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Abstract— We consider the problem of establishing pathwise
observability for a class of switched linear systems with con-
stant, autonomous dynamics, but with switched measurement
equations. Using van der Waerden’s Theorem, a standard
result in Ramsey Theory, we give a sufficient condition on
the components of the system for it to be pathwise observable.
This first result then enables us to extend the Kalman-Bertram
criterion, which concerns the conservation of observability
after the introduction of sampling, to switched linear systems.
We then dualize these results to pathwise controllability.

I. I NTRODUCTION

Consider the following class of switched linear systems:

xk+1 = Axk

yk = C(θk)xk,
(1)

where xk ∈ Rn and yk ∈ Rp, and where the matrices
A and C(·) are of compatible dimensions. The modes
θk assume values in{1, . . . , s}, so that C(θk) switches
amongs different measurement matricesC(1), . . . , C(s).
The system in (1) can be used for modeling switches
betweens different sensory modes, as can occur, e.g., when
sensors fail intermittently, or when the measurementsyk are
transmitted over a memoryless erasure channel [1], [2]. In
[1], estimators were designed for the noisy counterpart of
(1), and in [3], an asymptotic observer was proposed. In
this paper, we are concerned with a particular aspect of the
deterministic finite-time observability of the model, namely
pathwise observability[4], which we define as follows:

Let a pathθ of lengthN be a string of lengthN , whose
elements take values in{1, . . . , s}, and let|θ| = N denote
its length. Defining the observability matrixO(θ) of a path
θ as:

O(θ) ,




C(θ1)
...

C(θN )AN−1


 , (2)

we say thatθ is observable when its observability matrix
is of full rank. If we letρ(M) denote the rank of a matrix
M , this condition can thus be written as

ρ(O(θ)) = n. (3)

We now arrive at the definition ofpathwise observability,
which we recall from [4]:

Definition 1 (Pathwise Observability [4]):The set of
pairs{(A,C(1)), . . . , (A,C(s))} is pathwise observable if
and only if there exists an integerN such that all paths
of length N are observable. We refer to the smallest such
integer as the index of pathwise observability. ♦

In [4], it was shown that pathwise observability is decid-
able. In fact, it was shown that the indexes of pathwise
observability are bounded by numbersN(s, n) depending
only on s and n, which is an even stronger result, since
it suggests a direct way of deciding whether or not a set
of pairs is pathwise observable, in checking the rank of
the observability matrix of every path of lengthN(s, n). In
this paper, we will give sufficient conditions for pathwise
observability that allow us to come up with a switched ver-
sion of the Kalman-Bertram criterion for non-pathological
sampling.

Note that pathwise observability plays a crucial role in
the observability of switched linear systems: Assuming the
mode sequences{θk}∞k=1 to be known and arbitrary, (1)
would be completely observable for any{θk}∞k=1 if and
only if its set of pairs{(A, C(1)), . . . , (A,C(s))} was
pathwise observable. In fact, in [3], an asymptotic observer
was introduced for (1) requiring pathwise observability to
converge.

The contribution of this paper is twofold, and concerns
the establishment of sufficient conditions for pathwise ob-
servability and controllability. In Section 2, we establish
sufficient conditions based on structural properties of the
individual pairs, which is an interesting result in that it dis-
penses from computing coupled observability matrices (2)
(i.e. matrices involving multiple modes), enabling the study
of classical observability matrices of standard dimensions.
In Section 3, we use that result to extend a classical result
from linear systems theory concerning the conservation
of observability properties when sampling a continuous-
time system. In Section 4, we dualize these results to the
controllability case.



II. SUFFICIENT CONDITIONS FORPATHWISE

OBSERVABILITY

In this section, we establish sufficient conditions
on the individual pairs (A, C(i)) for the set
{(A,C(1)), . . . , (A,C(s))} to be pathwise observable.
More precisely, the idea is that if a pair(Ab, C(i))
is observable,b ∈ N, then wheneverθa+bk = i for
k = 0, . . . , n − 1 and for some integera, i.e. whenever
some modei occursn times in θ at constant intervalb,
thenO(θ) will contain the following matrix as a submatrix:




