Lyapunov

function for KLL-stability w.r.t. ω on X for H, then H is

robustly KLL-stable w.r.t. ω on X .

Theorem 5: Let ω : X → R≥0 be continuous. Under

Assumption 3 (and thus Assumption 2), if H is KLL-stable

w.r.t. ω on X , then it is robustly KLL-stable w.r.t. ω on X .

Corollary 2: Suppose, for H, the compact set A is lo-

cally asymptotically stable with the open basin of attraction

XA. Then, for each function ω that is a proper indicator for

A on XA, H is robustly KLL-stable w.r.t. ω on XA.

B. Robust KLL-stability w.r.t. two measures

Definition 5: Let ωi : X → R≥0, i = 1, 2, be contin-

uous. H is robustly KLL-stable w.r.t. (ω1, ω2) on X if

there exists a continuous function σ : X → R≥0 such that

• {x} + σ(x)B ⊂ X for all x ∈ X ;

• Hσ is KLL-stable w.r.t. (ω1, ω2) on X ;

• σ(x) > 0 for all x ∈ X \ A(Sσ , ω1);
• A(Sσ, ω1) = A(S, ω1).
Robust KLL-stability w.r.t. (ω1, ω2) is the key prop-

erty for the existence of a smooth Lyapunov function

w.r.t. (ω1, ω2). Unfortunately, in contrast to the case for

continuous-time and discrete-time systems, we cannot pro-

vide any sufficient conditions in terms of the system data

that guarantee robust KLL-stability. In continuous time a

sufficient condition is that the set-valued map F is locally

Lipschitz [27, Theorem 2]. In discrete time a sufficient

condition is that the set-valued map G is continuous [10,

Theorem 2]. In each case, the assumption guarantees that

the set of solutions depends on initial conditions and

perturbations in a Lipschitz continuous, or continuous (not

just upper semicontinuous) way. For hybrid systems, as-

sumptions on F and G are not enough to guarantee this

continuous dependence. The flow set C and the jump set

D can play a prominent role in determining continuity.

C. Converse Lyapunov theorems for robust KLL-stability
w.r.t. two measures

We now come to the main result of the paper. It is the core

and generalization of all other converse Lyapunov theorems

in this paper (cf. [27, Theorem 1] and [10, Theorem 1]).

Theorem 6: Let ωi : X → R≥0, i = 1, 2, be continuous.

The following statements are equivalent:

• H is forward complete on X and ∃ a smooth Lyapunov

function for KLL-stability w.r.t. (ω1, ω2) on X for H.

• H is robustly KLL-stable w.r.t. (ω1, ω2) on X .

D. On the hybrid basic conditions and converse theorems

If any one of the hybrid basic conditions is removed,

the conclusions of our converse theorems do not hold in

general. We illustrate this now with examples.
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Example 1 (Flow set not closed): Define D1 := {x ∈
R

2 : x2
1 + x2

2 = 1} and the jump set

D := D1 ∪
{
x ∈ R

2 : x1 ≥ 0 , |x1 − 1| ≥ |x2|
}

∪
{
x ∈ R

2 : x1 ≤ 0 , |x1 + 1| ≥ |x2|
}

.

Consider the system

ẋ1 = x2

ẋ2 = −x1

}
x ∈

(
R2\D

)
\D1 =: C ,

x+ = 0 x ∈ D .

We can verify that the origin is globally exponentially

stable, but the stability is not robust. Indeed, for each

continuous, positive definite function σ, we have D1 ⊂ Cσ .

Thus, since D1 is forward invariant under the nominal flow,

for any σ-perturbation, a solution starting in D1 can have

domain [0,∞) × {0} and remain in D1 on its domain. �

Example 2 (Jump set not closed): Let C := {x ∈ R :
x ≤ 1} and consider the system

ẋ = −x x ∈ C ,
x+ = min {|x|, 1} x ∈ R\C =: D .

We can verify that the origin is globally exponentially

stable, but the stability is not robust. Indeed, for each

continuous, positive definite function σ, we have 1 ∈ Dσ.

Thus, since x = 1 is an equilibrium point for the nominal

jump equation, a solution starting at x = 1 can have domain

{0} × N≥0 and x(0, j) = 1 for each j ∈ N≥0. �

Examples illustrating the necessity of G being OSC have

been given in [9] for discrete-time systems, i.e. C = ∅ and

D = O. Similar examples are well-known for continuous-

time systems, i.e. D = ∅ and C = O; see [14].

For continuous time systems, when F is a locally Lip-

schitz set-valued map, it is not important for its values to

be convex in order to have robustness and the existence

of smooth Lyapunov functions. This is due to classical

relaxation theorems. However, for hybrid systems this phe-

nomenon does not hold, as illustrated by the next example.

Example 3 (Nonconvex differential inclusion): Define

the set C :=
{
x ∈ R

2 : x1 = x2

}
and consider the system

ẋ ∈
{
[1 0]′ , [0 1]′

}
=: F (x) x ∈ C ,

x+ = 0 x ∈ R
2 .

Continuous flow is not possible. Thus, only jumping is

possible and the origin is globally exponentially stable. On

the other hand, the asymptotic stability is not robust. Indeed,

for each continuous, positive definite function σ, we have

[0.5 0.5]
′ ∈ Fσ(x) ∀x ∈ C .

Thus, it is possible to flow in C for all t ∈ [0,∞) and have

the trajectory diverge (to ∞). �
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