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Abstract— Trajectories of controllable switched systems con-
sisting of linear continuous-time time-invariant subsystems are
arbitrarily closely approximated by those of a controllable
time-invariant non-switched polynomial systems. Examples are
obtained to show that the aforementioned switched control sys-
tems are not locally asymptotically stabilizable via continuous
switching strategies. Finally, asymptotic feedback controllability
of such switched control systems is established.

I. Introduction

A fundamental requirement for the design of feedback
control systems is the knowledge of the structural prop-
erties of the switched control system under consideration.
These properties are closely related to the concepts of con-
trollability, observability, stability and stabilizability. There
have been many studies for switched systems primarily on
stability analysis and design in [2], [5], [9]. In the case
of controllability, studies for low-order switched control
systems consisting of linear subsystems have been presented
in [10]. Moreover, some necessary and sufficient conditions
for controllability of switched control systems are presented
in [6] and [15] under the assumption that the switching
strategy is fixed a priori. In [16], necessary and sufficient
condition for the controllability and reachability of switched
control systems consisting of linear continuous-time time-
invariant subsystems is presented.

A. The General Form of a Switched Control System

Mathematically, a switched control system can be de-
scribed by a differential equation of the form

ẋ(t) = fσ(t)(x(t))

where{fp : p ∈ I} is a family of sufficiently regular vector
fields from Rn to Rn that is parameterized by some index
setI, andσ : [0,∞) → I is a piecewise constant switching
signal.

The linear continuous-time version has the form

ẋ(t) = Aσ(t)x(t) (1)

where{Ap : p ∈ I} is a family of n× n matrices with real
entries that is parameterized by some index setI, andσ is
as above. The discrete-time counterpart of (1) takes the form

x(k + 1) = Aσ(k)x(k)
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whereσ is a function from nonnegative integers to a finite
index setI.

In this context, our focus is on the class of switched control
systems consisting of linear continuous-time time-invariant
subsystems, which in addition admits a certain algebraic
condition corresponding to controllability. This subclass is
denoted byW and is explicitly described in section 1.2.

B. The ClassW of Switched Control Systems

Consider a switched control system consisting of linear
continuous-time time-invariant subsystems of the form

ẋ = Aix+Bu (2)

where for each(i ∈ k), Ai is ann × n matrices with real
entries andB is an n × m matrix. To avoid trivialities, it
is assumed thatB = (e1|...|em) whereel (l ∈ m) denotes
the lth element of the standard basis forRn. Moreover, the
spaceU of admissible inputs of the switched control system
with subsystems of the form given in (2) is assumed to be
Rm.

The reachability subspace< Ai|B > of ẋ = Aix+Bu is
given by

< Ai|B >= B +AiB +A2
iB + · · ·+An−1

i B

whereB is the column space ofB. Define the finite sequence
of subspaces{Dl}n

l=0 recursively as

D0 = < A1|B > + · · ·+ < Ak|B >
Dl = < A1|Dl−1 > + · · ·+ < Ak|Dl−1 > for l ∈ n.

The necessary and sufficient condition for the controllability
of a switched control system consisting of subsystems of the
form given in (2) isDn = Rn [16]. To avoid trivial cases, it
is assumed thatD0 6= Rn.

Remark 1.1:If D0 6= Rn andDn = Rn, then1 ≤ m ≤
n− 2 andn ≥ 3 wherem = dimB.

Definition 1.1: The classW is defined as the set of
switched control systems consisting of subsystems of the
form given in (2) satisfying

D0 6= Rn andDn = Rn. (3)

Generating controls and stabilizing controllers for linear
switched systems has been shown to be a nontrivial problem
[1]. This is an attempt to show that it is, in fact, possi-
ble to relate with a given controllable switched system, a
controllable non-switched time-invariant polynomial system
with the property that all trajectories of the latter can be
approximated arbitrarily closely by trajectories of the given
switched system.



Denote the set of polynomial control systems byP. For
a given w ∈ W, a related non-switched time-invariant
controllable polynomial systemφ ∈ P of which trajectories
can be arbitrarily closely approximated by those ofw, is
constructed. That is, for a givenw ∈ W, we aim at defining
a relationS(S ⊂ W ×P).

