

Abstract—In this paper, a new kind of deadlock-free

scheduling method based on genetic algorithm and
reachability analysis of timed S3PR nets is proposed to solve
the scheduling problems of job shop without buffers. Under the
framework of timed Petri nets model, the scheduling problem
can be described as finding a feasible transition firing sequence
in the Petri nets model to avoid deadlock situations and to
minimize the makespan. In order to satisfy the deadlock free
constraint, a repair procedure is imbedded into the genetic
algorithm to improve the quality of infeasible solutions and a
penalty item is involved in the fitness computation procedure
to prevent the search process from converging to infeasible
solutions. The method proposed in this paper can get a feasible
scheduling strategy as well as enable the system achieve good
performance, and this is empirically shown by simulation
results.

I. INTRODUCTION

n the research area of manufacturing systems, much work
has been done about the scheduling problems such as job

shop and flow shop, however most of the scheduling
algorithms ignore both material handling devices and
limited buffer space constraints [12]. But for the real-life
automated manufacturing systems, auxiliary resources are
limited and not always available, so the existing scheduling
methods are not readily applied to manage an automated
manufacturing system. In automated manufacturing systems,
when various parts compete for the limited resources,
deadlock may occur if without proper scheduling strategy.
Deadlock can cause unnecessary costs (e.g. long down time
and low use of some critical and expensive resources),
which are particularly important in automated
manufacturing systems. Therefore, it is important to develop
efficient algorithm to improve and optimize the system

Manuscript received September 15, 2003. This work was supported by

the National Natural Science Foundation of China. (No. 60074011,
70071017).

Zhonghua, Huang is with the Department of Automation, Shanghai
Jiaotong Univerisity, Shanghai, 200030, China (phone: 86-21-62933428-24;
e-mail: jacki@sjtu.edu.cn).

Zhiming, Wu is with the Department of Automation, Shanghai
Jiaotong University, Shanghai, 200030, China. (e-mail:
ziminwu@sjtu.edu.cn).

*To whom correspondence should be addressed

performances while preventing deadlock situations. The
scheduling problem of job shop without buffers proposed in
this paper is a problem that no storage capacity is available
between any two machines and the job should wait in its
current machine until its following machine is released.

Deadlock problem was firstly addressed by computer
scientists developing resource allocation methods in
operating systems. In particular, Coffman [1] gave four
necessary conditions that must be held for a deadlock to
occur: mutual exclusion, no prevention, hold while wait, and
circular wait.

The pure logic problem of avoiding deadlock is a
well-explored problem, and a lot of deadlock resolution
methods, such as deadlock prevention, deadlock
detection/recovery, and deadlock avoidance policy have
been proposed [2-5]. Although all these methods guarantee
the deadlock free operation of a manufacturing system, they
don’t take operating times into account, so the performance
of automated manufacturing systems is not guaranteed, and
thus scheduling of systems with potential deadlock is still a
rather open field. Deadlock free scheduling methods
combine scheduling strategies with deadlock resolution
approaches. They can bring us a feasible schedule as well as
enable the systems to achieve good performance. However,
the joint consideration of scheduling and deadlock
avoidance can lead to highly combinatorial scheduling
problems. Many classical scheduling techniques don’t apply
here and their extension to automated manufacturing
systems is a challenging work. Until now, not much work
about deadlock free scheduling has been done. The main
methods are summarized as follows.

Ramaswamy and Joshi [6] provided a mathematical
model for deadlock-free scheduling problem of automated
manufacturing systems with material handling devices and
limited buffers and used a Lagrangian relaxation heuristic to
simplify the models to search for the optimized average flow
time. Lee and DiCesare [7] proposed a heuristic search
algorithm based on A* search technique and Petri nets
theory. The algorithm can seek a makespan optimal or
near-optimal transitions firing sequence within the
reachability graph of Petri nets. Abdallah [8] used timed S4R
nets to model automated manufacturing systems, and
proposed a search algorithm, which is based on the branch

Deadlock-Free Scheduling Method Using
Genetic Algorithm and Timed S3PR Nets

Zhonghua Huang* , Zhiming Wu

I

and bound principle, depth-first search strategy and a siphon
truncation techniques. A user control factor is added to
search algorithm to achieve an acceptable trade-off between
the solution quality and search effort. Jeng and Chen [9]
developed a heuristic algorithm based on best-first search
technique and state equation of timed Petri nets models for
minimizing the makespan and their method may need much
computation for large systems. They also pointed out that
their method couldn’t handle larger systems with more than
300 operations. Most of the existing deadlock free
scheduling algorithms are based on mathematical
programming or heuristic algorithms, and they usually
cannot handle larger systems.

