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Abstract 
 
In this paper, an intelligent automatic landing system using 
fuzzy neural networks and genetic algorithms is developed 
to improve the performance of conventional automatic 
landing systems. This study uses a functional fuzzy neural 
network as the controller. Control gains are selected by a 
combination method of a nonlinear control design and 
genetic algorithm. The simulation results are described for 
the automatic landing system of a commercial airplane. 
Tracking performance and robustness are demonstrated 
through software simulations. Simulation results show that 
the proposed scheme can successfully expand the safety 
envelope of an aircraft to include severe wind disturbance 
environments. 
 

1. Introduction 
 
From 1964 to 1982, 27 US aircraft accidents or incidents 
involving nearly 500 fatalities have been attributed to 
low-altitude wind shear [1]. According to NTSB (National 
Transportation Safety Board) statistics [2], between 1989 
and 1999, there were approximately 22.6% aircraft 
accidents identified as wind shear. By causing a sudden 
divergence in wind direction or speed, wind shear creates a 
particular hazard for airplanes at takeoff and landing 
because the pilot is confronted with a rapid and unexpected 
shift from headwind to tailwind. An Aircraft flying through 
a wind shear first encounters a headwind that generates an 
extra lift. Shortly thereafter, the headwind is replaced by a 
tailwind that causes a sudden loss of lift. Hence, an 
inadvertent encounter with a low-altitude wind shear can be 
a serious problem even for a skilled pilot. In some cases, 
pilots will try to abort landing or escape the disturbance 
[3-4]. For those pilots that are unable to abort landing must 
face the disturbance and handle the aircrafts manually. It is 
therefore desirable to develop an intelligent Automatic 
Landing System (ALS) that expands the operational 
envelope to include more safe responses under severe wind 
conditions. 
 
The earliest automatic pilots could do no more than 
maintain an aircraft in straight and level flight by 

controlling pitch, yaw, and roll movements; and they are 
still used most often to relieve the pilot during routine 
cruising. Modern automatic pilots can, however, execute 
complex maneuvers or flight plans, bring aircraft into 
approach and landing paths. The first ALS was made in 
England in 1965. Since then, most aircraft have been 
installed with this system. The ALS relies on the 
Instrument Landing System (ILS) to guide the aircraft into 
the proper altitude, position, and approach angle during the 
landing phase. Conventional automatic landing systems can 
provide a smooth landing which is essential to the comfort 
of passengers. However, these systems work only within a 
specified operational safety envelope. When the conditions 
are beyond the envelope, such as turbulence or wind shear, 
they often cannot be used. Most conventional control laws 
generated by the ALS are based on the gain scheduling 
method [5]. Control parameters are preset for different 
flight conditions within a specified safety envelope which 
is relatively defined by Federal Aviation Administration 
(FAA) regulations. According to FAA regulations, 
environmental conditions considered in the determination 
of dispersion limits are: headwinds up to 25 knots; 
tailwinds up to 10 knots; crosswinds up to 15 knots; 
moderate turbulence, wind shear of 8 knots per 100 feet 
from 200 feet to touchdown [6]. If the flight conditions are 
beyond the preset envelope, the ALS is disabled and the 
pilot takes over. An inexperienced pilot may not be able to 
guide the aircraft to a safe landing.  
 
Recently, many researchers have applied intelligent 
concepts such as neural networks, fuzzy systems, and 
genetic algorithms [7-12] to flight control to adapt to 
different environments. For ALS, most of the 
improvements have been on the guidance instruments, such 
as the GNSS Integrity Beacons, Global Positioning System, 
Microwave Landing System and Autoland Position Sensor 
[13-16]. By using improvement calculation methods and 
high accuracy instruments, these systems provide more 
accurate flight data to the ALS to make the landing more 
smooth. However, these researches did not include weather 
factors such as wind disturbances. There have been some 
researches on the problem of intelligent landing control 
[17-21] but most of them do not consider wind 
disturbances. Here, we present a learning scheme, which 
uses a fuzzy controller with genetic algorithm, to guide the 
aircraft to a safe landing and make the controller more 
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robust and adaptive to the ever-changing environment.  
 

2. Automatic Landing Control 

A typical automatic landing system [22] uses a radio beam 
directed upward from the ground at 2.50 to 3.50, with 
equipment onboard the aircraft to measure the angular 
deviation from the beam and compute the perpendicular 
displacement of the aircraft from glide path. Additional 
equipment is used to provide azimuth information, so that 
the aircraft can be lined up with the runway. When the 
aircraft approaches the outer airport marker, which is about 
4 nautical miles from the runway, the glide path signal is 
intercepted. The glide path will usually be intercepted at 
about 1200 to 1500 ft altitude, with an airspeed of 145 to 
150 knots (245 to 253 ft/s), and then the automatic control 
system will be engaged. As the aircraft descends along the 
glide path, its pitch, attitude and speed must be controlled. 
The aircraft maintains a constant speed along the flight 
path. The descent rate is about 10 ft/sec and the pitch angle 
is between 5−  to 5 degrees. As the aircraft descends 20 to 
70 feet above the ground, the glide path control system is 
disengaged and a flare maneuver is executed. The vertical 
descent rate is decreased to 2 ft/sec so that the landing gear 
may be able to dissipate the energy of the impact at landing. 
The pitch angle of the airplane is then adjusted, between 0 
to 5 degrees for most aircraft, which allows a soft 
touchdown on the runway surface. 
  
