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Abstract— It was shown by Zames and Shneydor that a
high-frequency dither of a quite arbitrary shape can be used to
smooth the effective nonlinear sector of Lipschitz continuous
feedback systems. Here it is shown that also systems with
discontinuous nonlinearities can be smoothed using dither
signals, as long as the amplitude distribution function of the
dither is Lipschitz continuous.

I. INTRODUCTION

A frequently used technique to stabilize a nonlinear feed-
back system in Lur’e form is by injecting a high-frequency
dither signal to decrease the effective nonlinear sector. If the
dither frequency is sufficiently high, the dithered system
behaves qualitatively the same as an averaged system,
in which the dither and the nonlinearity are replaced by
another nonlinearity. Control design is then done for the
averaged system, but applied to the dithered. For Lipschitz
continuous systems this scheme can be justified rigorously
by using classical averaging theory [1]. In [2], [3], Zames
and Shneydor discussed how the behavior of the system de-
pends on the amplitude distribution function of the dither for
the case when the nonlinearities are Lipschitz continuous.
For systems with nonsmooth nonlinearities there are only
rigorous treatments of systems with particular nonlinearities
and dithers, such as pulse-width modulated systems [4], [5],
power converters [6], and relay systems [7], [8]. The current
paper provides an averaging theorem for a general class of
switched systems with a quite arbitrary periodic dither. Our
main result states that the averaged and the dithered system
have qualitatively the same behavior when the nonlinearities
have bounded variation and the dither has an absolutely
continuous amplitude distribution function with bounded
derivative and a sufficiently high frequency. The result
appears to be fairly tight, because examples suggest that
dithering might loose its effect when any of the assumptions
are violated. The outline of the paper is as follows. The
dithered system and its averaged counterpart are introduced
in Section II. The main result on the approximation error
between the dithered and the averaged systems is presented
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and proved in Section III. Some comments and remarks are
finally given in Section IV.

II. PRELIMINARIES

The dithered and averaged systems are defined in this
section, together with the amplitude distribution function
of the dither signal.

A. Dithered System

The dithered feedback system is defined as

ẋ = f0(x, t)+
m

∑
i=1

fi(x, t)ni(gi(x, t)+δi), x(0) = x0. (1)

The state x belongs to R
q. The functions fi : R

q ×R →
R

q, i = 1, . . . ,m, are assumed to be globally Lipschitz with
respect to both x and t, i.e., there exists a positive constant
L f such that for all x1,x2 ∈ R

q and t1, t2 ≥ 0,

| fi(x1, t1)− fi(x2, t2)| ≤ L f (|x1 − x2|+ |t1 − t2|) .

We further assume that f0 is piece-wise continuous in t,
f0(0, t) = 0, ∀t ≥ 0 and

| f0(x1, t)− f0(x2, t)| ≤ L f |x1 − x2|

for all x1,x2 ∈R
q and t ≥ 0. Similarly, the functions gi : R

q×
R → R are assumed to have a common Lipschitz constant
Lg > 0, i.e.,

|gi(x1, t1)−gi(x2, t2)| ≤ Lg (|x1 − x2|+ |t1 − t2|)

for all x1,x2 ∈ R
q, t1, t2 ≥ 0. The nonlinearities ni : R → R

are assumed to be functions of bounded variation1. Hence,
ni can be a discontinuous function, but it is necessarily
bounded. Let Mn := maxi(|ni(0)| + TV (ni)) denote such
a bound, where TV (ni) is the total variation of ni. Each
dither signal δi : [0,∞) → R is supposed to be a p-periodic
measurable function bounded by Mδ.

When the differential equation (1) has a discontinuous
right-hand side (due to that some ni are discontinuous),
existence and uniqueness of solutions depend critically on
the considered definition of solution [10]. In the following
we assume that the differential equation (1) has at least
one absolutely continuous solution x(t,x0) on [0,∞). More-
over, by using Lipschitz conditions on fi, it is possible
to show that there exists a positive constant Lx such that
|x(t1)− x(t2)| ≤ Lx|t1 − t2| for almost all 0 ≤ t1 ≤ t2 < ∞.
Estimates of the Lipschitz constant Lx can easily be obtained
on any compact interval by using the assumptions above.
Analogously it can be computed an upper bound on fi:
| fi(x, t)| ≤ M f (see [11] for details).

1See [9] for an introduction to measure theory.



