
Intelligent Stabilization Control to An Arbitrary Equilibrium
Point of Double Pendulum

Masaki Takahashi, Terumasa Narukawa and Kazuo Yoshida

Abstract— This study aims at establishing a robust and
effective intelligent control method for nonlinear and com-
plicated systems. In the method, an integrator neural net-
work acquires suitable switching and integration of several
controllers for a different local purpose by calculating the
fitness function based on the system objective using the genetic
algorithm. The proposed method is applied to an equilibrium
point transfer and stabilization control of a double pendulum
that possesses four equilibrium points. In order to verify the ef-
fectiveness of the proposed method, computational simulations
and experiments using a real apparatus were carried out. As
a result, it was demonstrated that the integrated intelligent
controllers can transfer and stabilize the double pendulum
from an arbitrary equilibrium point to a desired unstable
equilibrium point without touching the cart position limit.

I. INTRODUCTION

In recent years, it has been desired to establish an
effective control technique for nonlinear and complicated
systems. In general, however, it is not easy to derive a
nonlinear control law for nonlinear and complicated sys-
tems. For example, there are several equilibrium points in
such system. Nonlinear systems may be regarded as a linear
system in the vicinity of the equilibrium point and many
effective linear control methods have been established.
However, as for a nonlinear control such as a transfer
control between equilibrium points, there have been few
effective and systematic control design approaches widely
applicable to such systems. This study aims at establishing
a robust intelligent control method with higher control
performance and wider applicable region for nonlinear
system. The configuration of the proposed integrated intel-
ligent control system is shown in Fig.1. In the system, an
integrator neural network is prepared in parallel with several
controllers for each different local purpose. The integrator
switches and integrates several controllers autonomously
and adequately based on the system states. It is expected
that the proposed method enable us to accomplish several
control purposes by using less controllers and switching
laws. The integrator is specified by some parameters. In
this study, the adjustment of these parameters is performed
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Fig. 1. Integrated Intelligent Control System.
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Fig. 2. Equilibrium Point Transfer and Stabilization Control Problem.

by a probabilistic optimization method utilizing evolution
strategies such as the Genetic Algorithm (GA).

The proposed method is applied to an equilibrium point
transfer and stabilization control of a double pendulum
mounted on a cart. Since the double pendulum possesses a
stable equilibrium point (Down-Down) and three unstable
equilibrium points (Down-Up, Up-Down and Up-Up), there
are nine paths between equilibrium points in this control
problem as shown in Fig.2 [1]. To achieve these controls,
both a transfer control from one equilibrium point to the
other in nonlinear region and a stabilization control near the
unstable equilibrium point in linear region are required. In
this study, only one swing-up controller, three stabilization
controllers and three integrator neural networks are designed
to accomplish all nine paths from an arbitrary equilibrium
point to the desired unstable equilibrium point. In order to
verify the effectiveness of the proposed method, computa-
tional simulations and experiments are carried out by an
experimental setup.



II. EQUILIBRIUM POINT TRANSFER AND
STABILIZATION CONTROL

As a typical unstable nonlinear system, single inverted
pendulum has been widely used to compare different control
methods for dynamic systems [2]-[4]. Double or triple
inverted pendulums have been used to verify the effective-
ness of new control approach for dynamic systems with
high-order nonlinearities [5]-[7]. This study deals with an
equilibrium point transfer and stabilization control of the
double pendulum from the arbitrary equilibrium point to
the desired unstable equilibrium point. In the case that the
available cart track length is unlimited, this control problem
was studied in Yamakita and Furuta et al [1][8][9]. In order
to accomplish these controls, a number of controllers and
switching rules were prepared for each path so far. Twelve
controllers and eleven switching rules were required to
realize five paths, that is, path 1, 2, 4, 6 and 9 in Fig.2. In
this study, since a cart and double pendulum system shown
in Fig.3 is used, there is an inherent restriction on the cart
track length and the magnitude of control force that can be
applied. In addition, there are the various uncertainties such
as friction, disturbance and so on. Therefore, the control
problem dealt with in this study is how to design a robust
controller for a strong nonlinear and complicated system of
double pendulum to cope with the physical limitations and
the influence of various uncertainties.

