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Unknown input observers for switched linear discrete time systems

Gilles Millerioux and Jamal Daafouz

Abstract—This paper is concerned with unknown input where z, € R" is the state,u, € R" is the control
observers in the case of switched linear discrete time systems. jnput and v, € R™, m < n, iS the output vector.

Sufficient conditions of global convergence of such kind of {(A;,B;,C;,E;) : i € &} are a family of matrices of
19 19 3] 1 .

observers along with a systematic procedure to design the iate di . terized b ind t
gains of the observers is proposed. A discussion about the appropriate dimensions parameterize y an index se

existence of such observers is provided. & ={1,2,.,N}anda : R" x N — £ is a switching
signal ¢ = a(xy, k)). The switching sequence may also be
I. INTRODUCTION generated by any strategy or supervisor. We assume that the

In recent years, the study of switched systems haswitching signal is unknown a priori but real time available.
received a growing attention in control theory and practice.
By switched systems we mean a class of hybrid dynamical The problem considered in this paper can be sketched
systems consisting of a family of continuous (or discreteas follows : design an unknown input observer such that
time subsystems and a rule that governs the switchintge reconstructed stafe. asymptotically coincides withy,
between them [1]. Most of the contributions in this fieldgiven anyu; and any initial statet :
deal with stability or controllability analysis and some
control design problems [2], [3], [4]. On the other hand, Jm [z — 2]l =0 Vo and Vuy @
Unknown Input Observers (UIO) have been widely studied .
and commonly used in engineering applications. One d- The standard linear case
the most well-known practical interest of such kind of Consider the autonomous discrete-time linear system :
observers is the fault detection and isolation problem.
Nevertheless, UIO have been largely investigated for { Tpy1 = A+ Bug 3)
linear systems [5][6][7][8] or bilinear systems [9]. To Yk = Cuy

our knowledge, there is no result related to the design &fhe observer guaranteeing the global convergence of the

UIO for switched systems. This motivates the present work, . A .
state reconstruction erref, = xx — Iy, is known to get the

Tpg1 = Zey1 + QUi (4)

for state reconstruction of switched linear discrete time 2641 = N2 + Ly,

systems. Conditions of global convergence of the observer
are derived. It is shown that the conditions differ from thewvith the matrices verifying :
linear case in a substantial way and are based upon a LMI

In this paper, an unknown input observer is proposeg)rm : {

P=1,-QC
approach. N — PA—_KC )
Notation L=K+NQ

Throughout the paper, for a symmetric matiix X > 0 |t is called an Unknown Input Observer sineg is not
indicates thatX is positive definite and the symb¢s)”  available. Details concerning unknown input observers for
denotes each of its symmetric block.| stands for the linear discrete-time systems are provided for instance in [6].
Euclidean norm.XT corresponds to the Moore-Penrose

generalized inverse ok given by XT = (X7 X))~ X7, It can be shown by direct substitutions that the dynamics
of the state reconstruction error obeys the following equa-
ll. PROBLEM STATEMENT tion: )
We consider switched linear systems with the following k41 = (PA = KC)ex + PBuy ()
dynamics : where P and K are two matrices which must ensure the
_ 4 L E +B convergence o€, towards zero.
{ 5’““ B Caik o otk (1) A necessary and sufficient condition for the existence of the
k = alk

observer (4) is given by the following theorem :
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On one hand, the conditioila) ensures the existence of When@Q);, i € &, satisfies (13), (11) turns into :
a gain@ causing the ternPB to vanish, that is a gai
be?ng s%lution o% : gl ert1 = (Pada — KaCaex (14)

B=QCB 7 Compared with the linear case, a major distinction lies

in the computation of the matriceB;, and K;, i € &, for
achieving the global convergence. It is worth emphasizing
Q =B(CB)' +Y(1,, — (CB)(CB)") (8) that ensuring each linear dynamics to be stable does not
necessarily guarantee the stability of the switched linear
dynamics. As a consequence, the conditiaj of Theorem
1 does no longer hold. That's why a new condition has to
be derived. Moreovery; involved in P; plays the role of
a parameterization. In some special cases discussed in the

In order to extend such an observer to switched Iinei}ext section, an arbitrary choice &f may not be suitable
systems, it is convenient to rewrite (4) into a single recur>€€ [2] in the linear case). To overcome the problem of an
sion : arbitrary choice of;, the computation of a suitablé must

be included in the design procedure. From this perspective,
Tpy1 = (PA— KCO)ip + Kyr + Qi1 (9) the dynamical matrix involved in the state reconstruction
error (14) is rewritten as follows :

The general solution of (7) is of the form :

with Y an arbitrary matrix.