B. Amplitude Distribution Function

Definition 2.1: The amplitude distribution function of a
dither signal δ : [0,∞) → R is the function Fδ : R → [0,1]
defined as

Fδ(ξ) =
1
p

µ{t ∈ [0, p) : δ(t) ≤ ξ}, (2)

where µ denotes the Lebesgue measure.
When the amplitude distribution function is absolutely

continuous (with respect to its Lebesgue measure), the
amplitude density function fδ(ξ) is defined as

fδ(ξ) =
dFδ
dξ

(ξ). (3)

The amplitude density and amplitude distribution func-
tions play in a deterministic framework the same role as
probability density and cumulative distribution functions
play in a stochastic framework. In particular the amplitude
distribution function is bounded, monotonously increasing,
continuous from the right, and, if it is differentiable, its
derivative obviously corresponds to the amplitude density
function.

C. Averaged System

The averaged system is given by

ẇ = f0(w, t)+
m

∑
i=1

fi(w, t)Ni(gi(w, t)), w(0) = w0, (4)

where Ni is called the averaged nonlinearity,2 and it is
derived from the original nonlinearity ni and the dither
signal δi. We assume that there exists at least one absolutely
continuous solution w(t,w0) defined on [0,∞). We will later
show that this is the case when the amplitude distribution
function is absolutely continuous and has a bounded deriva-
tive, because then the averaged nonlinearity is Lipschitz
continuous.

The averaged nonlinearity is defined as follows3.
Definition 2.2: For a dither signal δ : [0,∞) → R and a

nonlinearity n : R→R the averaged nonlinearity N : R→R

is defined as

N(z) ,

∫

R

n(z+ξ)dFδ(ξ) (5)

where the integral is a Lebesgue–Stieltjes integral.
In many cases the averaged nonlinearity can be formulated
as a time average, as the following lemma states.

Lemma 2.1: [12], [13] The following equality holds
provided that either side exists:

N(z) =
1
p

∫

[0,p)
n(z+δ(s))ds. (6)

2In the literature, Ni is sometimes called the smoothed nonlinearity,
which however seems less appropriate here since Ni can be a discontinuous
function, as shown in Section IV.

3For the sake of simplicity from now on we will omit subscript i when
not necessary.

Two cases are of particular interest in the paper. First, when
the amplitude distribution function is absolutely continuous,
we have

N(z) =

∫

R

n(z+ξ)dFδ(ξ) =

∫

R

n(z+ξ) fδ(ξ)dξ,

which is always well defined under the given assumptions
on n.

Second, when the Lebesgue–Stieltjes measure corre-
sponding to the amplitude distribution function has a de-
composition (relative to the Lebesgue measure) into an
absolutely continuous part and a singular part, we have (if
n is continuous at z+ξk)

N(z) =
∫

R

n(z+ξ)dFδ(ξ)

=

∫

R

n(z+ξ) fδ(ξ)dξ+
Q

∑
k=1

n(z+ξk) fk,

where fk 6= 0 are the jump discontinuities corresponding
to the singular parts of the amplitude distribution function.
Note that square wave and trapezoidal dither signals have
this kind of amplitude distribution functions.

III. AVERAGING THEOREM

The next theorem states conditions under which the
averaged system approximates the behavior of the dithered
system for a sufficiently high dither frequency. The theorem
is stated for a finite time-horizon, but can be used to derive
infinite horizon stability results, cf., [7].

Theorem 3.1: Consider the dithered system (1) and the
averaged system (4) under the assumptions introduced in
the previous section, i.e., for each i = 1, . . . ,m,
(i) fi and gi are globally Lipschitz with Lipschitz con-

stants, respectively, L f and Lg,
(ii) f0 is globally Lipschitz with respect to x with Lipschitz

constant L f , and f0(0, t) = 0,
(iii) ni is a function of bounded variation and sup-norm

‖ni‖∞ ≤ Mn,
(iv) each dither δi is p-periodic with absolutely contin-

uous amplitude distribution function Fδi and LF ,

supζ∈R
| fδi(ζ)| < ∞.

Then the averaged nonlinearities Ni are Lipschitz continuous
and the averaged system (4) has a unique absolutely con-
tinuous solution on [0,∞). Moreover, for any given T > 0
and x0 ∈ R

n, it holds that

|x(t,x0)−w(t,x0)| = O(p), ∀t ∈ [0,T ].
The proof of the theorem is based on three lemmas. In the

first lemma we show that the averaged nonlinearity under
our assumptions is Lipschitz continuous, which implies that
there exists a unique absolutely continuous solution of the
averaged system on any finite time-horizon.