In this paper, a new kind of deadlock-free scheduling
algorithm based on timed S3PR nets and genetic algorithm is
proposed to solve the scheduling problems of job shop
without buffers. Genetic algorithm is an effective global
search algorithm. By reachability analysis of Petri nets, the
scheduling algorithm can effectively sequence the
operations on the resources to minimize the makespan as
well as avoid the deadlock. The rest of the paper is organized
as follows: section 2 introduces the manufacturing systems
under consideration and describes the use of timed S3PR
nets in modeling procedure and defines the scheduling
problem under the Petri nets model. Section3 describes the
coding and decoding scheme and fitness computation of
chromosome. Section 4 proposes design method of genetic
operators. Section 5 uses examples to show the effectiveness
of the proposed scheduling algorithm. Section 6 is a
conclusion.

II. PROBLEM SETTING AND TIMED S3PR MODEL

In this section, we propose a manufacturing system model
called job shop without buffers. In the given system, there is
no storage capacity available between any two machines and
any job should wait in its current machine until its following
machine is released. In the following, we discuss the system
in detail. The automated manufacturing system is composed
of a set of resources },...,1|{ miRR i == where m is the
number of the resources. Each resource has a single unit, i.e.
all resources are different from each other. There is a set of
jobs },...,1|{ niJJ i == need to be performed, where n is
the number of jobs. Each job requires a sequence of
operations)}(,...1|{ , ikjOO jii == in term of the

manufacturing process where)(ik is the number of

operations of job iJ . Each operation jiO , needs a resource

in R to be performed, and requires a given amount of time,
called processing time and denoted by ijx . In the

manufacturing systems described above, resources cannot
be preempted and jobs use resources in an exclusive mode

and hold resources while waiting for the next resources that
are specified by their operation sequences, so the first three
necessary condition of deadlock are always satisfied, and
thus deadlock may occur in the system due to improper
scheduling strategy. Therefore, the job shop problem
without buffers presented here is different from classical
job-shop problem [17]. In classical job shop problems, after
the completion of one operation, the same resource needed
for another operation is released immediately, so the third
necessary condition of deadlock “hold while wait” is not
satisfied and thus deadlock never occur in classical job shop
problems, while job shop problem without buffers is
characterized by “hold while wait” as described before, so
the possible deadlock should be avoided to enhance the
system stability.

Petri nets can be used to describe system dynamic
characteristics, such as concurrency, conflict, and deadlock,
etc. Many researchers use Petri nets as a formalism to
describe automated manufacturing systems and to develop
appropriate deadlock resolution methods [14]. In this paper,
the Bottom-Up method is used to model the whole system.

The first step is to partition the whole system into several
sub-systems in terms of the manufacturing process of each
job iJ and construct the Petri nets model for each
sub-system. Suppose processing a job iJ need a sequence of
resources {)(21 ,...,, iikii rrr } (Rri ∈1), then the places in the
Petri nets sub-model of job iJ can be composed of input
places 0iO , output places)1)((+ikiO , resource places

{ 1iP , 2iP ,…,)(iikP }, and operation places

{ 1iO , 2iO ,…,)(iikO }. Token in the input place represents that
the job waits outside the systems to be operated, and token in
the output place represents the completion of the job.
Transitions)}(,...1|{ ikjtij = correspond to the start of next

operation, and)1)((+ikit means that the job iJ finishes all of
its operations and goes into output place. Fig1 shows a Petri
net sub-model of job

iJ where 2)(=ik .

0iO
iJ

1iO 2iO 3iO

1iP 2iP

Fig.1 Petri nets sub-model of Ji ()(ik =2)

The second step is to merge the sub-models to get the
whole Petri nets model by taking into account shared
resource places. For example, suppose that there is a set of
resources (

321 ,, RRR) in the system and two jobs (1J , 2J) that

need to be processed. The resource sequence that job
1J

needs to require is (321 ,, RRR), and the other one that 2J
needs is (

312 ,, RRR). Fig.2 represents the whole Petri nets
model after merging the sub-model of

1J and
2J . The Petri

nets model constructed by above Bottom-Up method is
called S3PR nets. The detailed definition of the S3PR nets
can be found in the references [2][20]. In this paper, the job
routing flexibility is not taken into consideration.

