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Abstract— Structural flexibility is an inherent char-
acteristic of a class of macro-micro manipulators con-
sisting of a rigid micro manipulator mounted on a
long-reach (flexible) macro manipulator. Vibrations
caused by flexibility make it difficult to achieve accurate
control of the end-point of the micro manipulator. In
this paper, we develop a control strategy that can
be applied to such a system. An experimental test-
bed has been developed in which a 6 DOF PUMA
560 manipulator is mounted on a compliant platform.
The control strategy consists of a rigid body inverse
dynamics controller together with a neural network
based strategy for damping out the oscillations due to
the flexible base. Experimental results obtained from
the test-bed are presented to show the effectiveness of
the proposed control scheme.
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I. INTRODUCTION

Several applications of robotic systems require a ma-
nipulator to operate from a compliant base. Examples
of such manipulators are long-reach robotic systems for
nuclear environments, robots used in high voltage live-
line operations, and small robots mounted on large robots
called macro-micro manipulators. Macro-micro (abbrevi-
ated hence forth as M-m) manipulators were proposed
for long reach tasks requiring speed and precision. As
mentioned in [1], active vibration control by joint actu-
ators of the macro part may reduce structural vibrations,
but its performance may be limited by the usually small
actuator bandwidths. Also higher modes can be excited
in a complex multiple-link macro. Compliance can result
in errors at the end effector of the manipulator and may
destabilize the system because of the possibility of the non-
minimum phase characteristics associated with flexible-
link manipulators. Vibration control of M-m manipulators
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has been considered by a number of researchers in recent
years, e.g., see [2]—[8].

Obtaining a desired performance for a M-m manipulator
requires fairly accurate modeling of the flexible base and
compensating for the deflection at the end point of the
rigid robot. However, it is often difficult to obtain an
accurate model of flexibility. Thus model-based methods
may require extensive system identification and tuning
in order to achieve a desired performance. The nonlinear
mapping properties of neural networks, their adaptive na-
ture, and their ability to deal with uncertainty make them
a powerful tool for the control of nonlinear systems. During
the last decade, several neural network approaches have
been developed for control of flexible-link manipulators,
e.g., see [9]. However, not much work has been reported
on practical implementation of neural network control
schemes especially for M-m manipulator systems (see [10]).
In [11]-[14], several approaches have been developed for
identification and control of nonlinear systems based on
stability theory. Most of these results, however, are too
complicated to be used in an experimental framework.
Moreover, some of them assume that the nonlinear system
is linear in parameters. Such an assumption is often not
valid for manipulators with flexibility.

In this paper, we present a neural-network based con-
troller for vibration control of a PUMA manipulator
mounted on a compliant base. The control strategy con-
sists of the manipulator rigid body inverse dynamics for
tracking the joints and a neural network controller added
to damp out the oscillations at the base of the manipu-
lator. Experimental results are presented for a test bed
consisting of a PUMAB60 robot mounted on a compliant
base as depicted in Figure 1.

II. DyNaAMIC MODELING

In this section, a mathematical model of the system is
given. A 6 DOF PUMA 560 manipulator is mounted on an
X-shaped platform as shown in Figure 1. The platform is
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supported by 4 springs to emulate a manipulator system
mounted on a flexible base. The motion of the links of
the manipulator results in oscillations of the platform. The
essential idea to model the oscillatory behavior of the base
is to consider the base motion as a 3 DOF unactuated
manipulator with zero link lengths. Towards this end,
one prismatic joint (y) and two revolute joints (a&p)
are considered as shown in Figure 3. The prismatic joint
emulates the translational motion in the vertical direction,
and the two revolute joints emulate angular motions about
two planar axes. The lateral motions of the platform
(in the horizontal plane) were found to be significantly
smaller than the vertical deflections and were therefore
neglected. Flexible-link manipulators do exhibit 6 DOF
motion in general, but the measurement and control of
six elastic DOF’s have complications of their own and
future work will involve addressing those issues. Figure
3 also shows the frame assignments for the joints. Hence,
the full inverse dynamics of the manipulator system can
be obtained by using a standard algorithm such as the
Newton-FEuler approach. The dynamic equation of motion
takes the general form for manipulators with flexibility,
given by

Sensor 2

Fig. 1.

Close up of the platform.
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0
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where 6 is the 6 x 1 vector of the joint variables, § =
[y a B]T is the 3 x 1 vector of the deflection variables,
hy and ho are the terms due to gravity, Coriolis, and
centrifugal forces, M is the positive-definite symmetric
inertia matrix, and K is the positive-definite diagonal

stiffness matrix.