Lemma 3.1: Suppose n is of bounded variation and that
Fδ is absolutely continuous with LF = supξ∈R

| fδ(ξ)| < ∞.
Then

N(z) =
∫

R

n(z+ξ) fδ(ξ)dξ



is Lipschitz continuous with LN ≤ LF ·TV (n) and bounded
with ‖N‖∞ ≤ ‖n‖∞.

Proof: We have

|N(z1) − N(z2)|

=

∣

∣

∣

∣

∫

R

[n(z1 +ξ)−n(z2 +ξ)]dFδ(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

n(ξ) [dFδ(ξ− z1)−dFδ(ξ− z2)]

∣

∣

∣

∣

Let V (ξ) = Fδ(ξ− z1)−Fδ(ξ− z2). We have V (ξ) = 0 for
ξ 6∈ S = [−Mδ −max(z1,z2),Mδ −min(z1,z2)]. Hence, for
any I = [a,b] ⊃ S integration by parts gives

|N(z1) − N(z2)|

=

∣

∣

∣

∣

∫

I
n(ξ)[dFδ(ξ− z1)−dFδ(ξ− z2)]

∣

∣

∣

∣

=

∣

∣

∣

∣

n(b)V (b)−n(a)V (a)−
∫

I
V (ξ)dn(ξ)

∣

∣

∣

∣

≤ sup
ξ∈I

|V (ξ)|
∫

I
|dn(ξ)| ≤ LF |z1 − z2| ·TV (n)

where the last inequality follows because V (a) = V (b) = 0
and

|V (ξ)| =

∣

∣

∣

∣

∫ z1

z2

fδ(ξ−σ)dσ
∣

∣

∣

∣

≤ LF |z1 − z2|

The boundedness follows since

|N(z)| =
∣

∣

∣

∣

∫

R

n(z+ξ) fδ(ξ)dξ
∣

∣

∣

∣

≤ ‖n‖∞

∫

R

fδ(ξ)dξ = ‖n‖∞

since fδ is nonnegative.
It should be noticed that if n is Lipschitz then the

corresponding averaged nonlinearity N will be Lipschitz in-
dependently on the characteristic of Fδ, see [2]. Lemma 3.1
states that in order to have N Lipschitz when n is not
Lipschitz, we need further assumptions on the dither. The
next lemma is the key to the proof of Theorem 3.1.

Lemma 3.2: Suppose the signal y : [0, p] → R has Lips-
chitz constant Ly. Introduce a constant ỹ satisfying

min
s∈[0,p]

y(s) ≤ ỹ ≤ max
s∈[0,p]

y(s).

Suppose that Fδ is absolutely continuous with LF =
supξ∈R

| fδ(ξ)| < ∞. Then,

E ,

∣

∣

∣

∣

∫ p

0
n(−y(s)+δ(s))ds−

∫ p

0
n(−ỹ+δ(s))ds

∣

∣

∣

∣

≤ 2LF LyTV (n)p2,

(7)

where TV (n) is the total variation of n.
Proof: From the previous definition of Fδ we introduce

F−y+δ(ξ) =
1
p

µ({s ∈ [0, p) : −y(s)+δ(s) ≤ ξ}) ,

so that

E = p
∣

∣

∣

∣

∫

R

n(ξ)dF−y+δ(ξ)−
∫

R

n(ξ)dF−ỹ+δ(ξ)

∣

∣

∣

∣

.

By hypothesis

ỹ−Ly p ≤ y(s) ≤ ỹ+Ly p, ∀s ∈ [0, p]

and thus it follows that for any ξ ∈ R,

F−ỹ+δ(ξ−Ly p) ≤ F−y+δ(ξ) ≤ F−ỹ+δ(ξ+Ly p). (8)

On the other hand, since F−ỹ+δ is nondecreasing,

F−ỹ+δ(ξ−Ly p) ≤ F−ỹ+δ(ξ) ≤ F−ỹ+δ(ξ+Ly p). (9)

By combining that (8) and (9) and using that F−ỹ+δ(ξ) =
Fδ(ξ+ ỹ) is Lipschitz and non-negative, we get

F−y+δ(ξ)−F−ỹ+δ(ξ) ≤ F−ỹ+δ(ξ+Ly p)−F−ỹ+δ(ξ−Ly p)

≤ 2LF Ly p.

In an analogous way,

−2LF Ly p ≤ F−y+δ(ξ)−F−ỹ+δ(ξ).