By assigning processing time ijx to the corresponding

operation place ijO in S3PR nets, Timed S3PR nets can be
obtained. In the timed S3PR nets, the tokens in the operation
place ijO become available after duration of time ijx . When
there are some jobs not finished, all the tokens in the
operation place are available, and there are no enabled
transitions, we can say that the Timed Petri nets come into a
state of deadlock. If the system is in the deadlock situation,
all the jobs cannot get progress, so the performance of
manufacturing system is dramatically reduced. The goal of
deadlock free scheduling algorithm proposed in this paper is
to avoid this situation.

Under the framework of timed S3PR nets model, job shop
scheduling problem without buffers consists in finding a
feasible transition firing sequence in the Petri nets model in
order to avoid deadlock and to minimize the makespan. If
the system could evolve successfully from the initial state to
objective state in term of the feasible transition firing
sequence, that is to say, the objective state is reachable under
the firing sequence, then the deadlock would not occur.

In the scheduling problem of this paper, the initial state
represents the state that all the jobs waits outside the system
and all the resources are available, the objective state is the
state that all the jobs are completed and all the resources are
released and can be reused. In the Petri nets model, we use
initial marking 0M to denote initial state, and objective

marking 'M to denote objective state. A is the incidence
matrix of Petri nets. State equation can be denoted as

TAMM ⋅+= 0
' [19]. In the timed S3PR net model, if the

system can evolve from initial state to the final state, all the
transitions must be fired only once. Then we can get that

]1,..1,1[=T . If the transition sequence σ composed by all
the transitions in Petri nets model is called a complete
sequence, then a complete sequence is necessary condition
for the system to evolve to the objective state.

In timed S3PR net, if all the transitions fire according to

the given firing sequence, the system evolves from initial
state to target state successfully, then the transition firing
sequence is called a feasible transition sequence. It is
obvious that a feasible transition sequence must be a
complete sequence in the timed S3PR net. A complete
transition sequence σ (Nτττ ,..., 21) is feasible, if and only if
it satisfies the following reachability constraint:

0
1

0 ≥⋅+ ∑
=

n

i
iAM τ (Nn ,...,2,1=).

III. ENCODING OF TRANSITION SEQUENCES AND FITNESS
COMPUTATION

In order to get a feasible and optimal transition firing
sequence, an effective algorithm based on Petri nets theory
and genetic algorithm (GA) is proposed. This algorithm
encodes transition firing sequence of Petri nets. With the
help of repair procedure and genetic operators, population
evolves generation by generation to converge to optimal or
near optimal solution.

A. Encoding Scheme
Encoding of transition firing sequence is carried out by

using natural numbers. Each chromosome is composed of

)1)((
1

+= ∑
=

n

i

ikN genes. Every gene represents a transition.

The number in the gene means the part type corresponding
to the transition, and the relative position of gene in the
genes with the same number determines the concrete
transition. Suppose the number in the gene is i , and the
relative position in the genes with the same number i is j ,
then the gene represents transition ijt . For example, if there
is a chromosome 32323211, then the transition sequence
corresponding to the chromosome is 1211233322322131 tttttttt . If
the chromosome could represent a complete transition firing
sequence, then the coding scheme of genetic algorithm is
reasonable.

B. Check and Repair procedure
Using the method addressed in the above section, we can

check up the feasibility of a transition sequence. If the

R1

R2

R3

11O

10O

13t

12O

11t

14O

12t

13O

14t

1J 2J

20O

21O

22t

22O

23t

23O

24O

21t

24t

Fig2. Merged Petri nets model

transition sequence is not feasible, a proper repair procedure
is added to the scheduling algorithm to improve the solution.
(1) Assume to be given an encoded chromosome and initial
Petri nets marking 0MM = . A pointer P is placed initially
at the first gene. The number of enabled transitions p is 0,
and an iteration parameter q is 0.
(2) If the transition t represented by the gene that is pointed
by the pointer P satisfies the firable condition at a marking
M , i.e. 0≥⋅+ tAM , then fire the transition and update the
marking tAMM ⋅+← , P ← P+1, p ← p+1, and q ← 0;
otherwise, move the pointed gene to the end of the
chromosome.
(3) If p+q equals the length of given chromosome, then stop
this procedure; else go to (2).

If transition t in the transition sequence pointed by a
pointer is not firable successfully from the current state,
other transitions behind the pointer would be checked by
carrying out the check and repair procedure, so more
transitions have the opportunity to be fired under the repair
procedure, and the chromosome can be improved to some
extent. The parameter p represents the number of transitions,
which have been fired successfully from initial marking. The
other parameter q shows the number of transitions which
have not been judged yet on the right-hand side from the
number pointed by the pointer. By calculating a parameter q,
we can avoid checking the same transition which has been
judged already.