Examples are constructed to demonstrate the fact that, in
general, forw ∈ W, controllability does not imply local
stabilizability via a continuous switching strategy. Since the
trajectories ofφ can be approximated arbitrarily closely by
those ofw, the asymptotic feedback controllability ofw
to the origin is established via the related non-switched
polynomial systemφ.

II. The General Form and the Controllability of φ ∈ P
A. The General Form of φ ∈ P

In this section, we investigate the general form ofφ ∈ P
for a givenw ∈ W. For a givenw ∈ W, consider the non-
switched time-invariant polynomial systemφ given by

ẋ =

(
k∑

i=1

αi(x)Ai

)
x+Bu (4)

where Ai (i ∈ k) are n × n matrices,B = (e1|...|em)
and αi(x) : Rn → R (i ∈ k) are nonnegative polynomial

functions satisfying
k∑

i=1

αi(x) > 0 for all x ∈ Rn\{0}. The

functionsαi(x) (i ∈ k) are called feedback functions.

B. Controllability of Related φ ∈ P when m = n− 2

Depending on the values ofn and m, the related non-
switched polynomial systemφ for a givenw ∈ W becomes
linear or nonlinear. For a givenw ∈ W, a sufficient condition
for φ to be linear is established in lemma 2.1.

Lemma 2.1:Supposew ∈ W with m = n − 2. Then,
there exist nonnegative constantsαi (i ∈ k) such that the
related non-switched systemφ with αi(x) = αi (i ∈ k) is
controllable.

Proof: See [12].
Example 2.1:Consider the switched control system with

n > 3 and m < n − 2 consisting of 2 subsystemṡx =
Aix + Bu for i = 1, 2 whereB = e1 andA1 =

[
a
(1)
ij

]
n×n

andA2 =
[
a
(2)
ij

]
n×n

are given by

a
(1)
ij =

{
1 i− j = 2
0 elsewhere

a
(2)
ij =

{
1 (i, j) = (2, 1)
0 elsewhere

(5)
It is left to the reader to verify thatD0 6= Rn andDn = Rn.
Thus,w ∈ W.

Letting αi(x) = αi for i = 1, 2, in systemφ given in (4),
we get

ẋ = (α1A1 + α2A2) +Bu. (6)

Let the controllability matrix of φ given in (6) be
C. Straightforward calculations yield that forn > 3,

max
(α1,α2)∈R2

(rank(C)) =
[

n
2

]
+ 1 < n. Thus, forn > 3, there

existw ∈ W such that there are no constantsαi (i ∈ k) for
which φ with αi(x) = αi (i ∈ k) is controllable.
The above example indicates the fact that for a givenw ∈ W
with m < n−2, the relatedφ is not controllable with constant
feedback functionsαi(x) = αi (i ∈ k) in general. This
motivates us to seek some nonnegative nonconstant functions
for αi(x) (i ∈ k) which makeφ nonlinear.

C. Suitable Choices forαi(x) When m < n− 2
It is required to choose smooth functions forαi(x) (i ∈ k)

such that
(a) φ is globally controllable for anyw ∈ W and

(b)
k∑

i=1

αi(x) > 0 for all x ∈ Rn\{0}.

Let r =
{
m if m ≥ 2
2 if m = 1 . Also, let p(i)

l = 2µ(i)
l where

µ
(i)
l ∈ N for all i ∈ k, l ∈ r. Then, in multi-index notation,

up(i)
= (up

(i)
1

1 , ..., u
p(i)

r
r ) and |p(i)| = p

(i)
1 + · · · + p

(i)
1 for

all 1 ≤ i ≤ k. Then, the above requirements can be met by
lettingαi(x) = ci+up(i)

for all (i ∈ k) with u = (x1, ..., xr)
satisfy

(i) ||p(i) − p(j)||t ≥ 4 for all i 6= j(i, j ∈ k),
(ii) p

(i)
r 6= 0 for all i ∈ k,

(iii) c1 > 0 andci = 0 for all 1 < i ≤ k.

(7)

where||.||t is the taxi-cab metric inZr.