C(i)
C(i)Ab

...
C(i)(Ab)n−1


Aa−1, (4)

which has rankn if A is invertible, and therefore ensures
that ρ(O(θ)) = n. Note that this would not be the case if
there were switching among differentA-matrices as well.
In that case, the matrix in (4) would, in general, still exhibit
coupling with modes other thani. What we thus want to
show is that whenever a pair(Al, C(i)) is observable for
all modesi and for all l smaller than a certain number,
then the system is pathwise observable. This implies the
possibility to assert that, in every path of at least a certain
length W, some modei has to occurn equally separated
times. It turns out that proving the existence of suchW is
a problem to which an answer is provided by a branch of
combinatorial analysis, referred to asRamsey theory[5].
Indeed, we wish to capitalize on the fact that any mode
sequence has to exhibit certain regularity properties as long
as it is long enough, which is a type of statement that falls
precisely under the domain of Ramsey theory, whose main
assertion is that complete disorder is an impossibility and
that the appearance of disorder is really a matter of scale.
As it turns out, our question finds its answer in van der
Waerden’s Theorem [6] (in its finite version), which is one
of the central results of Ramsey theory:

Theorem 1 (van der Waerden [6]):For every positive
integersn and s, there exists a minimal constantW(n, s)
such that ifN ≥ W(n, s), and{1, . . . , N} ⊂ C1∪ . . .∪Cs,
then some setCi contains an arithmetic progression of
lengthn. ♦

Here, an arithmetic progression is simply a string
of positive integers such that the difference between
successive terms is constant. It is indeed easy to see how
the solution to our problem follows from Theorem 1 by
simply taking everyCi to be the set of times at which
mode i occurs in θ. In other words, if we ignore the
trivial casen = 1 and assumen ≥ 2, which will be done
throughout the remainder of this paper, we have:

Corollary 1: Let θ be a path assuming values in
{1, . . . , s}. If |θ| ≥ W(n, s), then there exist an integer

i ∈ {1, . . . , s} and two positive integersa ∈ {1, . . . , |θ|}
and b < |θ|/(n − 1) such thatθa+bk = i for every
k = 0, . . . , n− 1. ♦

Proof: Let Ci = {k ∈ {1, . . . , |θ|} | θk = i} for all
i ∈ {1, . . . , s}. Clearly, {1, . . . , |θ|} ⊂ C1 ∪ . . . ∪ Cs. By
Theorem 1, since|θ| ≥ W(n, s), some Ci contains an
arithmetic progression of lengthn. In other words, there
exist two positive integersa and b such thata + bk ∈ Ci,
and thereforeθa+bk = i, for k = 0, . . . , n − 1. Finally,
b < |θ|/(n− 1) becauseb(n− 1) < a + b(n− 1) ≤ |θ|. ¤

Before establishing the main result of this section, which
is a direct consequence of Corollary 1, we define, forn ≥ 2,

W′(n, s) ,
⌈

W(n, s)
n− 1

⌉
− 1, (5)

whered·e denotes the ceiling function (i.e.dαe = min{i ∈
N | α ≤ i}).

Theorem 2:If A is invertible, and if (Al, C(i)) is an
observable pair for alli ∈ {1, . . . , s} and all positive
integersl ≤ W′(n, s), then {(A,C(1)), . . . , (A,C(s))} is
pathwise observable with an index no larger thanW(n, s). ♦

Proof: Let θ be any path of lengthW(n, s). By Corollary
1, there exist an integeri ∈ {1, . . . , s} and two integersa ∈
{1, . . . , |θ|} and b < W(n, s)\(n− 1) such thatθa+bk = i
for k = 0, . . . , n − 1. Therefore, the submatrix ofO(θ)
consisting of the rowsa + bk of O(θ), k = 0, . . . , n − 1,
can be expressed as




C(i)
C(i)Ab

...
C(i)(Ab)n−1


Aa−1.

This matrix has rankn since A (and thereforeAa−1) is
invertible, and because the pair(Ab, C(i)) is observable,
since b ≤ W′(n, s). ThereforeO(θ) has rankn, which
completes the proof. ¤

Remarks:

• These conditions arenot necessary. For instance, the
set of pairs{(A, C(1)), (A,C(2))}, where:

A =
(

0 1
1 0

) {
C(1) = (1 0)
C(2) = (2 0) (6)

is pathwise observable with index2, but while
W′(2, 2) = 2, neither (A2, C(1)) nor (A2, C(2)) is
an observable pair.

• The index of pathwise observability in Theorem 2 is
not necessarily equal toW(n, s). For instance, the set
of pairs{(A,C(1)), (A,C(2))}, where:

A =
(

1 1
0 1

) {
C(1) = (1 1)
C(2) = (1 2) (7)



satisfies the assumptions of Theorem 2, but is pathwise
observable with index2, while W(2, 2) = 3. ♦

The numbersW(n, s) are referred to as the van der
Waerden (vdW) numbers. Unfortunately, the only vdW
numbers known exactly fit in Table I (for the sake of easy
reference, we also give, in Table II, the known values of
W′(n, s)). Only upper bounds are known for the rest.

s \ n 2 3 4 5 · · · n
1 2 3 4 5 · · · n
2 3 9 35 178
3 4 27
4 5 76
...