When the system evolves according to the repaired
transitions sequence, if the firable transition number p
equals N , the system would come to the object state
eventually; otherwise if p< N , the system would enter into
the deadlock state.

C. Transition controlled timed S3PR nets
In order to force the timed S3PR nets model to run

automatically according to the friable transition sequence
σ (pτττ ,..., 21) (p is the number of firable transitions)
represented by the repaired chromosome, it is necessary to
modify the original Petri nets model. In the original timed
S3PR nets model, place iC , directed arc (ii C,τ) and (1, +iiC τ)

are added between transitions iτ and 1+iτ)1,...1(−= pi . It

is noted that if iτ and 1+iτ belong to the transitions of the
same job, then there is no need to add place and arcs. The
modified Petri nets model is called Transition controlled
timed S3PR nets, and it turn out to be a net without conflict.
The transitions in transition controlled timed S3PR nets can
be fired according to the first p firable transitions in the
given transition sequence. The method can be referenced
from [16].

Suppose in the first p firable transitions, the number of
transitions related to the same job iJ is is , and the firing
time of transition ijt is ijtr (ni ,...1= , isj ,...1=). Since
conflict phenomenon is avoided in transition controlled
timed S3PR nets, the firing times of the first p firable
transitions are easy to get. If Np = , all the jobs would be
finished, and the makespan is)max()1)((+ikitr ; if Np < , the
systems would come into the deadlock situation, and the
time when deadlock happens is)max(

ii isis xtrt += . The
whole processing time of unfinished operations

∑ ∑
= +=

n

i

ik

isj ijx
1

)(

1
can be used to construct the penalty items of

infeasible solutions.

D. Computation of fitness:
The procedure of fitness computation can be represented

as follows.
1) Given a chromosome, under the action of check and

repair procedure, a new chromosome and the number of
firable transitions p can be obtained.

2) Construct transition controlled timed S3PR nets, and
compute the firing time of the first p firable transitions.

3) If p equals N, the solution is feasible and

fitness=)max(/1)1)((+ikitr . If p< N , the solution is

infeasible and a penalty item should be added to the fitness
computation.

fitness=))/(max(1
1

)(

1
∑ ∑

= +=

⋅++
n

i

ik

sj
ijisis

i

ii
xkxtr where k

is an adaptable parameter.
From the computation procedure of fitness, we can see

that the smaller the makespan of feasible solutions, the
larger the fitness. For the infeasible solutions, they are not
discarded by the genetic algorithm directly, and can be
included in the populations for a long time. This is because
the infeasible solutions may have some fine structures that
are important for genetic operations, so the infeasible
chromosomes are allowed to exist in the populations.
However, their fitness is decreased by adding penalty items.

IV. DESIGN OF GENETIC OPERATIONS

A. Selection operation:
 We employ the spinning roulette wheel selection method.
The probability of individual being selected is

∑
=

= S

i

i

fi

fip

1

,

where if is the fitness of individual i and S is population
size.

B. Crossover operation:
Implementation of crossover can introduce new

individuals by recombining current population. Based on the
coding scheme introduced above, the classic crossover
operators for traveling salesman problems cannot be applied
here, such as partially mapped crossover and order crossover.
So we design a special crossover operator by making full use
of the information that the chromosomes have. The detailed
algorithm is as follows.

1) Choose two individuals P1 and P2 as parents from the
population randomly. Suppose that the number of firable
transitions of P1 is 1p and the one of P2 is 2p . Generate a
random number)]2,1min(,1[ppi ∈ as the crossover point.
Record the left part of P1 and P2 from gene 1 to gene i with
strings T1 and T2 respectively.

2) For each gene in T1, search for a gene which has the
same value with it in parent individual P2, and then replace
the value of the gene with 0. After doing that, move all the
genes which have the value of 0 in P2 to the left part, and
maintain the relative sequence of other genes. P1 is altered in
the same way.

3) Replace the left part of P1 with T2, and then we can get
a new child individual Child1; by the same way, we can get
another child individual Child2.

C. Mutation operation:
Mutation operation serves to maintain diversity in

population. In this paper, mutation operation can’t be
implemented by changing a randomly selected gene,
because this operation would bring us a meaningless
chromosome. What’s more, if the position of changed gene
is after the last firable transition, then the chromosome after
mutation operation is still an infeasible solution.

The mutation operation presented in this paper can be
described as follows.

Given a parent individual P1, suppose the number of the
firable transitions related to P1 is p. Select two mutation
positions],1[pi ∈ ,],1[Lj ∈ randomly. If the genes in the
two positions are different, then exchange them; otherwise,
select exchange positions again.