III. DOUBLE PENDULUM

The double pendulum on a cart is an under-actuated
mechanical system with three degrees of freedom and one
control input. The model of the system is shown in Fig.4.
The cart is driven through the rotary nut which is rotated by
the DC servo motor through timing belt. The pendulum 1
and the rotary encoder measuring the angle of the pendulum
1 are installed at the cart. The pendulum 2 is jointed at the
pendulum 1 through the rotary encoder measuring the angle
of pendulum 2 on the top of pendulum 1. Each pendulum is
able to rotate freely in the vertical plane. The equations of
motion of cart, pendulum 1 and pendulum 2 can be written
as follows:
(Mc + Mp1 + Mp2) ẍ

+ (Mp1L1 + Mp2L2 cos (θ1 + θ2) + Mp2Lp1 cos θ1) θ̈1

+Mp2L2 cos (θ1 + θ2) θ̈2 + Ccẋ = F − fc (1)

800 [mm]

Fig. 3. Experimental Facility.

(Mp1L1cos θ1+Mp2L2cos(θ1+θ2)+Mp2Lp1cos θ1)ẍ

+
(
I1+I2+Mp1L

2
1+Mp2L

2
2+Mp2L

2
p1+2Mp2Lp1L2cos θ2

)
θ̈1

+
(
I2+Mp2L

2
2+Mp2Lp1L2cos θ2

)
θ̈2+Cp1θ̇1−Mp1L1gsin θ1

−Mp2g (Lp1 sin θ1 + L2 sin (θ1 + θ2)) θ1 = 0 (2)

Mp2L2cos(θ1+θ2)ẍ+
(
I2+Mp2L

2
2+Mp2Lp1L2cosθ2

)
θ̈1

+
(
I2+Mp2L

2
2

)
θ̈2+Cp2θ̇2+Mp2L2gsin(θ1+θ2)=0 (3)

All symbols used in the above equations are defined in
Fig.4.x (t) is the displacement of the cart.θ1 (t) andθ2 (t)
indicate the angle of the pendulum 1 and the angle of the
pendulum 2 relative to the pendulum 1, measured positive in
a clockwise direction respectively. Consider the translation
from the torque of the motor to the control force given in
Fig.5. The voltage equation for the motor is expressed as
follows:

Li̇ + Ri + Keη̇ = e (4)

wheree and i indicate the input voltage and the current of
the motor respectively. The torque of the motor is given by

Tm = Kti (5)

As shown in Fig.5, the torque balance can be expressed as
follows:

Tn = rgTm − (Im + Igm) rg η̈ − (In + Ign) ξ̈ (6)

where η = rgξ, ξ = d2x and rg indicate the rotational
displacements of motor and nut, and gear ratio respectively.
Tn, Tgm andTgn indicate the torques of rotary nut, motor
side gear pulley and nut side gear pulley respectively. The
relationship between the torque of the rotary nut and the
control force can be written as follows:

F = d2Tn (d2 = 2π/l) (7)
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Fig. 4. Model of Double Pendulum on a Cart.
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Fig. 5. Translation from Torque of Motor to Control Force.



TABLE I

PHYSICAL PARAMETERS

Symbol Quantity Value
Mc mass of cart 2.824 kg
Mp1 mass of pendulum 1 0.264 kg
Mp2 mass of pendulum 2 0.054 kg
Lp1 length of pendulum 1 0.321 m
Lp2 length of pendulum 2 0.194 m
L1 length from joint to a center of mass of pendulum 1 0.215 m
L2 length from joint to a center of mass of pendulum 2 0.095 m
I1 moment of inertia of pendulum 1 3.22×10−3kg ·m2

I2 moment of inertia of pendulum 2 1.86×10−4kg ·m2

Im moment of inertia of motor axis 6.96×10−6kg ·m2

In moment of inertia of rotary nut 4.80×10−5kg ·m2

Igm moment of inertia of gear pulley(motor) 2.20×10−6kg ·m2

Ign moment of inertia of gear pulley(nut) 2.56×10−5kg ·m2

fc coulomb friction of cart 45kg ·m/s2

Cc damping coefficient of cart 177 kg/s
Cp1 damping coefficient of pendulum 1 2.67×10−3kg ·m/s2

