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Observer Design for Linear Switched Control Systems

Weitian Chen and Mehrdad Saif

Abstract—Full and reduced order observers for a class Although the observability of switched control systems is
of linear switched control systems (LSCS) are studied in  jmportant and has been studied in recent years (see [9] and
this paper. A “sub-observer” is first designed for the i—th e references list therein), it is not always necessary for the
subsystem. Then, a switching observer for an LSCS is con- . . .
structed by simply picking the i—th sub-observer whenever design of opservers_. To estlmatg the states, we _c.an.deS|gn
the :—th Subsystem is active. In the case of a full order observers dlreCt|y without analy2|ng the Observablllty if we
observer, when subsystems are detectable, the state estimationcan guarantee the state estimation error will converge to
error can converge to zero if the dwell time is large enough. zero. This is the proposed strategy of this paper. We study
Under certain conditions, the state estimation error may even the observer design problem for a class of linear switched
converge to zero exponentially for arbitrary switching. Unlike
classical linear systems where full order and reduced order control systgms (LSC_S)' Both.full order and reduced order
observer can be designed under the same conditions, the observers will be designed without using a common Lya-
design of a reduced order observer for an LSCS, besides punov function based observer design approach. The state
detectability/observability, requires additional condition that  estimation error dynamics resulting from both full order
the gains for all reduced order sub-observers need to be chosen observers and the reduced order observers will be shown

the same. In such a case, similar stability results as those of to b loball totically stabl h the dwell ti
full order observers are obtained for reduced order observers, 0 P€ globally asymptotically stable when the dwell tme

Finally, examples and simulation results are given to show the IS large enough. The stability results for both classes of

effectiveness of the proposed observers. observers under arbitrary switching will also be presented.
This is achieved under certain conditions which up to now
. INTRODUCTION were enjoyed only by common Lyapunov function based

: . . observer design approach.
As a special class of hybrid systems, switched systems

have received a great deal of attention. The stability and [I. SWITCHED CONTROL SYSTEMS
stabilization problems for these systems have been studiedwe consider a class of switched linear control systems
extensively and useful results are now available. DetailgLCS) with M subsystems described as
achievements in this research field can be found in survey
papers by Decarlo,et.al. [1] and Liberzon and Morse [2].
Unlike stability and stabilization problems, observer de-
sign problem has received less attention and only a few re- y = Comyz,u€RPyeR™ 1)
sults are available. Some researchers have designed switchy here z,u, and y are the system state, input and

ing observers for non-switched systems. The main idea is Butput, respectively. Matricesd;, B; and C; with
R . . ’ . Ty [ )
use switching to solve the observer design problem for more_ "¢ _ {1,2,---, M} aren xn, n x p andm x n constant
bl ) !

complex systems, see [4], and/or to improve eStimatiOH]atrices, respectively. The functiar(t) : [0,00) — S is a

performance, see [5]. S _ iecewise constant function of time and/or outputs, called a
An observer for continuous-time linear switched controkyitching rule The corresponding system fot) = i € S

system based on co-prime factorization approach is dgs called thei—th subsystem. In such a case, we also say
signed in [6]. The main idea is to construct a cOmMMORhat thei—th subsystem is “active”.

observer for all subsystems. Inspired by the common Lya-

punov function method for stabilization of switched controlAssymptions

systems [2], observers are designed for discrete-time linear————

switched control systems in [7] and for both continuous- Al—
and discrete-time linear switched control systems in [8].

The design problem is reduced to solving a group of linear
matrix inequalities (LMIs) for a common solution. The
advantage of this observer design is that the stability of error
dynamics can be guaranteed for arbitrary switching. One
problem however is that the common Lyapunov function I1l. FULL ORDER OBSERVER DESIGN

may not exist in some cases. In [8], a full order observer is designed for system (1). To
ensure the stability of the state estimation error dynamics, a
Weitian Chen is with School of Engineering Science, Simon Fraser Uncommon Lyapunov function must be found by solving some
versity, Vancouver, B.C. V5A 1S6, Canaueitian@cs.sfu.ca Mis. H f SLCS L
Mehrdad Saif is with School of Engineering Science, Simon Fraselr S. However, for some S, N0 common Lyapunov

University, Vancouver, B.C. V5A 1S6, Canadaif@cs.sfu.ca function may exist. In such a case, the observer design in
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T = Aa(t):L' + Ba(t)u,:L' eR"”

The state in (1) is continuous for any control input.
That is, the state does not jump at the switching
instants.

For eachi € S, the i—th subsystem is detectable

or observable.



