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Abstract— Trajectories of controllable switched systems con- whereo is a function from nonnegative integers to a finite
sisting of linear continuous-time time-invariant subsystems are index setZ.
arbitrarily closely approximated by those of a controllable In this context, our focus is on the class of switched control
time-invariant non-switched polynomial systems. Examples are . . ) - . . .
obtained to show that the aforementioned switched control sys- systems ConS'St'_ng qf Ilneqr_ contlnut_)us-tlme tlme-lnvarlaqt
tems are not locally asymptotically stabilizable via continuous Subsystems, which in addition admits a certain algebraic
switching strategies. Finally, asymptotic feedback controllability —condition corresponding to controllability. This subclass is

of such switched control systems is established. denoted byW and is explicitly described in section 1.2.

|. Introduction B. The ClassW of Switched Control Systems

A fundamental requirement for the design of feedback Consider a switched control system consisting of linear
control systems is the knowledge of the structural prOpcontinuous-time time-invariant subsystems of the form
erties of the §witched control system under consideration. i = A;r + Bu )
These properties are closely related to the concepts of con-
trollability, observability, stability and stabilizability. There where for eachi € k), A; is ann x n matrices with real
have been many studies for switched systems primar”y (ﬁﬂtries andB is ann x m matrix. To avoid trivialities, it
stability analysis and design in [2], [5], [9]. In the caseiS assumed thaB = (e1|...[e;,) Wheree, (I € m) denotes
of controllability, studies for low-order switched controlthe /! element of the standard basis f&F. Moreover, the
systems consisting of linear subsystems have been presergpécel/ of admissible inputs of the switched control system
in [10]. Moreover, some necessary and sufficient conditionith subsystems of the form given in (2) is assumed to be
for controllability of switched control systems are presente®™.
in [6] and [15] under the assumption that the switching The reachability subspace A4;|B > of & = A;z + Bu is
strategy is fixed a priori. In [16], necessary and sufficiengiven by
condition for the contr_ollgbility a_nd reacha_bility of ;witched < AB>=B+ AB+ A2B+ .-+ AVB
control systems consisting of linear continuous-time time- !
invariant subsystems is presented. whereB5 is the column space dB. Define the finite sequence

of subspace§D;},", recursively as

A. The General Form of a Switched Control System Dy = <AB>+-+<AlB>
Mathematically, a switched control system can be de-Di = < AiDj_1 >+ + < AxDiy > forlen.
scribed by a differential equation of the form The necessary and sufficient condition for the controllability
B(t) = forn (2(t)) of a switched control system consisting of subsystems of the

form given in (2) isD,, = R™ [16]. To avoid trivial cases, it
where{f, : p € 7} is a family of sufficiently regular vector s assumed thab, £ R™.
fields fromR™ to R™ that is parameterized by some index Remark 1.1:If Dy # R™ andD,, = R”, thenl < m <
setZ, ando : [0,00) — 7 is a piecewise constant switching, — 2 andn > 3 wherem = dimB.

signal. . . . Definition 1.1: The classW is defined as the set of
The linear continuous-time version has the form switched control systems consisting of subsystems of the
. form given in (2) satisfying
t)y=A t 1
l’( ) U(t)x( ) ( ) DO # R" anan — R". (3)

where{A, : p € 7} is a family of n x n matrices with real
entries that is parameterized by some indexZBeand o is
as above. The discrete-time counterpart of (1) takes the fo

Generating controls and stabilizing controllers for linear
rswitched systems has been shown to be a nontrivial problem
ﬂ']. This is an attempt to show that it is, in fact, possi-
o(k+1) = Ayyz(k) ble to relate with a given controllable switched system, a
controllable non-switched time-invariant polynomial system
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Denote the set of polynomial control systems By For existw € W such that there are no constants(: € k) for

a givenw € W, a related non-switched time-invariantwhich ¢ with «;(z) = «; (i € k) is controllable.

controllable polynomial system € P of which trajectories The above example indicates the fact that for a giwea W

can be arbitrarily closely approximated by thosewafis with m < n—2, the related) is not controllable with constant

constructed. That is, for a givan € W, we aim at defining feedback functionsy;(z) = «; (i € k) in general. This

a relationS(S C W x P). motivates us to seek some nonnegative nonconstant functions
Examples are constructed to demonstrate the fact that, fior «;(x) (i € k) which make¢ nonlinear.

general, forw € W, controllability does not imply local

stabilizability via a continuous switching strategy. Since th€. Suitable Choices fora;(z) When m < n — 2

trajectories of¢ can be approximated arbitrarily closely by |t is required to choose smooth functions fox(z) (i € k)

those of w, the asymptotic feedback controllability af

to the origin is established via the related non-switched (@)

polynomial systemp.