III. CONTROL METHODOLOGY

The objective in this section is to define a control
scheme such that the joints of the micro manipulator
track the desired trajectory while the oscillations of the
base are damped out quickly. This objective is not easy
to achieve since the system under control is an under-
actuated mechanical system. It is assumed that there exist
uncertainties in the dynamic parameters of the manipula-
tor which are to be compensated for by a neural network

/
| Neural N%/ork |
sl Conty:ller
L. Uq 5,6
>
04, 00,00 T e +
Inverse Dynamics | PUMA 560
_ Controller e + Manipulator
0,0, 0

Fig. 2. The schematic of the proposed neural network controller.

controller. The control structure is shown in Figure 2. As
the figure shows, the control torque u has two components,
U = U + uq, where u, is the rigid body controller for joint
tracking and wug is the torque required to damp out the
vibrations. The rigid body control is the standard inverse
dynamics (computed torque) controller given by

M(0)4 + ho(6,6) (2)

Ue =

where E = 04 — 6 and M (), hsy(6,6) are obtained from
(1) by considering only the joint motions.

A. Deflection Control using a Neural Network

The neural network has been employed only for vi-
bration suppression, as the rigid-body inverse dynamics
controller for the PUMA 560 has been reported to yield
good performance. Besides, implementation of a neural
network to control the whole system’s dynamics would
result in significantly higher computational cost, thereby
making real-time control harder to achieve.

In this section, the control structure specified in the pre-
vious section is modified to incorporate the base deflection
in the control action. One of the main limitations of the
computed torque control strategy is that there is no direct
way to effectively damp out the elastic vibrations at the
base of the manipulator. In other words, controlling the
joints does not necessarily guarantee satisfactory behavior
for the end-effector position. Our proposed approach at-
tempts to overcome the above difficulty. To consider the
effect of the base motion in the control input, first, a simple
PD type controller is designed:

Ug = —deé - Kdud (3)

However, there is no standard method to properly adjust
the gains K4, and Kg4, even if the models of the base and
the manipulator are accurately known; so an ad-hoc proce-
dure is often used to tune these gains. In many cases, this
does not result in satisfactory performance. Experimental
results obtained using the best possible combination of PD
gains reported in Section V clearly demonstrate this fact.
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The nonlinear mapping properties of neural networks
and their adaptive nature are central to their use in
controller design. Figure 2 shows the schematic of the
proposed controller. The key to designing this controller
is to include the base elastic deflections directly in the
objective function of the neural network. This amounts
to defining the objective function of the neural network as
J = %(5TK1§—|—5TK25), where 6 = [y a 8]7. Consequently,
direct control over the elastic vibrations of the flexible
modes becomes feasible through K; and K5. Experimental
results shown in Section V reveal that good control over
the elastic deflection can be obtained by this modifica-
tion. The inputs to the network are ¢ and 5, and the
output of the network is the control signal u4. The weight
adjustment mechanism is based on the steepest descent
method, namely w = —n(g—v{,)T, where w is the vector of
the weights of the network and 7 is the learning rate. Now

97 s computed according to
W
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= Juow’ Ow — Ouow’ and u = UC+Ud,
uqg = ®(,9), where ®(.) is the mapping performed by the
neural network, we can write 5 as

By using g—fv =

0J 0 g 05 00
—— = ('K — + 0T Ky—)—
ow ( 18u+ 28u)8w’
Now, g—i can be computed using the backpropagation

method, and % and % denote the gradient of the plant.
However, since it is assumed that little knowledge about
the flexible dynamics is available, it is difficult to obtain an
analytical expression for the plant Jacobian. Saerens and
Soquet [15] suggested the use of the sign of the Jacobian
instead of its real value for the training of neural adaptive
controllers. This is often available simply from qualitative
knowledge of the system (see Section V for details). The
plant backpropagation equation then becomes:
oJ ) 95, 0®

Y sT oo $T oW IE
5w = (0 K1SGN (=) + 0T Ko SGN (=) o,

where SGN(.) denotes the sign of (.).

A two-layer backpropagation neural network was used
for the experiment with 6 neurons in the hidden layer and 2
neurons in the output layer. The hidden layer neurons have
sigmoidal transfer functions and the output neurons use
linear activation functions. Note that the neural network
is trained and employed as an online controller and no
off-line training is required.

IV. EXPERIMENTAL SETUP

In this section, the test-bed used in this research is
described in some details. As mentioned in Section II,
the platform was modeled as three unactuated joints- one
prismatic and two revolute.

23, Y1, X

Fig. 3. Frame assignment for the manipulator base.
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Fig. 4. Sensor locations for the base.

A. Optimal Sensor Location

The frame assignment for the platform is indicated in
Figure 3. Frame{0} is the stationary frame attached to
the middle of the table. Figure 4 shows the schematic
diagram of the sensor locations. The platform was instru-
mented using three resistive type “rope” sensors [16]. Each
sensor provides position and velocity information in one
direction. The transformation matrices relating the sensor
frame {s;}, (i = 1,2,3) to frame{3} and frame{0} are
given by

Sxi
sr=| B ()
0 0 O ‘ 1
and
Sz 0
'R R| O +10
0 _ 3 3
0 0 O ‘ 1
where S,; and S,;,i = 1,2,3, are the coordinates of

the corresponding sensors as shown in Figure 4. The
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corresponding position vector of each sensor expressed in
frame{0} is given by

sin acsin 3S,; — cos a.S,;
cos 3S4; (6)