D. Controllability of Related φ ∈ P when m < n− 2
Theorem 2.1:If w ∈ W is a multi-input switched control

system (m ≥ 2), then there exist distinct positive semi-
definite polynomialsαi(x) (i ∈ k) satisfying (7) such that
the related non-switched polynomial systemφ is globally
controllable.

Proof: Sincew ∈ W is a multi-input switched control
system, it consists subsystems of the form given in (2) which
satisfy the condition given in (3) withr ≥ 2. Recall that the
related non-switched systemφ given in (4) has the form

ẋ = f(x) +
m∑

l=1

glul =

(
k∑

i=1

αi(x)Ai

)
x+Bu.

By choosing αi(x) (i ∈ k) as in (7), straightforward
calculations yield that

adp(i)
r

gr
ad

p
(i)
r−1

gr−1 ...adp
(i)
2

g2
adp

(i)
1

g1
f = Aix+

r∑
l=1

klxlAibl for all i ∈ k.

(8)
Also note thatkl ∈ N for all l ∈ r. Letting

hi = adp(i)
r

gr
ad

p
(i)
r−1

gr−1 ...adp
(i)
2

g2
adp

(i)
1

g1
f for i ∈ k,

it can be deduced that

ad
p
(i)
l

gl hi = p
(i)
1 !p(i)

2 !...p(i)
l−1!(p

(i)
l + 1)!p(i)

l+1!...p
(i)
r !Aibl (9)

for all i ∈ k, l ∈ r. Letting

hil = Aibl =
ad

p
(i)
l

gl hi

p
(i)
1 !p(i)

2 !...p(i)
l−1!(p

(i)
l + 1)!p(i)

l+1!...p
(i)
r !

(10)



for all i ∈ k, l ∈ r, from (8), it yields that

Aix = hi −
r∑

l=1

klxlhil for all i ∈ k. (11)

It is obvious thathil, hj −
∑r

l=1 klxlhjl ∈ S for all
i, j ∈ k. The basis vectors ofDn can hence be obtained as
constant vector fields of the strong accessibility Lie algebra
S of φ by computing appropriate Lie brackets using (10)
and (11). SinceDn = Rn, the constant vector fields of strong
accessibility Lie algebraS has full rank. Thus, the system
φ with αi(x) given in (7) is globally controllable [11]. Also
see [4], [7], [8], [12] and [14].

Hitherto, the controllability of the classW of switched
control systems were considered except whenm = 1 and
n > 3. To analyze the controllability properties of such
systems, we adhere to a different strategy described as
follows.

Since m = 1, in this case,B = e1. Without loss of
generality, it can be assumed that there existi ∈ k andj ∈ n
such that

Aib1 = γ1e1 + γjej . (12)

If the system does not inherit this property, by means
of an appropriate coordinate transformation, (12) can be
obtained. Moreover, by means of another coordinate trans-
formation, (12) can be obtained as

A1b1 = e2. (13)

Theorem 2.2:If w ∈ W is a switched control system
consisting of single-input linear subsystems which evolve in
Rn (n > 3) satisfying (13), then there exist distinct positive
semi-definite polynomialsαi(x) (i ∈ k) satisfying (7) such
that the related non-switched polynomial systemφ is globally
controllable.

Proof: The lines of this proof are the same as those of
theorem 2.1 with the exception that, in this case,r = 2.

E. Approximation of Trajectories of φ ∈ P by Those of
w ∈ W

In proposition 2.1, it is established that for a givenw ∈ W,
the trajectories of the relatedφ of the form given in (4) can
be arbitrarily closely approximated by those ofw.

Proposition 2.1:For any w ∈ W and T < ∞, the
trajectories of a related non-switched polynomial systemφ
in the form of (4) can be approximated arbitrarily closely
by those ofw for all t ∈ [0, T ].

Moreover, the feedback functionsαi(x) (i ∈ k) contain
information of the switching strategy that should be
employed in order to follow the trajectory ofφ arbitrary
closely by the switched control systemw of our interest.

Proof: Supposeφ is globally controllable for a given
w ∈ W. Thus for givenx̂ ∈ Rn\{0} and ˆ̂x ∈ Rn, there
exist û ∈ Rm andT > 0 such thatx(T, 0, x̂, û) = ˆ̂x.