So we can write

F−y+δ(ξ) = F−ỹ+δ(ξ)+V (ξ) (10)

with |V (ξ)| ≤ 2LF Ly p and thus

E = p
∣

∣

∣

∣

∫

R

n(ξ)dV (ξ)

∣

∣

∣

∣

. (11)

Since for s∈ [0, p] we have |y(s)− ỹ| ≤ Ly p and |δ(s)| ≤Mδ,

V (ξ) = 0, ∀ξ /∈ [−ỹ−Ly p−Mδ,−ỹ+Ly p+Mδ] , S.

The function V (ξ) is of bounded variation and continuous
from the right, since it is the difference of two functions that
satisfy both these properties. By hypothesis n is of bounded
variation with total variation TV (n) so we can integrate by
parts [14]:
∫

[a,b]
n(ξ)dV (ξ) = n(b)V (b)−n(a)V (a)−

∫

[a,b]
V (ξ)dn(ξ),

(12)

where right and left limits of n and V are used in order to
cope with discontinuities. If [a,b]⊃ S then V (a) =V (b) = 0,
and thus

E =p
∣

∣

∣

∣

∫

S
V (ξ)dn(ξ)

∣

∣

∣

∣

≤ 2p2LF LyTV (n), (13)

which proves the lemma.
Lemmas 3.1 and 3.2 are used to prove the following result

(see [11] for the proof).
Lemma 3.3: If the assumptions of Theorem 3.1 hold,

then there exist constants K̄, K̃ > 0 such that
∣

∣

∣

∣

∫ p

0
fi(x,s)ni(gi(x,s)+δi)ds−

∫ p

0
fi(w,s)Ni(gi(w,s))ds

∣

∣

∣

∣

≤ K̄
∫ p

0
|x(s)−w(s)|ds+ K̃ p2. (14)

Now we can proceed by showing that the approximation
error between the dithered and the averaged system can be
arbitrarily small by increasing the dither frequency, as stated
in the theorem.



Proof of Theorem 3.1. Consider the dithered system (1)
and the averaged system (4) on the time interval [0,T ] with
w0 = x0. By integrating the right-hand sides of (1) and (4),
we can write

|x(t)−w(t)| ≤
∫ t

0
| f0(x,s)− f0(w,s)|ds

+
m

∑
i=1

∣

∣

∣

∣

∫ t

0
[ fi(x,s) ·ni(gi(x,s)+δi)

− fi(w,s) ·Ni(gi(w,s)) ]ds
∣

∣

∣

∣

(15)

for all t ∈ [0,T ].
If we introduce l = bT/pc, the largest integer such that

l p ≤ T , then by using the periodicity of δi,

|x(t)−w(t)| ≤
∫ t

0
| f0(x(s),s)− f0(w(s),s)|ds

+
l−1

∑
k=0

m

∑
i=1

∣

∣

∣

∣

∫ (k+1)p

kp
[ fi(x(s),s)ni(gi(x(s),s)+δi(s))

− fi(w(s),s)Ni(gi(w(s),s)) ]ds
∣

∣

∣

∣

+V1(p), ∀t ∈ [0,T ],
(16)

where the last term is bounded as

|V1(p)| ≤ 2mM f Mn p.

The Lipschitz property of f0 gives
∣

∣

∣

∣

∫ t

0
[ f0(x(s),s)− f0(w(s),s)]ds

∣

∣

∣

∣

≤ L f

∫ t

0
|x(s)−w(s)|ds.

Next we notice that each integral in the sum of (16) can be
written

∫ p

0
[ fi(xk(s),sk)ni(gi(xk(s),sk)+δi(s))

− fi(wk(s),sk)Ni(gi(wk(s),sk))]ds

where the subscript k denotes a time translation: sk = s +
kp, xk(s) = x(s + kp) and similarly for w. Then applying
Lemma 3.3, each integral

∫ p

0
( fi(xk,sk)ni(gi(xk,sk)+δi(s)))ds

can be approximated by
∫ p

0
fi(wk,sk)Ni(gi(wk,sk))ds.

Indeed, the Lipschitz assumptions on the fi and gi are
uniform in t so Lemma 3.3 can be applied to all func-
tions xk. The approximation error has an upper bound
K̄

∫ p
0 |xk −wk|ds + K̃ p2. By summing all the contributions

given by the time intervals [kp,(k +1)p] ⊂ [0,T ], we get

|x(t)−w(t)| ≤ K
∫ t

0
|x(s)−w(s)|ds

+mK̃ pT +V1(p)+V2(p), ∀t ∈ [0,T ],

where K = L f +mK̄ = L f +m(MnL f +M f LNLg) and V2(p)
is bounded by

|V2(p)| ≤ mK̄(Mx +Mw)p,

where Mx and Mw are easily derived upper bounds in [0,T ]
of x and w, respectively, see [11] for details.