Il. The General Form and the Controllability of ¢ € P
A. The General Form of ¢ € P

In this section, we investigate the general form¢o€E P
for a givenw € W. For a givenw € W, consider the non-
switched time-invariant polynomial systeimgiven by

k
T = (Z ai(x)AZ) T+ Bu (4)
i=1
where 4, (i € k) aren x n matrices,B = (e1]...|em)

and «;(x)

functions satlsfylngz ai(z) > 0 for all x € R™\{0}. The

functions«; (x) (i € @) are called feedback functions.

B. Controllability of Related ¢ € P whenm =n — 2

Depending on the values of and m, the related non-
switched polynomial system for a givenw € W becomes
linear or nonlinear. For a givem € W, a sufficient condition
for ¢ to be linear is established in lemma 2.1.

Lemma 2.1:Supposew € W with m = n — 2. Then,
there exist nonnegative constants (i € k) such that the
related non-switched systemwith o;(z) = a; (i € k) is
controllable.

Proof: See [12]. [ |

Example 2.1:Consider the switched control system with

n > 3 andm < n — 2 consisting of 2 subsystems =
A;x + Bufori=1,2whereB =¢; and A; = [ fﬂ
nxn

and A, = {agﬂ are given by
nxn
S i=g=2 o [ 1 (5)=(21)
v 0 elsewhere ) 0 elsewhere
(5)

It is left to the reader to verify thab, = R™ andD,, = R".
Thus,w € W.

Letting «; () = «; for ¢ = 1,2, in system¢ given in (4),
we get

T = (OélA1 + 042142) + Bu. (6)

Let the controllability matrix of ¢ given in (6) be
C. Straightforward calculations yield that for > 3,
ma)x (rank()) = [%] +1 < n. Thus, forn > 3, there

(ala eR

R — R (i € k) are nonnegative polynomial

such that
¢ is globally controllable for anyw € W and

(b) Zal > 0 for all z € R"\{0}.
_Jm ftm=2 @) _ o @)
Let r = { 9 ifm=1 . Also, letp,” = 2u,;’ where
(1) € Nfor all ¢ € k, [ € r. Then, in multi-index notation,
(0 o)
u”“z(u’fl, L ubr )and|p()|—p)—|— +p)f0r
all1 <i<k. Then the above requirements can be met by
letting ov; (x) = ci+ur"” for all (i € k) withu = (21, ..., z,)
satisfy
0] Hp( D —pD|, > 4 forall i # j(i,j € k),
Gy p? £0forallick, (1)

(iii)

where||.||; is the taxi-cab metric irZ".

c1>0andcl_0foralll<i§k.

D. Controllability of Related ¢ € P whenm < n — 2

Theorem 2.1:f w € W is a multi-input switched control
system(m > 2), then there exist distinct positive semi-
definite polynomials;(x) (i € k) satisfying (7) such that
the related non-switched polynomial systefmis globally
controllable.

Proof: Sincew € W is a multi-input switched control
system, it consists subsystems of the form given in (2) which
satisfy the condition given in (3) with > 2. Recall that the
related non-switched systemgiven in (4) has the form

m k
z) + Zgluz = (Z ozi(:c)Ai> z + Bu.
=1 i=1

By choosing «i; () (¢ € k) as in (7), straightforward
calculations yield that

(i)
ad;( )ai;

ad;?é”ad;?)f = AﬂH‘Z kix A;b for all i € k.

=1
(8)
Also note thatk; € N for all [ € r. Letting
i (1) i i
h; = ad;j%)acg:j...acxgé)acxﬁ )f fori € k,
it can be deduced that
() ; i i i

ad} hi=p p Y+ Dlpf L pD1Ah (9)

forall i € k,1 € r. Letting

Opn...