[8] can not be applied. In this section, we design a full order This proves thatd; — L;C; is Hurwitz. |
observer for the system (1), which can be used for the caseRemark 1:1n [8], it is required that there must exist a
where a common Lyapunov function does not exist. SomeommonP for i = 1,2,---, M such that 4; — L;C;)T P+
sufficient conditions under which the state estimation erraP(A4; — L;C;) < 0. In some cases, this is impossible, and
dynamics is globally asymptotically stable are derived. thus their design can not be carried out. In our design,
the existence ofP; for i = 1,2,---, M such that(A4; —
A. Full Order Observer L;C)TP+P;(A;—L;C;) < 0can be guaranteed a(ccordlng
Due to Assumption A2, it is well known that one cang Theorem 1. Therefore, our design can always be carried

design the following observer for thie-th subsystem. out.
& =A@+ Biu+ Li(y — Ci2) (2) B. Stability of State Estimation Error Dynamics
whereL; is chosen such that, — L;C; is a Hurwitz ma- If we let e(t) = & — =, it then follows from (1) and (3)
trix, and moreover by choosing; properly, the eigenvalues
of A; — L;C; can be assigned arbitrarily if each subsystem é(t) = (Aot) = Lo@)Coe))e(t) (8)

is observable.
With (2) at hand, the full order observer for SLCS (1) is For simplicity, we denoted, () = At — Lo(:)Cor),

g|ven below. then we have
& = Ap(t)% + Bopyti + Loy (y — Cony ) 3) é(t) = Agpe(t) )
where at any switching instant;, we let i(t;) = wheree(t) is guaranteed to be continuous by the con-
lim,_,-&(t) such that is continuous. This is very im- struction of our observer. Now the stability of state es-
portant for stability analysis later. timation error dynamics is reduced to the stability of a

To design the full order observer, we need to findfor  switched linear system given by (9). Becaude for all
1 <i < M. To computeL; for 1 < < M, we can use ; are Hurwitz, the problem becomes one of studying the
any pole placement technique. We can also use the LMtability of a switched linear system with all its subsystems
method proposed in [8] to obtaih; for 1 <i < M,. This  being Hurwitz. This problem has been studied extensively

is described below in a two step algorithm. in the literature, and many results are now available, see
Step 1For eachi, solve the following LMI for aP; > 0 for example those cited in [1] and [2]. All those results are
andy;. applicable here. However, in this paper, only two results

will be given. One is based on the conceptsdefell time
ATP, —CTYT + PA; —Y;C; <0 (4 and a stability result given in [2]. The other is based on a
Step 2computeL; by letting L; — Pi_lYi- new stability result that we shall present for a special class

. : . of (9).
Regarding the above method of computibgfor 1 <4 < Let's first introduce the concept of dwell time.
M, we have the following result.

Th 1-Under A ion A2 the LMI (4) al Definition 1: For any switching signalo(t), if there
h eolreT“ .fnPer ssurr:jp}tlon , the I _( 33?}”;‘)’3 exists a positive constant such that the interval between
as solutions for?; > 0 and ¥;, moreover,L; = 5 "Y; any two consecutive switching times is no smaller than

can makeAd; — L;C; a Hurwitz matrix.

Proof: It follows from A2 that, for eachi we can find then is calleddwell time.
- o ) : : With the help of th t of Il ti i th
a matrix L; such thatd; — L;C; is a Hurwitz matrix. This ith the help of the concept of dwell time consider the

. following result.
ensures that there existsfa > 0 such that Theorem 2:Under Assumptions Al and A2, if the dwell

(A; — LiC)" Py + Pj(A; — LiC;) = —Q (5) time 7 is large enough, then the state estimation error
dynamics (9) is globally asymptotically stable.
Proof: From Assumption Al, we know that is
continuous, this implies thad(¢) is continuous because
is continuous. For eache {1,2,---, M}, becaused; is
ATP, = CTYT + PA; = YiCi = —Q < 0 ®) Hurwitz, there exista; > 0 gnd A >0 }such that for all
This proves that the LMI (4) always has solutions fort > 0 we have

where @ is any chosen positive definite matrix. If we let
Y; = P,L;, we can rewrite the above equation as