By applying Grönvall-Bellman Lemma [15], the theorem
follows since

|x(t)−w(t)| ≤ (mK̃T p+V1(p)+V2(p))eKT ∀t ∈ [0,T ]
(17)

where the right hand side is of order p.

IV. DISCUSSION

In this section we make some remarks on the assumptions
and applications of Theorem 3.1.

A. Smoothness of Amplitude Distribution Function

The assumption on absolute continuity of the dither
amplitude distribution function Fδi in Theorem 3.1 seems to
be necessary (when ni is not Lipschitz continuous). Recall
that for example a square wave violates this assumption.
Indeed, an example in [7] shows that a dithered and an
averaged relay system can have very different qualitative
behaviors, when a square wave dither is used, even if the
frequency of the dither is high. We showed in [8] that this
phenomenon can be detected also in real applications. Next
we provide a new example, which illustrates the importance
of having dither signals with absolutely continuous ampli-
tude distribution functions in nonsmooth systems.

Let us consider the dithered relay feedback system

ẋ(t) = Ax(t)+bsgn(bx(t)+R+δ(t)), x(0) = x0, (18)

with

A =

[

−1 −1
0 −1

]

, b =

[

0
1

]

, c =
[

−1 0
]

,x (19)

sgn(z) =











+1, z > 0
0 z = 0
−1, z < 0.

(20)

Let the external reference be constant R = 0.5 and let δ(t)
be a square wave dither of amplitude Mδ = 0.5, i.e.,

R+δ(t) =







1 mod (t, p) ∈ [0,
p
2
)

0 mod (t, p) ∈ [
p
2
, p).

(21)

In this case the averaged system is equal to

ẇ(t) = Aw(t)+bN(cw(t)+R), w(0) = w0 (22)

with

N(z) =































−1, z < −0.5
−0.5 z = −0.5
0, |z| < 0.5
0.5 z = 0.5
+1, z > 0.5.

(23)



To argue about the evolution of the dithered and averaged
systems, let us partition the state space into the following
three regions and comment on the dynamics in each of
them:

• Region Ω1 = {x : x1 < 0}: In this region n(cx+R+δ) =
1, so ẋ = Ax + b and the vector field of the dithered
system coincides with the vector field of the averaged
system. The equilibrium point of this system is given
by P1 = −A−1b = (−1,1)T .

• Region Ω2 = {x : x1 > 1}. In this region n(cx+R+δ) =
−1, so ẋ = Ax− b and the dithered system coincides
also here with the averaged system. The equilibrium
point of the system is P2 = A−1b = (1,−1)T .

• Region Ω0 = {x : 0 < x1 < 1}. In Ω0 the state does not
affect the output of the relay, so the dithered system
can be represented by the following linear system:

ζ̇(t) = Aζ(t)+bu(t), (24)

where u is a periodic signal that switches between −1
(when R+δ(t) = 0) and +1 (when R+δ(t) = 1). The
averaged system has an input equal to zero in this
region, i.e., ẇ(t) = Aw(t). Note that if w0 ∈ Ω0, the
solution w(t) = (w1(t),w2(t))T is given by

w1(t) = e−t [w1(0)− tw2(0)] , w2(t) = e−tw2(0),

as long as 0 < w1(t) < 1.
Now, consider solutions of the dithered and averaged sys-
tems as shown in Fig. 1. Let the initial conditions be equal
x(0) = w(0) and such that x2(0) = 0 and 0 < x1(0) < 1.
Then, the averaged system has a solution that lies on the x1
axis:

w1(t) = e−tx1(0), w2(t) = 0.

Hence, the averaged system tends to the origin.
For the solution of the dithered system, note that in

Ω+
0 = {x ∈ Ω0 : 0 < x1 < 1, x2 > 1} we have ẋ1 < 0 and

ẋ2 < 0 while in Ω−
0 = {x ∈ Ω0 : 0 < x1 < 1, x2 < −1} we

have ẋ1 > 0 and ẋ2 > 0, cf., vector fields indicated in Ω−
0

and Ω+
0 in Fig. 1. It then follows that the trajectory of the

dithered system must leave Ω0 \(Ω+
0

⋃

Ω−
0 ) by crossing the

line segment {x : x1 = 0, 0 ≤ x2 ≤ 1}. Moreover, in Ω0 the
dithered solution can be represented as

x(t) = eAt(x(0)−ζ0)+ζss(t)

where ζss is the steady state p-periodic solution of (24) and

ζ0 = (I − eAp)−1
∫ p

0
eA(p−s)bu(s)ds.