()
ad)! h;

hi = Aiby =
(1) (p( + 1)|p() ]

; -~ (10)
SOOI o
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for all ¢ € k,1 € r, from (8), it yields that Furthermore, K = {x(¢,0,%,4):t € [0,T]} is compact.
Thus, for givene > 0, there existsV € N such that

Az =h; = kg for all i € k. (11) N
=1 K c | B(z),¢) (14)

. . — , — j=1
It is obvious thath;, h; — > ,_, kixihy € S for all

i,7 € k. The basis vectors P can hence be obtained asWhere{%‘};V:l can be chosen as follows.
constant vector fields of the strong accessibility Lie algebra (a) 2, = 2, 2y = & and
S of ¢ by computing appropriate Lie brackets using (10)

and (11). Sinc®,, = R™, the constant vector fields of strong z; € K\{0} forall je N — 1. (15)
accessibility Lie algebra& has full rank. Thus, the system () If z, = & thenz; € B(a;_y,¢) for all j =
¢ with o;(z) given in (7) is globally controllable [11]. Also 2,..,N.

see [4], [7], [8], [12] and [14]. [ |

Suppose; (j € N) are given byx(t;,0,Z,4) = x; for all
Hitherto, the controllability of the clas$) of switched ppose; (j € IV) g ya(ts, 0,8, @) = ;

—1
control systems were considered except when= 1 and J € N. By fi; we denote;(z;). Let v, = (Zf:1 ﬁz‘j) :
n > 3. To analyze the controllability properties of such(By definition of a;(z) (i € k), v; (j € N —1) are well
systems, we adhere to a different strategy described defined since from (15) it follows thaij:1 Bi; > 0 for all
follows. jJeEN-—-1) X

Sincem = 1, in this case,B = e;. Without loss of For the sake of notational simplicity, by denatg, /¢ and
generality, it can be assumed that there existk andj € n %, we denote

such that t gt
Ay = 12 (A
i01 = 71€1 + ASE ( ) (Z al(.’I})Al) z+ B
If the system does not inherit this property, by means R i=1
of an appropriate coordinate transformation, (12) can be Prto= ¢ &
obtained. Moreover, by means of another coordinate trans- Zﬂ’U’AiI B
formation, (12) can be obtained as =1
_ Brjt Bt
Aiby = ea. (13) Vs = ¢A);I+B'7jﬁ 00 ¢A111+B’Yjﬁ

. ) ) Let|].|| be the Euclidean metric iR". For givenk, defined

Thgqrem Z.Z.If w € W is a switched contr.ol system.as above, there exist a pair- 0 and N (¢) such that for all

consisting of single-input linear subsystems which evolve 00 < € < &) and N(e)[N(e) > ]\7(@)] satisfying (14), the
R™ (n > 3) satisfying (13), then there exist distinct pOSitivefollowing are true.

semi-definite polynomialsy;(x) (i € k) satisfying (7) such )
that the related non-switched polynomial systeis globally Hwi(%‘) _ W(zj)H < (U —1)e L& (16)
controllable. N 2N

Proof: The lines of this proof are the same as those oind
theorem 2.1 with the exception that, in this case; 2. = ‘

17)

~ €
P (@) = v8(=)|| < 5
for t € [t;,t;41] andz € B(z;,¢) wherez; (j € N) are
E. Approximation of Trajectories of ¢ € P by Those of given asz; = x; = & and
weWw j+1—t] i (tj+1—t; i(tit1—t;
o | 21 = 03T (z) = SRR oot TR ()
In proposition 2.1, it is established that for a givere W,
the trajectories of the relatefl of the form given in (4) can
be arbitrarily closely approximated by thosewof
Proposition 2.1:For any w € W and T < oo, the .
trajectories of a related non-switched polynomial system From (16) and (17), it follows that _
in the form of (4) can be approximated arbitrarily closely g — (2] < 25 18
by those ofw for all ¢ € [0, 7. [[91(5) = v(z)]] N (18)

for j € N —1. (Note that (17) is a direct consequence of
Baker-Campbell-Hausdorff formula.)