P, >0 andY;.
Now we prove the second conclusion. That is, for any ||eAif ai—Ait (10)
solution P, > 0 andY; of the LMl (4), L; = P 'Y;
can maked; — L;C; a Hurwitz matrix. Obviously, we can ~ Where[|A|| = \/Amq. (A% A), and H denotes the conju-
rewrite (4) as gate transpose. If
g
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then all conditions needed in Lemma 2 in [10] are satisfied. The first drawback in Remark 3 can be overcome for
Hence, by applying Lemma 2 in [10], the conclusion of theswitched linear systems with observable subsystems. How-
theorem follows. m ever, the second drawback still remains. In what follows,
Remark 2:Note that the requirement df being contin- we plan to derive stability results for (9) under arbitrary
uous is crucial for the stability of the state error dynamicsswitching. First, we give a new result on the stability of a
Without it, the continuity of the state error can not bespecial switching systems of the form (9).
guaranteed. Therefore, the result in [10] can not be applied Theorem 4:For a switching system of the form (9),
because it requires the states of the switched systems todgsume that for all < i < M, A; + AT are negative
continuous. This is the main reason we require Assumptiatefinite, then the error system is globally exponentially
Al and the continuity oft. stable for arbitrary switching if (9) satisfies Assumption Al.
Remark 3:In practical applications Theorem 2 poses two Remark 5:In the literature, stability for switching sys-
difficulties. One is the computation af > 0 and ), > 0 tems with arbitrary switching is analyzed by the so-called
for all i. To our knowledge, so far only their existence iscommon Lyapunov function approach [2]. Here for a special
guaranteed and no method for computing them exist. Tridass of switching systems, by investigating the solution
other difficulty has to do with the requirement of havingdirectly, we give a new stability result for arbitrary switch-
some knowledge of the dwell time. The dwell time is notng without using the common Lyapunov function approach
generally available a priori. For these reasons, the resulttidough the condition is quite restrictive. This result will be
of more theoretical than practical importance. used later to analyze the stability of state estimation error
A method is given in the following theorem to solve thedynamics of both full and reduced order observers.
first difficulty mentioned in Remark 3 for a special class of As a special case of Theorem 4, the following result is
matrices. obviously true.
Theorem 3:For a matrixA, if Theorem 5:Under assumptions Al, if we can design
an observer of the form (3) such that is Hurwitz and

A0 0 AT = A, for all 1 < i < m, then the state estimation error
A=T O >‘_2 0 -1 dynamics (9) is globally exponentially stable for arbitrary

A switching.

0o 0 - X\ To use Theorem 5, we need to design the observer gain

L; (3) such thatd; = A; — L;C; is Hurwitz andAT = A;
for all 1 < i < m. This is not always possible. A sufficient
”eAtH < ea+)\t (11) . . .. .
= condition for the existence of the observer gainis given
in the following theorem.

Then we have

wherea = In(||T|||T71]]) and X = maz1<i<n{Ai} i
Proof: It is easy to see that Theorem 6:Let C; = [0 Ipxp] , Li = (Lé) and
e 0 0 Ay = <A}1 A?), where A%, is ann — p by p matrix.
At 0 e ... 0 . _ _1421 1422 o
eM=T1 . - .| T (12) If Aj, is negative definite, theh; can be chosen such that
0 0 . o A; is negative definite.
€ Proof: Proof: SinceAd; = A; — L;C;, we have
Note that\ = mazi<i<,{\;} anda = In(||T|||T|)), it i Al Al + L
follows that i=\an a4
At
. S 0 If we choose
A 0 et ... 0 . L= (4b,) — A
le™ < AT - S 1 o 1 21 12
0 0 o €>\”t and [ 7 i i 7 \—1 T\
= |7 T Ly = Py — Ajy + Ay (A1) (43))
et (13) where Pj, can be any negative definite matrix, then it can

be shown thatd; is negative definite. [ ]
This completes the proof. [ ]

Remark 4:If all subsystems are observable, then the IV. REDUCED ORDER OBSERVER DESIGN
eigenvalues ofd;, 1 < i < n can be arbitrarily assigned. If  In this section, we first design a reduced order observer
we assign the eigenvalues of eathinto the left hand plane for the system (1). Then, we derive sufficient conditions
and at distinct locations, then all;, 1 < i < n satisfy the under which the state estimation error dynamics resulting
condition in Theorem 3. Henag > 0 andA; > 0 for all ©+  from reduced order observer is stable. Although the design
can be computed by using the formulas given in Theoretis quite similar to that of full order observer, the entire
3. design procedure is presented in order to illustrate the
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fact that the conditions for stability of the the two typesof the reduced order observer as opposed to the full order
of observers are different. This is a new phenomenoabserver is that if we do not havk, = Ly = --- = Ly,

in switched linear systems which is quite different fromz; = z; — L,y is not continuous at any switching
conventional linear systems where the stability conditionmstantt,. If we let e(t) = z; — z;, then we know that