A simplified model of a commercial aircraft that moves 
only in the longitudinal and vertical plane was used in the 
simulations for implementation ease [15]. The motion 
equations for the aircraft are given as follows 

TTEE

qgwgu

XX

gqXwwXuuXu

δ+δ+

γπ−+−+−=

      

)cos()
180

()()( 0&
 (1) 

TTEE

qgwgu

ZZg

qUZwwZuuZw

δδθγπ

π

++−

−+−+−=

)sin()
180

(      

)
180

()()(

0

0&

   (2) 

TTEEqgwgu MMqMwwMuuMq δδ +++−+−= )()(&  (3) 

q=θ&         (4) 

θπ
0180

Uwh +−=&                       (5) 

where u  is the aircraft longitudinal velocity (ft/sec), w  
is the aircraft vertical velocity (ft/sec), q  is the pitch rate 
(deg/sec), θ  is the pitch angle (deg), h  is the aircraft 
altitude (ft), Eδ  is the incremental elevator angle (deg), 

Tδ  is the throttle setting (ft/sec), 0γ  is the flight path 
angle ( 3− deg), and g is the gravity (32.2 ft/sec2). The 
parameters Xi, Zi, and Mi are the stability and control 
derivatives.  
 
To make the ALS more intelligent, reliable wind profiles 

are necessary. Two wind disturbance models are most 
common in aircraft flight paths. They are turbulence and 
wind shear. In this paper, we put focus on wind shear since 
it is the most difficult condition to deal with during aircraft 
landing. A discretized approximation model for wind shear 
was used. The longitudinal wind velocity is given by 
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and the vertical wind velocity is given by 
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where a, b, 
2

bac +=  are various horizontal distance 

measured from the initial position, h0 is a reference altitude, 
and k is a measure of the wind shear intensity. Figure 1 
shows two wind shear profiles with k = 40 (dash line) and k 
= 50 (solid line). 
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Figure 1. Wind shear profiles. 



3. Fuzzy Controller 

Since the aircraft maintains a constant speed along the 
flight path, we assumed that the change in throttle 
command is zero. The aircraft is thus controlled solely by 
the pitch command. Detailed descriptions can be found in 
[15]. A complete landing phase is divided into several 
stages (intervals). Each stage uses the same fuzzy controller. 
Wind disturbances are added to each stage in the simulation. 
The inputs, xi, for the fuzzy controller are: altitude, altitude 
command, altitude rate, and altitude rate command. The 
output of the controller is the pitch command. Figure 2 
shows the structure of the fuzzy neural network.  
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Figure 2. Fuzzy network with functional rule. 

 
Compare to the linguistic rule, functional rule has more 
variable in the consequence. The order of the dimension is 
proportional to the number of inputs. The network realizes 
the following inference method: 
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then y is ),,,( 4321 xxxxiϕ     (8) 
where i1, i2, i3, and i4 is from 1 to 2; i is from 1 to 16. The 
function in consequence of the fuzzy rule can be any 
polynomial. In here we use first order linear equation: 

443322114321 ),,,( xaxaxaxaxxxxi +++=ϕ   (9) 
where ai is a scalar and adjusted during network training. 

Learning process of aircraft landing is shown in Figure 3. 
FC is the fuzzy controller. CL is the control law that used in 
[15]. AM is the aircraft model. Ci is the pitch command. 
The connection weights are modified to identify fuzzy rules 
and tune the membership functions in the premises using 
the following backpropagation algorithm: 
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In the simulations, initial flight conditions are: h(0)=500 ft, 

)0(x& =235 ft/sec, x(0)=9240 ft, and 0γ = –3 degrees. With 
the wind shear intensity at 59, the horizontal position at 
touchdown is 269 ft, horizontal velocity is 234.7 ft/sec, 
vertical speed is –2.4 ft/sec, and pitch angle is –7 degrees, 
as shown in Figure 4 and 5. Table I shows the results from 
using different wind shear intensities with different control 
gains of the pitch autopilot.  
 