fort e [tj,tj_._ﬂ andx € B(SCJ',E).
Moreover, the feedback functions;(z) (¢ € k) contain
information of the switching strategy that should beLettingt = ¢, in (18), it yields that||z; 11 — zj+1|] < %
employed in order to follow the trajectory af arbitrary for j € N — 1. Lettingj = N — 1, the assertion immediately
closely by the switched control systemof our interest. follows since||zy — zn|| < % <e
Proof: Supposeyp is globally controllable for a given
w € W. Thus for giveni € R"\{0} andz € R™, there Letting j = 1, (18) yields that
existd € R™ andT > 0 such thatx(7,0,%,4) = . €
|91 (1) = 95 (21)|| < N
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for t € [t1,t2] andz € B(x1,€). Note thatt; = 0. Thus, it  B. Non-Stabilizability of w € W via Continuous Switch-
can be easily understood the fact that steering the state frong Strategy

a for a small timet € [0, 7,] by means of the systemgiven A linear time-invariant controllable system is always sta-

in (4), is arbitrarily approximately equivalent to steering the,jjizaple and the system poles can be placed arbitrarily. On

state fromz, using the subsyst;:gns of €W given in (2)  the contrary, in the case of nonlinear systems, controllability
sequentially in such a way that the' subsystem is employed goes not even imply local stabilizability, in general.

for a duration ofg;1t with inputs scaled down by a factej. In example 3.1, it is demonstrated thatif < n — 2,

Sincefii = a;(w1) for i € k, it is obvious that the functions there existas € W for which all related non-switched time-
a;() (i € k) contain information of switching strategy® inyariant polynomial systems are not stabilizable.

Remark 2.1:In proposition 2.1, the functions;(z) (i € Example 3.1:Consider the switched systemwhose sub-
k) could be assumed to be nonnegative of arbitrary b‘étystems are of the form

sufficiently smooth functions. Nevertheless, they are assumed

to be nonnegative polynomials since this assumption enables r = Aix + Bu
us to establish the global controllability af easily in * = Asr + Bu
theorem 2.1. - where

Remark 2.2:Note that whent — oo, the arbitrary close
approximation of trajectories of a given € W and those 0000 0000
of a relatedy € P is not guaranteed by proposition 2.1. If A = 0000 Ay = 1000
¢ is globally controllable, it will not be an issue since the L 000 0000
state can be steered between any two arbitrary points in finite 0 100 0000
time. B =1,0,0,0]".

Theorelrfn 2i3:Sup2pct)§ewtiw. ist lated wrollabl It can be easily verified that the above system satisfies (3).
@) m = n-—2 henthere exists a related controliablery, .o\, - 11 Moreover, there exists a related non-switched

linear system qf which trajectories can be arbitrarilyglobally controllable polynomial system of the form
closely approximated by those aof.

(b) If w € W with m < n — 2, then there ex- &=y (z)A 12 4+ as(x)Asz + Bu (20)
ists a related globally controllable non-switched ] ) ] o )
polynomial system of which trajectories can peOf Which trajectories can arbitrarily closely approximated by

arbitrarily closely approximated by those of In those ofl_u wherea; (z) and_a2(:z:) are positive semi-definite
particular, the nonlinear system can be chosen fe°lynomial feedback functions.

be a homogeneous system. The system (20) can explicitly be given as
Proof: i = u
(@) This follows directly from proposition 2.1 and o = oao(z)m
lemma 2.1. 3 = aq(x)z
(b)  This is immediate from proposition 2.1, theorem By = ai(z)zs
2.1 and 2.2.
m f the system has the formi = F(z,u), then for all
nonnegative polynomials; (x) andas(z), F(R* x R) does
1. Stabilizability and Asymptotic Feedback not contain an open neighborhood of the origin. This implies
Controllability of Linear Switched Control Systems to ~ that there is no pair of positive semi-definite polynomial
the Origin feedback functions; () anda; () for which (20) is locally

stabilizable at the origin. (See [3].)
For everyn,m € N with m < n — 2, similar examples
can be constructed. Thus, by virtue of example 3.1, it implies
In theorem 2.3, it was proved that for a givene W that there existas € W with m < n — 2 for which there
with m = n — 2, there exists a related linear time-invarianis no related stabilizable non-switched polynomial system of

A. Approximation of trajectories of w € W by those of
stabilizable linear systems whenm =n — 2

controllable systeny given by which trajectories can be arbitrarily closely approximated by
k those ofw.
T = (Z aiAZ-) x+ Bu (29) Definition 3.1: A continuous switching signal is a
i=1 switching strategy which is employed in such a way that at

of which trajectories can be approximated arbitrarily closelyhe time of switching between two subsystems, the system
by those ofw wherea; (i € k) are nonnegative constants. vector field remains continuous.