...
s s + 1

TABLE I

KNOWN VALUES OF W(n, s)

s \ n 2 3 4 5 · · · n
1 1 1 1 1 · · · 1
2 2 4 11 88
3 3 13
4 4 37
...

...
s s

TABLE II

KNOWN VALUES OF W′(n, s)

Those bounds grow at an enormous rate, which limits the
applicability of Theorem 2. In fact, research is currently
ongoing for finding tighter bounds, e.g. [7], [8]. However,
Theorem 2 is fortunately all we need in order to show
the more practical results of the next section concerning
sampled systems.

III. SAMPLED-DATA SYSTEMS

A problem of relevance to digital control is the study
of properties of sampled-data systems since most modern,
digital controllers are implemented in discrete-time. In
particular, it is usually desirable for a discretized system to
conserve some properties of the continuous-time system, es-
pecially observability and controllability. We start, without
loss of generality, by considering the following autonomous,
continuous-time system:

ẋt = Axt

yt = Cxt,
(8)

and the discrete-time system obtained by sampling (8) at
constant intervalT , which is referred to as the sampling
period (for any continuous-time quantityzt, we let z̄k ,
zkT ):

x̄k+1 = eAT x̄k

ȳk = Cx̄k.
(9)

In 1963, the following result was proved in [9]:

Theorem 3 (Kalman-Bertram Criterion):Let σ(A) de-
note the spectrum ofA. If (A,C) is an observable pair,
then whenever the sampling periodT satisfies, for all
{λ, λ′} ∈ σ(A)× σ(A),

λ 6= λ′ +
jk

T
∀ k ∈ Z\{0}, (10)

then the discrete-time pair(eAT , C) is observable. ♦

A proof can be found in [9], but the result easily follows
from the Popov-Belevitch-Hautus rank test (see, e.g., [10]).
Further research on this subject has focused mainly on
generalized hold functions [11], [12] (for controllability)
and on robust sampling techniques [13].

Our aim in this section is to extend Theorem 3 to
switched linear systems. In other words, we focus our
attention on the continuous-time switched linear system:

ẋt = Axt

yt = C(θt)xt,
(11)

whereθt is an arbitrary function of time assuming values
in the set{1, . . . , s}, and on its discretized counterpart:

x̄k+1 = eAT x̄k

ȳk = C(θ̄k)x̄k.
(12)

Note that, even thoughθt is arbitrary and may switch
between samples, (12) can be characterized by a finite set
of pairs {(eAT , C(1)), . . . , (eAT , C(s))}, which cannot be
the case when the dynamics (i.e. theA matrix) switches as
well (unless, e.g.,θt switches only at the sampling times).
What we wish to establish here is whether observability of
every pair(A,C(i)) implies pathwise observability of the
set of pairs{(eAT , C(1)), . . . , (eAT , C(s))}. Fortunately,
the following theorem follows almost directly from
Theorems 2 and 3:

Theorem 4:Let σ(A) denote the spectrum ofA. If
(A,C(i)) is an observable pair for alli ∈ {1, . . . , s}, then
whenever the sampling periodT satisfies, for all{λ, λ′} ∈
σ(A)× σ(A),

λ 6= λ′ +
jk

lT
∀ k ∈ Z\{0}, ∀ l ≤ W′(n, s), (13)

the set of pairs{(eAT , C(1)), . . . , (eAT , C(s))} of the
discretized system is pathwise observable with an index no
larger thanW(n, s). ♦

Proof: First, sinceAT commutes with itself andl is an
integer, eAlT = (eAT )l. Therefore, by Theorem 3, (13)
implies that the pair((eAT )l, C(i)) is observable for all
i ∈ {1, . . . , s} and all l ≤ W′(n, s). Moreover,eAT being
a matrix exponential, it is an invertible matrix. The result
then follows from Theorem 2. ¤



Now, even though some numbersW(n, s) may be
unknown, they are finite, as discussed earlier. The
following corollary follows:

Corollary 2: If (A,C(i)) is an observable pair
for all i ∈ {1, . . . , s}, then the set of pairs
{(eAT , C(1)), . . . , (eAT , C(s))} of the discretized system
is pathwise observable for all but a countable number of
sampling periodsT . ♦

Proof: If every eigenvalue ofA is real, then (13) always
holds and the set is pathwise observable for allT > 0.
Otherwise, defining the setF of frequencies as