Furthermore,K = {x(t, 0, x̂, û) : t ∈ [0, T ]} is compact.
Thus, for givenε > 0, there existsN ∈ N such that

K ⊂
N⋃

j=1

B(xj , ε) (14)

where{xj}N
j=1 can be chosen as follows.

(a) x1 = x̂, xN = ˆ̂x and

xj ∈ K\{0} for all j ∈ N − 1. (15)

(b) If x1 = x̂, then xj ∈ B(xj−1, ε) for all j =
2, ..., N .

Supposetj (j ∈ N) are given byx(tj , 0, x̂, û) = xj for all

j ∈ N . By βij we denoteαi(xj). Let γj =
(∑k

i=1 βij

)−1

.

(By definition of αi(x) (i ∈ k), γj (j ∈ N − 1) are well
defined since from (15) it follows that

∑k
i=1 βij > 0 for all

j ∈ N − 1.)
For the sake of notational simplicity, by denoteψt

1, ψ̂t and
ψt

2, we denote

ψt
1 = φt

k∑
i=1

αi(x)Ai

x+Bû

ψ̂t = φt
k∑

i=1

βijAix

+Bû

ψt
2 = φ

βkjt
Akx+Bγj û ◦ ... ◦ φ

β1jt
A1x+Bγj û

Let ||.|| be the Euclidean metric inRn. For givenK, defined
as above, there exist a pairε̂ > 0 andN̂(ε̂) such that for all
ε(0 < ε < ε̂) andN(ε)[N(ε) > N̂(ε̂)] satisfying (14), the
following are true.∣∣∣∣∣∣ψt

1(xj)− ψ̂t(zj)
∣∣∣∣∣∣ < (j − 1)ε

N
+

ε

2N
(16)

and ∣∣∣∣∣∣ψ̂t(zj)− ψt
2(zj)

∣∣∣∣∣∣ < ε

2N
(17)

for t ∈ [tj , tj+1] and x ∈ B(xj , ε) wherezj (j ∈ N) are
given asz1 = x1 = x̂ and

zj+1 = ψ
(tj+1−tj)
2 (zj) = φ

βkj(tj+1−tj)
Akx+Bγj û ◦...◦φβ1j(tj+1−tj)

A1x+Bγj û (zj)

for j ∈ N − 1. (Note that (17) is a direct consequence of
Baker-Campbell-Hausdorff formula.)

From (16) and (17), it follows that∣∣∣∣ψt
1(xj)− ψt

2(zj)
∣∣∣∣ < jε

N
(18)

for t ∈ [tj , tj+1] andx ∈ B(xj , ε).

Letting t = tj+1 in (18), it yields that||xj+1 − zj+1|| < jε
N

for j ∈ N − 1. Letting j = N−1, the assertion immediately
follows since||zN − xN || < (N−1)ε

N < ε.

Letting j = 1, (18) yields that∣∣∣∣ψt
1(x1)− ψt

2(z1)
∣∣∣∣ < ε

N
.



for t ∈ [t1, t2] andx ∈ B(x1, ε). Note thatt1 = 0. Thus, it
can be easily understood the fact that steering the state from
x1 for a small timet ∈ [0, t2] by means of the systemφ given
in (4), is arbitrarily approximately equivalent to steering the
state fromx1 using the subsystems ofw ∈ W given in (2)
sequentially in such a way that theith subsystem is employed
for a duration ofβi1t with inputs scaled down by a factorγ1.
Sinceβi1 = αi(x1) for i ∈ k, it is obvious that the functions
αi(x) (i ∈ k) contain information of switching strategy.

Remark 2.1:In proposition 2.1, the functionsαi(x) (i ∈
k) could be assumed to be nonnegative of arbitrary but
sufficiently smooth functions. Nevertheless, they are assumed
to be nonnegative polynomials since this assumption enables
us to establish the global controllability ofφ easily in
theorem 2.1.

Remark 2.2:Note that whent → ∞, the arbitrary close
approximation of trajectories of a givenw ∈ W and those
of a relatedφ ∈ P is not guaranteed by proposition 2.1. If
φ is globally controllable, it will not be an issue since the
state can be steered between any two arbitrary points in finite
time.