Cp2 damping coefficient of pendulum 2 1.02×10−4kg ·m/s2

l lead of ball screw 1.60×10−2m/round
d2 transfer coefficient from torque to force 1.02×10−4kg ·m/s2

L inductance of motor 6.20×10−4H
R resistance of motor 2.07 W
Ke induced voltage constant of motor 5.25×10−2N · s/A

Introducing Eq. (6) into Eq. (7), we obtain

F =
Kt

R
d2rge− KtKe

R
d2
2r

2
g ẋ

− [
(Im + Igm) r2

g + (In + Ign)
]
d2
2ẍ (8)

These dynamical models are nonlinear for the pendulum
angle. There is friction between the cart and the fixed ball
screw. The physical parameters of experimental equipment
are shown in Table I.

IV. DESIGN OF CONTROLLER

The design technique of the proposed method is described
as follows. The structure of the proposed integrated intelli-
gent controller is shown in Fig.6. Firstly, three stabilization
controllers are designed individually based on linear mod-
els around each unstable equilibrium point. Secondly, one
swing-up controller is designed based on the energy of the
double pendulum. Finally, the integrator neural network is
prepared in parallel with these controllers.
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Fig. 6. Structure of Integrated Intelligent Control System.

A. Stabilization Controller

A stabilization controller should stabilize the double pen-
dulum near the unstable equilibrium point. The stabilization
controller is realized as a state-space controller with the
feedback gain vectorki, which is calculated according to
the linear-quadratic regulator (LQR) design method. The
following control gain vectorki and state variablesxi at
each equilibrium point are used.
Down-Up

Qdu = diag
(

0 300 0 1 0 1
)
, Rdu = 1.0

kdu=[-85.9198 -17.3205 53.2593 493.0170 -65.6931 -616.7089]

xdu =
[

ẋ x θ̇1d θ1d θ̇2 θ2

]T

udu = −kdu · xdu (9)

Up-Down

Qud = diag
(

0 300 0 50000 0 500
)
, Rud = 1.0

kud=[-92.3226 -17.3205 -32.4339 -313.7022 -0.2756 14.3866]

xud =
[

ẋ x θ̇1 θ1 θ̇2d θ2d

]T

uud = −kud · xud (10)

Up-Up

Quu = diag
(

0 300 0 1 0 1
)
, Ruu = 1.0

kuu=[10.2913 17.3205 14.0202 -353.1186 -64.2297 607.4820]

xuu =
[

ẋ x θ̇1 θ1 θ̇2 θ2

]T

uuu = −kuu · xuu (11)

B. Swing-up Controller

A design method based on the energy of the pendulum
of the swing-up controller for a rotational pendulum system
has been proposed [10]-[13]. The controller design was
performed based on the following assumptions: there is no
limitation on the velocity of the pendulum and the friction
is neglected. However, in practice, there are friction and a
physical limitation, especially on the length of the cart track
and the magnitude of the control input. Therefore, it is not
easy to control the desired acceleration of the cart under
the influence of such physical conditions.

In this study, the swing-up controller which takes care
of the physical limitations is designed based on the energy
of the pendulum. The energy of the uncontrolled double
pendulum(u = 0) is written as follows:

E = 1
2

(
I1 + Mp1L

2
1 + Mp2L

2
p1

)
θ̇2
1

+Mp2Lp1L2θ̇1θ̇2 cos (θ1 − θ2)
+ 1

2

(
I2 + Mp2L

2
2

)
θ̇2
2 + Mp1L1g (cos θ1 − 1)

+Mp2g [Lp1 (cos θ1 − 1) + L2 (cos θ2 − 1)]

(12)

The nominal energy is defined to be zero when the double
pendulum is in Up-Up equilibrium point. Therefore, the
swing-up controller can input enough energy into the system
so that it is able to reach the desired equilibrium point from
an arbitrary angle of the pendulum.



uswg =α·
{

2
1+exp [−γ · (E−β) · sgnx (θ1)]

− 1
}

(13)

sgnx (θ1)=
{

1
−1

: sin θ1 >0or sinθ1 =0 ∩ x≥0
: sin θ1 <0or sinθ1 =0 ∩ x<0 (14)

The swing-up controller is specified by three parameters
{α, β, γ}. α andβ indicate the parameters for the limitation
of the track length and for compensation of the friction
loss of the system respectively.γ represents the parameter
of a sigmoid function in order to reduce the chattering.
Determination of the values ofα, β and γ requires some
trial and error and is difficult to do manually. In this study,
α = 16, β = 0.15 andγ = 0.15 are used.