Theorem 3.1:Let w € W with m = n — 2. Then, there Observe that any (possibly nonunique) trajectory of a
exists a related stabilizable linear time-invariant system of thewitched system which is forced with a continuous switching
form given in (19) of which trajectories can be approximatedtrategy, is always smooth.

arbitrarily closely by those ofv. Now, it is shown that controllability does not imply
Proof: This immediately follows from proposition 2.1 existence of a continuous switching strategy for an arbitrary
and lemma 2.1. B weWwithm<n—2viaa.
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Example 3.2:Consider the switched system given in
example 3.1. Consider the system

i = b1 (£) Ay + o (t) Ay + Bu 1)

where for any fixed € [0, 00), ¥1 (¢)¥2(t) = 0 and () +
Pa(t) = 1. If Y1 (t) = 1 andyps(t) = 0, then

i‘l = u
(tg = O
i3 = X (22)
j34 = X2

Lemma 3.1:Let w € W with m < n — 2 satisfies the
condition given in (24). Suppose that the feedback functions
a;(z) (i € k) of the related non-switched polynomial system
¢ in the form of (4) satisfy the condition given in (7). Also
supposeM is as in (25). Then for givexy € R™ and
R > 0, using ¢, the state can be steered framto y € M
(llyll = R) with piecewise constant inputs in finite time. M
is invariant for¢. Moreover,¢ is asymptotically stabilizable
on M.

Proof: See [13]. ]

Theorem 3.2:Suppose the switched control systeme

By the same argument used in example 3.1, it follows that thé’. Also suppose thatl; has the form given in (24). Then,
system given in (22) is not locally asymptotically stabilizablew can be used to steer the state satisfying the following. For

If ¥1(t) =0 andy(t) = 1, then

jfl = u
i‘Q = X
T4 = 0

By the same argument as above, it follows that the system
given in (23) is not locally stabilizable. Thus, the system
given in (21) is not locally asymptotically stabilizable via a

continuous switching strategy.

C. Asymptotic Feedback Controllability of w € W when
m<n—2

a givenzg € R, R > 0 andé > 0, there existd’ > 0 such
that
|z(T) —yl| < ¢

wherey € M with ||y|| = R andz(0) = . If z(T) € M,
then for everye there existsl” such that

||z(t)]| < ¢ whenevert > T

whereT is given by? = T+ 1 In (£). (A > 0 andK > R)
Proof:  Proposition 2.1 implies that for arbitrary
finite times, the trajectories afy can be arbitrarily closely
approximated by those of a related non-switched globally
controllable polynomial system of the form given in (4).
The global controllability of ¢ implies that for given

Since the condition given in (3) is not sufficient for thezo € R", R > 0 andy € M there existT < oo such
smooth local asymptotic stabilizability of (4) via a continuoughat z(t) = y € M if 2(0) = xo. Then, the first assertion
switching strategy, one has to switch to asymptotic feedbadfimediately follows from the proposition 2.1.
controllability of such systems to the origin which is de-

scribed as follows.

For the second assertion, sincg has the form given

A submanifold M of R™ which contains the origin, is in (24), it can be easily verified that, o/, (4) is a
constructed in such a way that, ai, the related non- controllable linear system, namely,

switched polynomial system is invariant and is asymp-

totically stabilizable to the origin. Moreover, of/, the

= ClAgll).’L‘ + Bju.

systems¢ and w are equivalent. Then, the arbitrary closeMoreover M is invariant for this system if

approximation of trajectories o € W and those of is

utilized to drive the state by means of from an arbitrary
xo € R™ to a pointy at the vicinity of a pointy where

n
_ ..
Up = —C1 Uy Tj
Jj=1

0#ye€ M. Ifye M, then the systemw can be employed since (4) is a controllable linear system &, its poles can
to steer the state frorp to the origin asymptotically along arbitrarily be placed such that

M. This phenomenon is called the asymptotic feedback

controllability of switched control systems to the origin.