On the other hand, the additional conditien) ensures the
existence of a gaid which causes the matrirA — KC
to be Hurwitz and so the erray, to converge towards zero.

B. The switched linear case

For system (1), a natural extension of the unknown €1 = (Ao — KoCo)er (15)

linear input observ'er structur.e is proposed in this paper... A = A — Bi(CiBi) G As, K = [K; Yi] and Gy =
and gets the following dynamics.

[CZT (CiAi)T}T, 1e€€.

Let note that the rank condition of Proposition 1 ensures
also (C;B;)' to exist. Conditions of global stability of (15)
are stated in the following Theorem.

:i'kJrl = (PaAa - Kacoz)fi'k + Kayk + QaykJrl + P,E,
(10)
with P, =1, — Q.CL,.
Subtracting (10) from (1) yields : Theorem 2. The unknown input observer (10) ensuring
that the errore converges globally towards the origin exists
ék41 = (Pada — KaCaler + PoBat (1) and can be designed whenever the following conditions are
with ¢, = z, — 25 the state reconstruction error. In thesatisfied :
next section, conditions of global convergence of this erroib) rank(C;B;) = rank(B;) =r
towards the origin are derived. It will be shown that thesgb) there exist matrice&’;, F; and symmetric matriceS;
conditions differ from the linear case in a substantial way. such that the LMI's (16) are feasible

1. MAIN RESULT CJ‘,L-+G1.T~—Si (o)T 50 (16)
First, in order to achieve an input independence ATG; - CTF;, S
property, the terms?,B;, ¢ € &, in (11) have to vanish. .
. ; . . V(i,j) € E X E.
Thus, following reasonings of the linear case, it can be ) ) ) , -
stated the following proposition. Mor?o:\F/er,Tthe resulting gains are directly given By =
(G )T FL

Proposition 1. For (1)-(10), the state reconstruction error Pro0f 1. ib) ensures the input independence property ac-

equation (11) is input independent whenewenk (C; B;) = cording to Prqposition 1. The proof of iib) follows similar
rank(B;) =r. reasoning as in [10].

In fact, this proposition ensures that for all € &, The observer design involves the computation of t_he
equationsP,B; = 0 can be solved. Indeed, far ¢ &£  Matricesk; andY; which can be extracted from the parti-
P;B; = 0 entails that); is subject to : tioning K; = [K; Y;]. The matrices); are then computed

from (13).
B; =QC;B; (12)
N ) _ IV. OBSERVABILITY AND DETECTABILITY
Proposition 1 ensures the existence of the matriQes ISSUES

solutions of (12). The general expression(@fis : . " . .
(12) g P @ The following proposition gives a necessary condition of

Qi = Bi(CiBy)" +Yi(1,, — (C;B;)(CiB;)") (13) existence of the proposed unknown input observer.

with Y; an arbitrary matrix; € £. A thorough discussion Proposition 2. A necessary condition for the existence
about the choice of; will be subsequently carried out. ~ of the proposed unknown input observer is that the pairs
(4;,C;) are detectable.

5803



The feasibility of (16) includes the necessary condition ¢) m > r
of Proposition 2. Indeed, according to Theorem 2|n this case, the observability matrice3’ may be of
satisfying (16) is equivalent to guarantee stability of thenaximal rankn. Consequently, all the eigenvalues could be
error dynamics whatever the switching rule can be. Thiarbitrarily fixed. Besides, if the conditioiib) of Theorem
incudes the case where the switching rule leads to a linearis feasible then the matricd3 and K; of the observer
behavior. Henced; — K;C; has to be Hurwitz, that is the (10) are designed from both the solutions of (16) and the
pairs (A;, C;) must be detectable. solutions of (13).

. . V. ILLUSTRATIVE EXAMPLE
The matrixY; plays an important role for the necessary ) )
conditions. For some special setting &f, the pair We want to design an unknown input observer for a

(P;A;,C;) might not be detectable, preventing (14) fromSYStem given by (1) withy;, = [z}, zf, 23T

being stable. Based on the new formulation (1%}, 0 089 -2

belongs to the unknown matrices throudfi. And yet, - Ai=| hi 089 0 |, h=—-1.28 hy =195
since feasibility of (16) includes the necessary condition —0.1 0 01

of detectability of Proposition 2 as mentioned before, the =~ £1=[000]" andE; = [0 — 6(a+ ) 0]
solution of (16) enforced; to belong to an admissible set - the input matrix is chosen to be constant such that
of solutions. As a result, the problem of a suitable choice Bi=By=[1 -21]"
of Y; does no longer hold. The switching rule is defined by:
-a=1Iif x}g <6

Moreover, additional remarks can be made according to - « =2 if 2}, > 6
the respective dimensions of the input and outpandm:

am<r
In this case, the condition of Proposition 1 which is a
necessary condition is not fulfilled. The observer (10?1 =
cannot exist.