F , {|Im(λi)− Im(λj)| |
λi 6= λl ∈ σ(A), Re(λi) = Re(λj)}, (14)

we get that the set of pathological sampling periods is, by
(13), a subset of

{
k

fl
, k ∈ N∗, f ∈ F, l ≤ W′(n, s)

}
, (15)

which is countable. Hence the result. ¤

Finally, note that what needs to be avoided in Theorem
3 is the interaction between the natural frequencies
of the linear system and the sampling frequency. It is
therefore easily established that, under the same conditions,
conservation of observability is guaranteed when the
sampling periodT is small enough. The importance of this
observation is actually further motivated by robust control
problems, as pointed out in [13]. The following theorem
extends this result to switched linear systems (11):

Theorem 5:If (A,C(i)) is an observable pair for all
i ∈ {1, . . . , s}, then there exists a positive real number
T such that whenever0 < t < T , the set of pairs
{(eAt, C(1)), . . . , (eAt, C(s))} of the discretized system is
pathwise observable with an index smaller than or equal to
W(n, s). ♦

Proof: Clearly,

T =
1

max(F )W′(n, s)
, (16)

which is the smallest element of the set in (15), works.¤

The most surprising fact about Theorems 4 and 5 is
that there is inherently no coupling between thes different
modes in continuous-time, and yet pathwise observability
is shown to be achieved for the sampled-data system.
Moreover, note that we make absolutely no assumption on
θt, other than that it is a mapping from the continuous time
line to {1, . . . , s}. In particular,T in Theorem 5 is an upper
bound on the sampling period, andnot a lower bound on
the switching intervals (or minimumdwell time).

IV. PATHWISE CONTROLLABILITY

Notice that the first results of this paper naturally carry
over, by duality, to the study of switched systems of the
form:

xk+1 = Axk + B(θk)uk, (17)

where the modesθk assume values in{1, . . . , s}, so
that B(θk) switches amongs different input matrices
{B(1), . . . , B(s)}, and where one may be concerned with
pathwise controllability, defined as pathwise observability
of the set of dual pairs{((A′, B(1)′), . . . , (A′, B(s)′)} [4].
In fact, one gets, as a trivial extension of Theorem 2:

Theorem 6:If A is invertible, and if (Al, B(i)) is a
controllable pair for alli ∈ {1, . . . , s} and all integers
l ≤ W′(n, s), then{(A,B(1)), . . . , (A, B(s))} is pathwise
controllable with an index no larger thanW(n, s). ♦

However, one should be careful when considering the
sampling problem from the controllability point of view.
Indeed, applying azero-order holdto

ẋt = Axt + B(θt)ut, (18)

i.e. lettingut , ūk ∀ t ∈ [kT, (k + 1)T ), yields

x̄k+1 = eAT x̄k + Bkūk, (19)

where Bk =
∫ (k+1)T

kT
eA((k+1)T−τ)B(θτ )dτ . Once again,

Bk might switch among an infinite number of values,
unless, e.g., the signalθt is constrained to switch at only the
sampling times. In fact, the dual of our criterion (Theorem
4) involves the use of a Dirac impulse-based discretization
as follows:

ut = ūkδ(t− kT ), kT ≤ t < (k + 1)T, (20)

which allows us to rewrite (19) as

x̄k+1 = eAT x̄k + B(θk)ūk, (21)

to which we can then apply the previous results. Now,
even though (20) does not make any sense since perfect
impulses cannot be produced in practice, we can state the
following purely theoretical result:

Theorem 7:Let σ(A) denote the spectrum ofA. If
(A,B(i)) is a controllable pair for alli ∈ {1, . . . , s}, then
whenever the sampling periodT satisfies, for all{λ, λ′} ∈
σ(A)× σ(A),

λ 6= λ′ +
jk

lT
∀ k ∈ Z\{0}, ∀ l ≤ W′(n, s), (22)

the set of pairs{(eAT , B(1)), . . . , (eAT , B(s))} of the
discretized system (21) obtained by applying the hold
function (20) to (18) is pathwise controllable with an index
no larger thanW(n, s). ♦

Finally, note that Corollary 2 also extends to the control-
lability case.



V. CONCLUSIONS

In this paper, we have introduced an application of
Ramsey Theory to the study of a property of switched linear
systems (i.e.pathwise observability). The result presented
has enabled, for the first time, the study of the conser-
vation of observability and controllability properties after
the introduction of sampling in switched systems, which
has resulted in a criterion very similar to the well-known
Kalman-Bertram criterion.
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