Theorem 2.3:Supposew ∈ W.
(a) If m = n−2, then there exists a related controllable

linear system of which trajectories can be arbitrarily
closely approximated by those ofw.

(b) If w ∈ W with m < n − 2, then there ex-
ists a related globally controllable non-switched
polynomial system of which trajectories can be
arbitrarily closely approximated by those ofw. In
particular, the nonlinear system can be chosen to
be a homogeneous system.

Proof:
(a) This follows directly from proposition 2.1 and

lemma 2.1.
(b) This is immediate from proposition 2.1, theorem

2.1 and 2.2.

III. Stabilizability and Asymptotic Feedback
Controllability of Linear Switched Control Systems to

the Origin

A. Approximation of trajectories of w ∈ W by those of
stabilizable linear systems whenm = n− 2

In theorem 2.3, it was proved that for a givenw ∈ W
with m = n − 2, there exists a related linear time-invariant
controllable systemφ given by

ẋ =

(
k∑

i=1

αiAi

)
x+Bu (19)

of which trajectories can be approximated arbitrarily closely
by those ofw whereαi (i ∈ k) are nonnegative constants.

Theorem 3.1:Let w ∈ W with m = n − 2. Then, there
exists a related stabilizable linear time-invariant system of the
form given in (19) of which trajectories can be approximated
arbitrarily closely by those ofw.

Proof: This immediately follows from proposition 2.1
and lemma 2.1.

B. Non-Stabilizability of w ∈ W via Continuous Switch-
ing Strategy

A linear time-invariant controllable system is always sta-
bilizable and the system poles can be placed arbitrarily. On
the contrary, in the case of nonlinear systems, controllability
does not even imply local stabilizability, in general.

In example 3.1, it is demonstrated that ifm < n − 2,
there existsw ∈ W for which all related non-switched time-
invariant polynomial systems are not stabilizable.

Example 3.1:Consider the switched systemw whose sub-
systems are of the form

ẋ = A1x + Bu
ẋ = A2x + Bu

where

A1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 A2 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


B = [1, 0, 0, 0]T .

It can be easily verified that the above system satisfies (3).
Thus,w ∈ W. Moreover, there exists a related non-switched
globally controllable polynomial system of the form

ẋ = α1(x)A1x+ α2(x)A2x+Bu (20)

of which trajectories can arbitrarily closely approximated by
those ofw whereα1(x) andα2(x) are positive semi-definite
polynomial feedback functions.

The system (20) can explicitly be given as

ẋ1 = u
ẋ2 = α2(x)x1

ẋ3 = α1(x)x1

ẋ4 = α1(x)x2

If the system has the forṁx = F (x, u), then for all
nonnegative polynomialsα1(x) andα2(x), F (R4×R) does
not contain an open neighborhood of the origin. This implies
that there is no pair of positive semi-definite polynomial
feedback functionsα1(x) andα2(x) for which (20) is locally
stabilizable at the origin. (See [3].)

For everyn,m ∈ N with m < n − 2, similar examples
can be constructed. Thus, by virtue of example 3.1, it implies
that there existsw ∈ W with m < n − 2 for which there
is no related stabilizable non-switched polynomial system of
which trajectories can be arbitrarily closely approximated by
those ofw.

Definition 3.1: A continuous switching signal is a
switching strategy which is employed in such a way that at
the time of switching between two subsystems, the system
vector field remains continuous.

Observe that any (possibly nonunique) trajectory of a
switched system which is forced with a continuous switching
strategy, is always smooth.

Now, it is shown that controllability does not imply
existence of a continuous switching strategy for an arbitrary
w ∈ W with m < n− 2 via a .



Example 3.2:Consider the switched systemw given in
example 3.1. Consider the system

ẋ = ψ1(t)A1x+ ψ2(t)A2x+Bu (21)

where for any fixedt ∈ [0,∞), ψ1(t)ψ2(t) = 0 andψ1(t)+
ψ2(t) = 1. If ψ1(t) = 1 andψ2(t) = 0, then

ẋ1 = u
ẋ2 = 0
ẋ3 = x1

ẋ4 = x2

(22)

By the same argument used in example 3.1, it follows that the
system given in (22) is not locally asymptotically stabilizable.