C. Integrator Neural Network

To transfer and stabilize the double pendulum from the
arbitrary equilibrium point to the desired unstable one
without touching the physical limitations, these designed
controllers should be switched and integrated adequately
according to the situation. However, it is not easy to derive
theoretically suitable switching and integration rules of
several controllers. In the method, as shown in Fig.6, the
integrator neural network is prepared in parallel with several
local controllers. The integrator switches and integrates
four controllers automatically and appropriately based on
the system states. Since the double pendulum has three
unstable equilibrium points, we design three integrators,
integratordu, integratorud and integratoruu, by using
the similar architecture of radial basis function neural
network and learning method.

1) Architecture of Integrator: The architecture of the
integrator neural network is shown in Fig.7. The integrator
adopts the hidden layers which consist of the following
radial basis neurons.

ϕj (x,aj,bj) =
l∏

i=1

exp

{
− (x− aj)

2

b2
j

}
(15)

where,x is the input vector with elementsxi, and aj is
the vector determining the center of basis functionϕj and
has elementsaji. bj represents the vector determining the
width of the Gaussian and has elementsbji. l is the number
of nodes in the input layer. The following sharply sigmoid
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Fig. 7. Integrator Neural Network

function rk is used as an activation function of the output
nodek.

rk (x)=
1

1+exp

(
−200

(
m∑

j=1

wkj ·ϕj(x)+wkθ

)) (16)

where,wkj is a weight connecting the ontput nodek to the
hidden nodej andwkθ is a bias weight.m is the number of
nodes in the hidden layer.rk varies continuously between
0 and 1 and means the degree of importance for each
controller. In other words, it can be expected that adjustment
of each control gain is performed according to the situation.
The control inpututotal is defined as the following equation.

utotal = ruuuuu + ruduud + rduudu + rswguswg (17)

2) Learning Method:The integrator is specified by four
adjustable parameters{aji, bji, wkj , wkθ}. In this study,
tuning of them is carried out based on the GA. These
parameters are regarded as GA parameters and GAs begin
a set of thirty randomly generated states, called the popu-
lation. During training GA process, (a) initial population,
(b) fitness function, (c) selection, (d) crossover and (e)
mutation, the individual chromosome to perform the control
objective is searched. To calculate the fitness value, the
following fitness function is prepared.

ffit=
h (x)

n
·

n∑
t=0

(
1

10· p2
1(t)+10· p2

2(t)+1

)
(18)

h (x) =
{

1 |x| ≤ 0.4 m
0.1 |x| > 0.4 m (19)

where, n = tf/∆t. tf and ∆t represent the simulation
period and the sampling period respectively. In this study,
tf =10s and∆t =5ms are used.p1 and p2 are set out as
shown in Table II. The fitness value is the highest when
the double pendulum is in the desired unstable equilibrium
point. In our practical facility, the movable track length of
the cart is limited.h (x) indicates the penalty function on
the cart position limit. When the cart reaches the end of
the track, the fitness value is low. In the particular case
from Up-Down to Up-Up, the following fitness function in
consideration of energy variation is used to swing-up and
stabilize the double pendulum without falling down.

ffit=
h (x)·k (θ1)

n
·

n∑
t=0

(
1

10·θ2
1(t)+10· θ2

2(t)+1

)
(20)

k (θ1) =
{

1 |θ1| ≤ 0.2 rad
0.01 |θ1| > 0.2 rad (21)

TABLE II

GA PARAMETERS.
desired p1 p2 j1 :initial states(θ1, θ2)

equilibrium point j1 = 0 j1 = 1 j1 = 2
Down-Up θ1d θ2 (π, π) (0, π) (0, 0)
Up-Down θ1 θ2d (π, π) (π, 0) (0, 0)

Up-Up θ1 θ2 (π, π) (π, 0) (0, π)



wherek (θ1) indicates the penalty function on the pendulum
1 angle. If once the double pendulum is falling down, the
fitness value is low. In the cases from three initial conditions
shown in Table II, the above-mentioned fitness function is
calculated and then the sum of them is regarded as the
fitness value of the individual chromosome.

ffit total =
2∑

j1=0

ffit(j1) (22)

During training the GA process, one individual chromosome
whose fitness value is maximum is chosen as the integrator
neural network.