4. Fuzzy Control with GA 

In this section genetic algorithm is utilized to the selection 
of optimal control gains, which are used to make the 
controller adaptive to different flight conditions. 
Robustness is obtained by choosing optimal control gains 
that allows wide range of disturbances to the controller. 
Since GAs have the potential for global optimization, they 
are suitable for determination of the control parameters 
which give aircraft better adaptivity in severe environment. 
GAs are search and optimization algorithms based on the 
principle of natural evolution and population genetics. The 
basic principles of GAs were first proposed by Holland 



[23]. GA presumes that the potential solution of any 
problem is an individual and can be represented by a set of 
parameters. These parameters are regarded as the genes of 
a chromosome and can be structured by a string of values 
in binary form. A positive value, generally known as a 
fitness value, is used to reflect the degree of “goodness” of 
the chromosome for the problem which would be highly 
related with its objective value [24]. 

 
Throughout a genetic evolution, the fitter chromosome has 
a tendency to yield good quality offspring which means a 
better solution to any problem. In a practical GA 
application, a population pool of chromosomes has to be 
installed and these can be randomly set initially. In each 
cycle of genetic operation, termed as an evolving process a 
subsequent generation is created from the chromosomes in 

the current population. This can only succeed if a group of 
these chromosomes, generally called “parents” or a 
collection term “mating pool” is selected via a specific 
selection routine. The genes of the parents are mixed and 
recombined for the production of offspring in the next 
generation. It is expected that from this process of 
evolution (manipulation of genes), the “better” 
chromosome will create a larger number of offspring, and 
thus has a higher chance of surviving in the subsequent 
generation, emulating the survival-of-the-fittest mechanism 
in nature. A scheme called Roulette Wheel Selection [25] is 
one of the most common selection techniques and is used 
in this paper.  

 
The cycle of evolution is repeated until a desired 
termination criterion is reached. This criterion can also be 
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Figure 4. Aircraft vertical velocity and command.        Figure 5. .Aircraft altitude and command. 
 
 

Table I. The results from using different wind shear intensities.  

Wind shear intensity 57 58 59 60 61 
Landing point (ft) -59 81 269 468 726 
Aircraft vertical speed (ft/sec) -3.3 -2.6 -2.4 -2.5 -2.3 
Pitch angle (degree) -9.9 -9.9 -7.1 -10.0 -6.9 
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set by the number of evolution cycles (computational runs), 
or the amount of variation of individuals between different 
generations, or a pre-defined value of fitness. In order to 
facilitate the GA evolution cycle, two fundamental 
operators: Crossover and Mutation are required, although 
the selection routine can be termed as the other operator. 
An one-point Crossover mechanism is used in this paper. A 
crossover point is randomly set. The portions of the two 
chromosomes beyond this cut-off point to the right are to 
be exchanged to form the offspring. An operation rate (pc) 
with a typical value between 0.6 and l.0 is normally used as 
the probability of crossover. However, for mutation, this 
applied to each offspring individually after the crossover 
exercise. It alters each bit randomly with a small 
probability (pm) with a typical value of less than 0.1. The 
choice of mutation rate pm and crossover rate pc as the 
control parameters can be a complex nonlinear 
optimization problem to solve. Furthermore, their settings 
are critically dependent upon the nature of the objective 
function.  
 
In here, population size is 20, crossover rate is 0.8, 
mutation rate is 0.01. The fitness function is defined as 

sw
SS

wf
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where dS  is the normalized desired state at touch down 

point, kS  is the normalized real state at touch down, w is 
a weighting factor, and sw is the strength of the allowable 
wind disturbance. The string of each chromosome has 32 
bits which consists 8 bits of θk and qk  in glide path and 
flare path. Initial conditions and searching rages of these 
four parameters are pre-selected by a nonlinear control 
design algorithm [26], which was developed from the 
Quasi-Newton method and Sequential Quadratic 
Programming method. With the wind shear intensity at 59, 
the horizontal position at touchdown is 269 ft, horizontal 
velocity is 235 ft/sec, vertical speed is –2.3 ft/sec, and pitch 

angle is –9.9 degrees, as shown in Figure 6 to 7. Table II 
shows the results from using different wind shear 
intensities. The controller can successfully guide the 
aircraft flying through wind shear intensities of 49 to 60.  
 

5. Conclusions 

The purpose of this study was to investigate the use of 
fuzzy neural networks and genetic algorithm in automatic 
landing systems and to make these systems more intelligent. 
Current flight control law was adopted in the intelligent 
controller design. Tracking performance and adaptive 
capability were demonstrated through software simulations. 
For the safe landing of an aircraft with a conventional 
controller, the wind shear intensity limit is 30. In this study, 
the functional fuzzy controller with GA can overcome wind 
shear intensity to 60. From these simulations, the proposed 
fuzzy controllers can successfully expand the controllable 
environment in severe wind disturbances.  
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Table II. The results from using fuzzy controller with GA. 
 

Wind shear intensity 49 50 55 59 60 
Landing point (ft) -305 -270 -94 269 433 
Aircraft vertical speed (ft/sec) -1.7 -1.6 -2.0 -2.3 -3.0 
Pitch angle (degree) -8.7 -8.8 -9.4 -9.9 -10 
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