are the same. e(t) is not continuous because; is while z; is not.
To design reduced order observer, we need the followingherefore, the results given in last sections for continuous
assumption. switching systems can not be applied anymore, and thus the
A3 — There exist a common nonsingular matffix exponential stability of the observer is not guaranteed.
such thatC,T = --- = CyT = [0 I], where Based on the above discussions, we conclude that to make
I is m x m identity matrix. the reduced order observer perform satisfactorily, we need

to ensure that(t) is continuous, or equally that, = =, —
A. Reduced Order Observer L,y is continuous. It is easy to see thaj = L, =
Because the case faf # I in A3 can be transformed ... = [, makese(t) continuous. Now, the problem is to
into 7" = I through a state transformation, for simplicity,find a commonL such that4}, — LA, for 1 <i < M
we only present the reduced observer desigriffer I. I are Hurwitz. The existence of such dnis equivalent to

this case, we havé, = --- = Cyy = [0 I] . For each simultaneous observability [6]. Hence any conditions for
i, we partition the state vector as simultaneous observability can be used here to check the
existence ofL. When L exists, the question is to how to
T = [xl] ,x1 € R"™ g9 € R™ (14) find the commonL. For this, we can use the LMI based
T2 method given in [8]. Once a commah is found, we can
BecauseC; = [0 I] , we havey = x,. Therefore, use the reduced order observer given by (17). Becauyse
we do not need to estimate,, and onlyz; need to be Lz =---= Ly = L, we have:

estimated. To estimate;, we definez; = x; — L;y. If we
can estimater;, x; can be estimated. Now, with the help  :

_ a(t) _ a(t)y 2 a(t) o(t)
of the definition ofz;, the reduced observer for the-th = (An LA ")z + (A1 LA )Ly

subsystem can be designed as following + (AT = LAZ )y + (B — LB V)
T, = .%1 + Ly (18)
T = (A} — LiAy)7 + (A} — LiAY) Liy Remark 6:Unlike full order observer in the last section,
+ (AL, — L;AL)y + (B — L;Bi)u the design of the reduced order observer requires the
- _ A _ existence of a common observer gain. That is, simultaneous
1 = T1+ Ly (15)

o observability of (A%, A};) for 1 < i < M is needed.
Because of Assumption AZA5,, A,) is detectable or This is quite different from the observer design for classical
observable. Hencé, can be chosen such that, — L; A3,  linear systems, where both full order and reduced order

is a Hurwitz matrix. A%, and B} for j = 1,2;k = 1,2 are  observer can be designed under the same conditions.
defined as
B. Stability of State Estimation Error Dynamics of Reduced

A; = (Alil Aiz) B, = (Bi) (16) Observer
A A B; In this subsection, we show thaf converges tac;. By
where Ai, € R(»—m)x(n—m) and Bi ¢ R(—m)xp_|f we definition, we only need to show that converges taz,
use the same idea for the full order observer design, wiﬂh‘a_t |§_,e(t) = &1 — I converges to zero. Noticing that the
(15) at hand, the reduced order observer for SLCS (1) woufgfinition of 1, it follows from (1) and (18) that
be given as

é(t) = (ATf" — LAZ{")e(t) (19)
i = (AT® Lg@)A;‘f”)ﬁ’:l For simplicity, if let A4, = A7 — 1430 then we
o ot have
+ (All(t) - La(t)AQI(f))La(t)y
+ (A% = Lo AL )y + (BT = Lo Bs)u é(t) = Aypye(t) (20)
a1 = 1+ Lowy @) Note that the above error dynamics has exactly the same
where at any switching instant,, we let Z;(t,) = form as that derived from full order observer. Therefore, we
lim,_,,~#1(t) such thats, is continuous. can prove similar results for reduced order observer, which

Now, the question is: Would the above reduced orde€ given below.
observer have a satisfactory performance? Generally, theTheorem 7:Under Assumptions A1l-A3, if thedwell
answer is no. This is point is clearly illustrated in the simulime 7 is large enough, then the state estimation error
lation results later. The reason for poor quality performancéynamics (20) is globally asymptotically stable.
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Theorem 8:Under Assumptions A1-A3, if a commah dynamics can not be guaranteed. To see this, we design
can be found such thatl; = A%, — LA, are negative two reduced order observers. The first one is with different
definite for all1 < ¢ < m, then the state estimation errorsub-observer gains; the second one is with the same sub-
dynamics (20) is globally exponentially stable for arbitraryobserver gain.

switching.
V. ILLUSTRATIVE EXAMPLE 2= (AT - U(t)A”(t))i
In this section, both full order and reduced order ob- 4 (A] Loy A5 Loy
servers for an LSCS are designed. We then give some a() o(t) o(t) o (t)
simulation results to see the effectiveness of these observers. + ( Lo Az )y + (BT = Lo B; " )u
Consider the following LSCS. 1 = 1+ Lewy (25)

whereL; = [0 4]7 andLy =1[0 7]7.