V. EXPERIMENTAL RESULT

In order to verify the performance of the proposed
method, simulations for the cases from the arbitrary equi-
librium points to each unstable equilibrium point were
carried out. From the results, it was confirmed that the
proposed controller can achieve all nine paths among equi-
librium points by switching and integrating four controllers
autonomously and adequately according to situations. In
addition, experiments using a real apparatus were carried
out. The initial states oḟx, x, θ̇1 and θ̇2 are zero. In this
study, the length of the track is 0.8m. The servo motor
range is±25V. The displacement of the cart and the angular
displacements of the pendulum 1 and the pendulum 2 are
observed at the intervals of 5ms, that is, the sampling period.
Their velocities are calculated from the difference between
sequential displacements. Figures 8 to 12 show the time
histories, in order, the displacement of the cart, the angular
displacements of pendulum 1 and pendulum 2, the control
input and the outputs of the integrator. Figures 8 to 10 show
the result of the experiments when it was initialized at the
stable equilibrium point, that is, Down-Down respectively.
It was demonstrated as shown in Fig.8 that the controller
can transfer the double pendulum from Down-Down by
integrating Down-Up with Up-Up stabilization controllers
and then stabilize it near Down-Up by switching only the
Down-Up stabilization controller. As shown in Figs. 9 and
10, the proposed controller can transfer and stabilize the
double pendulum from Down-Down to near the desired
unstable equilibrium point respectively. Fig.13(a) shows the
view of the double pendulum on a cart during swinging
up and stabilizing control for the case that started from
Down-Down to Up-Up. Figures 11 and 12 show the result
of the experiments for the transfer and stabilization control
between two unstable equilibrium points. Figure 11 shows
the result of the experiment when it was initialized at Up-
Up. It can be seen from Fig.11 that the controller can
transfer the double pendulum from the Up-Up to Up-Down
without falling down by integrating Up-Down stabilization
controller with the swing-up controller and then stabilize
it near the Up-Down equilibrium point by switching only
Up-Down stabilization controller. It was demonstrated as
shown in Figs. 12 and 13(b) that the proposed controller

can transfer and stabilize the double pendulum from Up-
Down to Up-Up without falling down by switching and
integrating four controllers adequately.

VI. CONCLUSION

In this paper, an effective robust intelligent control
method for nonlinear and complicated systems was pre-
sented. To cope with the increases of number of controllers
and switching rules of several controllers for such systems,
the integrator neural network which switches and integrates
several controllers based on the system states was proposed.
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Fig. 8. Experimental Result from Down-Down to Down-Up.
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Fig. 9. Experimental Result from Down-Down to Up-Down.
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Fig. 10. Experimental Result from Down-Down to Up-Up.



-0.30
0.3

-0.300.3

-3
0
3

-250
25

0
0.51

0
0.51

0
0.51

0 5 10 15
0

0.51

time [s]

x[
m

]

ru

u

ru

d

rd

u

rs

w
g


u[
m

]

θ1

[r
ad

]

θ2

[r
ad

]


Fig. 11. Experimental Result from Up-Up to Up-Down.
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Fig. 12. Experimental Result from Up-Down to Up-Up.

For the application to the equilibrium point transfer
and stabilization control of the double pendulum which
has four equilibrium points, the integrator which takes
consideration into the physical limitations was designed. In
order to verify the effectiveness of the proposed method,
computational simulations and experiments on a real facility
were carried out. As a result, it was confirmed that the
proposed controller can transfer and stabilize the double
pendulum from the arbitrary equilibrium point to the desired
unstable one. From the simulations and the experiments,
it was demonstrated that the integrated intelligent control
method is useful for nonlinear and complicated systems.
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