Since A is Hurwitz, x(t) will converge to ζss(t). It is possible
to choose a sufficiently small dither period p such that
ζss(t) /∈Ω2, because ζss(t)→ 0 as p→ 0. It is thus clear that
x(t) eventually will cross the x2 axis for some 0 ≤ x2 ≤ 1.
From Fig. 1, we conclude that the second orthant is an
invariant set for the dynamics in region Ω1. Moreover, since
the system matrix A is Hurwitz, the dithered solution x(t)
will tend toward the equilibrium point P1. Recall that the
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Fig. 1. Phase plane of a system with square wave dither. The indicated
trajectory of the dithered system tends to the equilibrium point P1. The
corresponding trajectory of the averaged system tends to the origin. Hence,
their characteristics are different.
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Fig. 2. Zoom of the phase plane in Fig. 1. Solutions of the dithered
system (solid line) and averaged system (dashed line).

averaged system converges to the origin. The behaviors of
the dithered system and the averaged system are hence quite
different. See simulations in Fig. 2 and Fig. 3 for further
comparison.

Even though we showed above that the dithered and the
averaged system can behave qualitatively different and that
this holds for any small dither period p, the example does
not prove that the conclusion of Theorem 3.1 does not
hold if the amplitude distribution function is not absolutely
continuous. The reason for this is that it does not follow
that the dithered state x crosses the vertical axis x1 = 0 in
[0,T ]. In particular, when increasing the dither frequency (as
required by Theorem 3.1), the crossing is not guaranteed on
a fixed interval [0,T ]. The example does illustrate, however,
how the dithered and the averaged solution bifurcate due to
the fact that the averaged nonlinearity is discontinuous. We
have discovered similar phenomena for limit cycles of the
averaged and the dithered systems [7], [16], [17].
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Fig. 3. Time evolution of x1 (solid line) and w1 (dashed line) of the
dithered and averaged systems, respectively.

If assumption (iv) weakened such that the boundedness
assumption on the density function is removed then the
amplitude distribution function is no longer Lipschitz con-
tinuous and the conclusions of the theorem do not hold. For
example, in [18] we have an example where an absolutely
continuous dither with unbounded density function gives an
averaged system that does not have a unique solution.

B. Applications

One of the main applications of Theorem 3.1 is to derive
stability results for the dithered system. For example, if the
averaged system is globally asymptotically stable, then it
is possible to show that the dithered system is practically
stable. Hence, a dither signal can be injected in order to
(practically) stabilize a system. We refer to [7], [4], [19]
for various results of this type.

In some applications it might be desirable to consider
more general dither signals than periodic ones. It is possible
to relax the assumption of Theorem 3.1 on the dither and
consider so called F-repetitive dither as defined in [2].
Recall that a dither signal δ is F-repetitive if there exists
an unbounded sequence {tk}, 0 = t0 < t1 . . ., such that the
maximal repetition p = supk(tk − tk−1) is bounded and the
amplitude distribution function of δ on (tk−1, tk), is equal to
the amplitude distribution function on (t0, t1).

Dither period, and amplitude and shape of the ampli-
tude distribution function can be used as design variables.
Theorem 3.1 shows that the dither period determines the
approximation between the dithered and averaged systems.
Moreover, for desired performance of the dithered system,
since each amplitude distribution function defines a class
of dither signals which gives rise to the same averaged
nonlinearity, it is more appropriate to design the amplitude
and the shape of the amplitude distribution function instead
of looking at the dither amplitude and shape. For instance,
the shape of the amplitude distribution function can be
critical for determining a compromise between the maximal

reduction of the nonlinear sector and the local attractivity
of an equilibrium. We will discuss this further in our future
work.

V. CONCLUSIONS

We have proved that dither can be efficiently used for the
averaging of a quite general class of nonsmooth nonlinear
systems, provided that the amplitude distribution function
of the dither is Lipschitz. This condition, which is not
needed for smooth Lipschitz nonlinear systems, suggests
that the dither shape must be carefully chosen for smoothing
common discontinuous systems such as mechanical systems
with friction, power electronic converters and other hybrid
systems.
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