T = Ag(t)x—i-Ba(t)u
y = Cowr @) i o= af- LA;1<”>%1+<A;'¥> ~ LAZO) Ly
where A;, B;, C; are given as + A% — LAy + (BIY — LB D)y
&1 = I1+ Ly (26)
A = _1 (2) (1) where L = [0 E_%]T makes b_othAi1 — LA}, and A3, —
0 1 —045 L A3, have negative and distinct eigenvalues.
Simulation results for the first reduced order ob-
0 servers is given in Figure 2, from which we see that
B = 0],6i=(0 0 1) the state estimation error dynamics is not stable with-
1 out a common observer gain. The simulation results
0 1 0 of the second reduced order observer fBr = 0.001
Ay = —-10 0 1 are given in Figure 3. Though the switching is very
0 1 -1 fast, from Figures 3, we see that that the estimates of
0 states converge to the states of the switched systems
By = 0],Co=(0 0 1) (22) asymptotically. The initial conditions for Figures 1-3 are
1 (131(0),.132(0),.%‘3(0)) = (070a0)1 (1‘1(0)7@2(0),@3(0)) =

with o(#) < {1,2} defined as (0.6,0.6,0.6), and (i1 (0), #2(0)) = (0.6,0.6).

1

o(t) = 1ifte[20kT 10(2k+1)T) osf 7 Ssumaonen

= " x1
o(t) = 2ifte[10(2k+1)T 20(k+1)T) (23) °
wherek = 1,2, ---, andT is a constant which determines 10 m‘oo 20‘00 30‘00 40? Otimeso‘oo TR

how fast the switching signal switches. Both of the subsys- estimation of x2
tems are open-loop unstable, to design full order observer, OW\/V\/\/\

we need to choosd; such thatA; — L;C; is Hurwitz

for eachi € {1,2}. For the above system, it is easy to To o 2w a0 1000 000 6000 7000 8000 9000
checkA4, — L;C; and A, — L,C, are Hurwitz if we choose '  evimion ot ‘ ‘ ‘ ‘ ‘
Ly = [11 15 7.55]7 and L, = [6.6 17 8]”. With L, and e
Lo, the full order observer is designed as o Ny
. _0'50 10‘00 20‘00 30‘00 40‘001_ 50‘00 60‘00 70‘00 80‘00 9000
T = Ag(t)ﬁ? + Bg(t)u + Lo'(t) (y — Cg(t):%) (24) me
Simulation results for the full order observer with = Fig. 1. Full order observer

0.001 are presented in Figure 1. The switching is very
fast, but from Figure 1, we see that that the estimates /| cONCLUSIONS AND FUTURE WORK
of states converge to the states of the switched systems
asymptotically. Conclusions

Unlike the full order observer, for reduced order observer A procedure for designing both full as well as reduced
design, we need further requirement on the sub-observerder observers for a class of LSCSs was presented in
gains. That is, all sub-observer gains must be chosehis paper. The design strategy is based on designing a
equal. Otherwise, the stability of the state estimation err@ub-observer for each subsystem, then the overall observer
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switching which is preferable. For reduced order observer,
however, it was shown that similar stability results can be
o ] obtained under stricter conditions.

N ] B. Future Work

The observers designed in this paper require the switch-

signal to be known a priori. How to design stable

observers for systems where the switching signal is not
known is an interesting and unsolved problem. Currently
work is being done to extend our results to switched systems
which are not continuous in their states.
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for the switching system is obtained by picking the cor-
responding sub-observer according to the switching signa[9
It was established that unlike observer design for a typicalo)
linear system, full order and reduced order observer design
for switching systems require different design conditions, ,
It turns out that in the case of switching systems the
design of reduced order observer requires stricter conditions
than that of full order observer. The stability of the staté!?
estimation error dynamics of both classes of observers
are analyzed. It was shown that so long that detectabilify3]
condition for each subsystem is satisfied, the proposed full
order observer design can guarantee the state estimation
error dynamics is globally asymptotically stable if the dwell
time is large enough. When the full order can be designed
such that the state estimation error dynamics is a switched
system with negative definite matrices, the state estimation
error dynamics is globally exponentially stable for arbitrary
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