—cosasin 35;; —sinaS,; + vy

OSi:

Assuming small deflections in the platform, we can write
(6) as

_Szi

Szi (7)
_ﬁSam - aSzi + Y
As can be seen from Figure 1, three rope sensors were ver-

tically mounted on the fixed table. Each sensor measures
the Z component of the above vector, i.e.,

057;:

_Szla - Smlﬁ +v = m
S0 — 8B+ ma2
—52306 - SmSﬁ +7 = m3 (8)

where m;,i = 1,2,3, are the sensor readings. The above
equations can be written in the form

(0% miq
Y ms3
where
_Szl _Szl 1
A=| =S, —Sm 1 (10)
_Sz3 —Px3 1

To obtain the optimal sensor locations, we find values of
Szi and S,;,7 =1,2,3, such that the condition number of
A is minimized. This guarantees that «, 8 and v obtained
by inverting A in (9) are less sensitive to measurement
noise. This results in S;; =0, S, =0, S.3 =0, S;3 =0.
The Z component in equation (6) for the 3 sensors then
simplifies to

—S,1sina + 7y mq
—Sgocosasinf+vy = mg
o= m3 (11)

Now equation (11) can be solved to obtain «, 8 and v as
follows

Y= ms3
a = sin! m3 = ml
Szl
8 = sin! y-m2 (12)
Sypo COS (v

B. Real Time Implementation

The original robot controller was retrofitted to enable
access to the low-level parameters of the robot. A Multi-Q
multipurpose data acquisition card from Quanser Consult-
ing was chosen to interface the controller with the control
computer. A microcontroller card was designed to monitor
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Fig. 5. System Block Diagram.

the emergency switch and control the brakes in case of an
emergency.

The Simulink block diagram of the controller was com-
piled using the Real-Time Workshop [17] to generate C
code, which runs in real-time on the control computer.
The control computer is an Intel Pentium III 500Mhz PC
running the VxWorks RTOS [18]. Figure 5. shows the
block diagram for this experimental setup. A sampling rate
of 64Hz was chosen for the experimental system.

V. EXPERIMENTAL RESULTS

The control law (3) was modified to take into account
only qualitative knowledge about the system dynamics. In
this case, only the sign of the gradient of the system was
considered. The modified controller is given by

Uqg = (7de5 - Kdv(s)Sg (13)

where S; is a matrix consisting of 0,1,-1 and denotes the
signs of the gradients of the system
d )
SGN (8—171) SGN (aTl)

Sy = (14)

SGN(%%) SGN (%)
The matrix Sy is obtained by simply moving the robot
and noticing the direction of the deflection variables with
respect to the corresponding joint torques. It was observed
that the motions of joints 2 and 3 have the most dominant
effect on the platform vibrations. Hence the corresponding
elements for the other joints in S§ were set to zero as
shown below.

o o0 o0 o0 o0 O
1 -1 1 1
1

—
I
—

—_
—_

cocor~ |
cocor~ |
co o~
coo l
coco l

0
0
0
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The proposed control algorithm was implemented on the
experimental setup mentioned in the previous section.

First, only rigid body control, i.e., uq = 0, was im-
plemented with a fairly slow trajectory. For slower tra-
jectories, the performance of this controller was found
to be within reasonable limits. However, as the speed of
the desired trajectories is increased, adjustment of these
gains becomes more difficult and the system performance
degrades significantly. At this speed, for smaller values of
K4, and Kg;,, the vibration suppression is almost negligi-
ble. Figure 7 shows the system performance in this case.
As the gains are increased, the system tends to become
unstable and the joint errors increase significantly.

Next, the proposed neural network based controller
shown in Figure 2 was implemented. The faster trajectory
used in the previous experiment, was used with this con-
troller. As can be observed, the oscillations at the base are
damped out very quickly (see Figure 8). The joint tracking
in this case was not affected either.

To study the effects of these oscillations at the end-
effector of the manipulator, another trajectory was ap-
plied. This trajectory is a closed contour in the X-Z
plane. A joint-space trajectory was computed for this
contour. End-point calculations were performed using the
kinematic model for the PUMA 560 and including the
compliant base. Figure 9 shows the oscillations at the base
for this trajectory. Figure 10 shows the motion of the end-
effector of the manipulator in Cartesian space. As can be
seen, a significant improvement in end-point tracking was
obtained using the neural-network controller as compared
to the conventional inverse dynamics controller.

VI. CONCLUSIONS

The problem of controlling a manipulator mounted on
a compliant platform was considered in this paper. A
control strategy was proposed which consists of a rigid
body inverse dynamics controller with a neural network
based controller to damp out the oscillations. Control soft-
ware was developed with Matlab/Simulink based graphical
tools in conjunction with the VxWorks RTOS for imple-
menting real-time control. Experimental results obtained
by implementing the neural network based controller show
the effectiveness of the proposed control scheme.
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