A. First setup

The considered setup is related to the output matrix
Co=[11 —1] (m=1).

Let us apply Theorem 2. The first conditiob) is
b) m = r satisfied sincerank(C;B;) = rank(B;) = 1, i = 1,2.
In this case(C;B;)T = (C;B;)~! and soC;A; = C;A; — This setup correspon.ds to the case = r = 1. Thus,
C;B;(C;B;')C;A; = 0. The observability matrice§)? according tob) Of Section IV,rank(Q7) = rank(C;) — !
reduce tol: and only one eigenvalue of the state reconstruction error
C; matrix A; — K;C; can be fixed arbitrarily. The two
[ 05, (n—1)xn } remaining eigenvalues arg-3.0427,0.6127} for i = 1
and {—0.06837,—0.1313} for i = 2. Since one of the
eigenvalues has a modulus greater than one i(fer 1),
he pair (A;,C}) is not detectable and according to the

QO:

Hence,rank(Q?) = rank(C;) = m < n which implies
that all the pairg 4;, C;) are unobservable. This means tha
there existn —m eigenvalues Wh'Ch are kept unchange ecessary condition of Proposition 2, the observer (10)
whatever beK;. On one hand, if at least one of thoseCannot exist.
fixed eigenvalues get a modulus greater than one, the pairs
(A;,C;) are not detectable and in view of Proposition 2,
the observer (10) cannot exist. On the other hand, if all th8. Second setup
fixed eigenvalues get a modulus less than one, conditionThe considered setup is related to the output matrix
(16) is likely to be feasible. = — 11 -1 (m = 2)
Furthermore, sinc€;A; = 0, one has : ! 2 2 -1 1 :

A, - K;C; = A; — K;C; — Y,C;A; = A; — K;C; (17)  Letusapply Theorem 2. The first conditith) is satisfied

sincerank(C;B;) = rank(B;) = 1, i = 1,2. This setup

Consequently, the solution of (16) does no longer deperirresponds to the case > r. Thus, according ta@) of
on Y; which can be set to zero. From a practical point ofection IV and sinceank(Q{) = 3, the pairs(A;, C;) are
view, owing to numerical problems; A; might not strictly observable and the necessary condition of Proposition 2 is

be zero, causing (16) to be bad conditioned. Taking int§at'5f'ed' By solving (16), it turns out thib) is feasible

) ; ) nd yields :
consideration (17), (16) can be equivalently reformulated : y2 3 2 3
0 0 0 0
Gi+Gl =8 (o) ~0 (18) Ki1=403166 0483 5, K,=4 08295 00236 5
AT, —C"F,  S; 0.3166 —0.4893 0.8295 0.0236
and the resulting gains are directly given by
K; = (GP)TF!, i € €. The gainsQ; reduce to 02008  0.6647 ® 09074 —11019 >
Qi = Bi(C;iB;)~! according to (13). Vi =4 —05069 1.4647 5, Vo =4 —1.2495 3.3212 5
—0.8646 1.0257 —1.2358  1.9537
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e2

From (13), one obtains : cannot be transmitted to ttreceiverfor security preserva-
2

0.3333  0.3333 tion purposes. Hence, thieceiversystem must be designed

Q1=Qs=% 02060 —0.3176 5 such that the information can be unmasked, given the only
—0.4606  0.0157 available output data consisting of a function of the state
vector.

Simulation results are performed with, given in Figure
1. The observer behavior is depicted on Figure 2. REFERENCES
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Fig. 2. The switching rulex and the observer error components

VI. CONCLUSION

The work presented in this paper deals with unknown
input observers for switched linear discrete time systems.
The existence of such observers, the conditions of global
convergence along with a systematic procedure to com-
pute the gains have been derived. The computation of the
observer gains is performed by solving a tractable set of
Linear Matrix Inequalities. Th extension of this work to
nonlinear polytopic systems have been performed in [11]
where the application to chaos synchronization of discrete-
time systems for communications purposes is addressed.
The information to be masked is embedded in the chaotic
dynamics of tharansmitterand acts as an external input. It
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