O‘(ClAgll) + Blk) <=A<0 ()\ > 0)

Let w € V. Without loss of generality, in addition to the for some matrixk™ of orderm xm, . Then, from linear system

condition given in (3), it can be assumed th&t has the

form
(24)
where the pair(Agll),Bl) is controllable whereB; is the

submatrix of B consisting its firstm; (m; > m) rows.
Define the submanifold/ of R" as

M= {(z1,....,xn) E R zp = Xy, 41 =+ = 2, =0}
. (25)
wherer:{ m !f m =2
2 ifm=1

theory, it follows that

l|lz(t)|| < efort>T+ iln (K) :
€

IV. REFERENCES

[1] Blondel, V., Theys J., and Vladimirov A.A.,
Switched Systems that are Periodically Stable
may be Unstable Electronic Proceedings of
the 2002 MTNS Conference, (available at
http://mwww.nd.edu/  mtns/talksalph.htm),  Notre
Dame, August 2002.

5810



(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Branicky M.S., Multiple Lyapunov functions and
other analysis tools for switched and hybrid sys-
tems IEEE Transactions on Automatic Control 43(4)
(1998) pp.475-482

Brockett R.W., Asymptotic Stability and Feedback
Stabilization in Differential Geometric Control The-
ory, Ed. Brockett R.W., Millmann R.S. and Sussmann
H.J., Birkrauser 1983, pp.181-191

Brunovsky P., Lobry C.Controllabilite, Bang-Bang
Controllabilite Differentiable et Perturbation de Sys-
tems non LineairesAnn. Math. Pura. ed. Appl. 105
(1975) pp.93-119

Dayawansa W.P., Martin C.FA converse Lyapunov
theorem for a class of dynamical systems which
undergo switchinglEEE Transactions on Automatic
Control 44(4) (1999) pp.751-760

Ezzine J., Haddad A.HControllability and observ-
ability of hybrid systemsinternational Journal of
Control 49(6) (1989) pp.2045-2055

Krener A.J.,Generalization of Chow’s Theorem and
Bang-Bang Theorem to Nonlinear Control Problems
SIAM J. Contr. 12 (1974) pp.43-52

Kunita H., On the Controllability of Nonlinear Sys-
tems with Applications to Polynomial Systemppl.
Math. and Optim. 5 (1979) pp.89-99

Liberzon D., Morse A.S., Basic problems in stabil-
ity and design of switched systems, IEEE Control
systems 19(5) (1999) pp.59-70

Loparo K.A., Aslanis J.T., llajek OAnalysis of
switching linear systems in the plain, part 2, global
behavior of trajectories, controllability and attain-
ability, Journal of Optimization Theory and Applica-
tions 52(3) (1987) pp.395-427

Nikitin S., Global Controllability and Stabilization of
Nonlinear SystemaNorld Scientific Publishing Co.
Perera P.C., Dayawansa W.Rrhitrary Approxima-
tion of Trajectories of non-switched Homogeneous
Systems by Those of Linear Switched Systeimder
preparation for the submission to the SIAM Journal
of Control and Optimization

Perera P.C., Dayawansa W.Rsymptotic Feedback
Controllability of Linear Switched Systems to the
Origin, Under preparation for the submission to the
SIAM Journal of Control and Optimization
Sussmann H.JQrbits of Families of Vector Fields
and Integrability of Distributions J. Differ. Equat.
20 (1976) pp.292-315

Szigeti F.,A differential-algebraic condition for con-
trollability and observability of time varying linear
systemsProceedings of 31st conference on decision
and control (1992) pp.3088-3090

Zhendong S., Ge S.S., Lee T.Kontrollability and
Reachability criteria for switched linear systems
Automatica 38 (2002) pp.775-786

5811



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP19.3
	Page0: 5806
	Page1: 5807
	Page2: 5808
	Page3: 5809
	Page4: 5810
	Page5: 5811