If ψ1(t) = 0 andψ2(t) = 1, then

ẋ1 = u
ẋ2 = x1

ẋ3 = 0
ẋ4 = 0

(23)

By the same argument as above, it follows that the system
given in (23) is not locally stabilizable. Thus, the system
given in (21) is not locally asymptotically stabilizable via a
continuous switching strategy.

C. Asymptotic Feedback Controllability of w ∈ W when
m < n− 2

Since the condition given in (3) is not sufficient for the
smooth local asymptotic stabilizability of (4) via a continuous
switching strategy, one has to switch to asymptotic feedback
controllability of such systems to the origin which is de-
scribed as follows.

A submanifoldM of Rn which contains the origin, is
constructed in such a way that, onM , the related non-
switched polynomial systemφ is invariant and is asymp-
totically stabilizable to the origin. Moreover, onM , the
systemsφ and w are equivalent. Then, the arbitrary close
approximation of trajectories ofw ∈ W and those ofφ is
utilized to drive the state by means ofw from an arbitrary
x0 ∈ Rn to a point y at the vicinity of a pointy where
0 6= y ∈M . If y ∈M , then the systemw can be employed
to steer the state fromy to the origin asymptotically along
M . This phenomenon is called the asymptotic feedback
controllability of switched control systems to the origin.

Let w ∈ W. Without loss of generality, in addition to the
condition given in (3), it can be assumed thatA1 has the
form  A

(1)
11 | A

(1)
12

−−−− −− −−−−
0 | A

(1)
22

 (24)

where the pair(A(1)
11 , B1) is controllable whereB1 is the

submatrix ofB consisting its firstm1 (m1 ≥ m) rows.
Define the submanifoldM of Rn as

M = {(x1, ..., xn) ∈ Rn|xr = xm1+1 = · · · = xn = 0}
(25)

wherer =
{
m if m ≥ 2
2 if m = 1

Lemma 3.1:Let w ∈ W with m < n − 2 satisfies the
condition given in (24). Suppose that the feedback functions
αi(x) (i ∈ k) of the related non-switched polynomial system
φ in the form of (4) satisfy the condition given in (7). Also
supposeM is as in (25). Then for givenx0 ∈ Rn and
R > 0, usingφ, the state can be steered fromx0 to y ∈ M
(||y|| = R) with piecewise constant inputs in finite time. M
is invariant forφ. Moreover,φ is asymptotically stabilizable
on M .

Proof: See [13].
Theorem 3.2:Suppose the switched control systemw ∈

W. Also suppose thatA1 has the form given in (24). Then,
w can be used to steer the state satisfying the following. For
a givenx0 ∈ Rn, R > 0 andδ > 0, there existsT > 0 such
that

||x(T )− y|| < δ

wherey ∈ M with ||y|| = R andx(0) = x0. If x(T ) ∈ M ,
then for everyε there existsT̂ such that

||x(t)|| < ε whenevert > T̂

whereT̂ is given byT̂ = T+ 1
λ ln

(
K
ε

)
. (λ > 0 andK > R)

Proof: Proposition 2.1 implies that for arbitrary
finite times, the trajectories ofw can be arbitrarily closely
approximated by those of a related non-switched globally
controllable polynomial systemφ of the form given in (4).
The global controllability of φ implies that for given
x0 ∈ Rn, R > 0 and y ∈ M there existT < ∞ such
that x(t) = y ∈ M if x(0) = x0. Then, the first assertion
immediately follows from the proposition 2.1.

For the second assertion, sinceA1 has the form given
in (24), it can be easily verified that, onM , (4) is a
controllable linear system, namely,

ẋ = c1A
(1)
11 x+B1u.

MoreoverM is invariant for this system if

ur = −c1
n∑

j=1

a
(1)
rj xj .

Since (4) is a controllable linear system onM , its poles can
arbitrarily be placed such that

σ(c1A
(1)
11 +B1K̂) < −λ < 0 (λ > 0)

for some matrixK̂ of orderm×m1. Then, from linear system
theory, it follows that

||x(t)|| < ε for t > T +
1
λ

ln
(
K

ε

)
.
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