V. EXPERIMENTS
An commonly used example with 3 machine and 4 jobs

which is cited from Ranmaswamy and Joshi [6] is shown in
the following table.
 Here we chose the following parameters: population 30,
crossover probability 0.65, mutation probability 0.2, and
parameter k 1. After 15 generations, we can get the optimal
solution 512. Comparison of results obtained using the
proposed method and others is given in table 2. It is obvious
that the algorithm proposed in this paper is very efficient.
Furthermore, compared with heuristic methods and

mathematical programming methods, genetic algorithm is
more fitted to handle large problems.

Here we give another three examples in which more jobs
are added into the original system. Processing time and
production sequence of jobs are shown in table 3. We select
the first 6 jobs as the second example, the first 8 jobs as the
third example, and all of the ten jobs as the fourth example.
The scheduling results of genetic algorithm are shown in
table 4. The Gantt graphs of different examples are shown in
figure 3, figure 4 and figure 5. From the above results, we
can see that scheduling algorithm proposed in this paper can
solve large problems efficiently.

Table.2 comparison of results obtained using the proposed method
and others

Method Optimal
makespan

CPU
time (s)

Computing
machine

Mathematical
programming

(Ramaswamy and
Joshi 1996 [6])

512 0.71
IBM

ES/3090-60
0S

Heuristic search based
on Petri nets (Xiong and

Zhou 1997 [10])
512 0.13 Sun

SPARC 20

Genetic algorithm based
on timed S3PR nets

(Proposed in this paper)

Best: 512
Mean: 519 0.04 Celeron

800MHz

Table.3 Job information

J1 J2 J3 J4 J5

1M :40 2M :45 1M :212 3M :55 1M :50

2M :100 1M :65 2M :73 2M :65 3M :120

3M :36 3M :98 3M :32 1M :35 2M :30

J6 J7 J8 J9 J10

2M :95 3M :155 2M :15 3M :55 2M :20

1M :50 1M :55 3M :45 2M :85 1M :45

3M :40 2M :75 1M :50 1M :25 3M :95

4.2

4.1 5.2M1

M2

M3

6.1
5.3

1.2

2.3

3.1

3.22.1

55

6.2

6.3

5.1 1.1

1.3 3.3

0

95

95 145

145

4.3 2.2

240

195 315

355

672

567

455

640

Figure.3 Gantt graph of 6 jobs

Table 1. Processing time of jobs

1J 2J 3J 4J
1M :40 2M :45 1M :212 1M :55
1M :100 1M :65 1M :73 1M :65

1M :36 3M :98 1M :32 1M :35

VI. CONCLUSION
In this paper, a new scheduling method based on the timed

S3PR nets and genetic algorithm is put forward in order to
solve the scheduling problem of job shop without buffers.
This algorithm checks up the feasibility of solutions through
reachability analysis of Petri nets. The infeasible solutions
can be improved in a certain extent through a repair
procedure and the fitness of them should be reduced by
adding the penalty items. Transition controlled timed S3PR
nets models are constructed according to the firable
transitions represented by chromosomes. The fitness of
chromosome can be easily acquired from the related
transition controlled timed S3PR nets. By taking full
advantage of information in the chromosome, the
appropriate genetic operators can be designed to gain fast
convergence speed. Examples are offered in this paper to
support the validity of the algorithm.

REFERENCES
[1] E.G., Coffman, M.J., Elphick, and A., Shoshani, “System deadlocks”,

ACM Computing surveys, vol.3, 1971, pp. 67-78.
[2] J., Ezpeleta, J. M., Colom, and J., Martinez, “A Petri net based

deadlock prevention polity for flexible manufacturing system,” IEEE
Transactions on Robotics and Automation, vol. 11, no.2, 173-184,
1995.

[3] M. A., Lawley, S. A. Reveliotis, and M., Ferreira. “A correct and
scalable deadlock avoidance policy for flexible manufacturing
systems,” IEEE Transactions on Robotics and Automation, vol. 14, no.
5, 796-809, 1998.

[4] M. P., Fanti, G. Maione, and B. Turchiano, “Digraph-Theoretic
Approach for Deadlock Detection and Recovery in Flexible
Production Systems,” Studies in Informatics and Control, vol. 5, no. 4,
pp. 373-383, 1996.

[5] N. Q., Wu and M.C., Zhou, "Avoiding Deadlock and Reducing
Starvation and Blocking in Automated Manufacturing Systems",
IEEE Transactions on Robotics and Automation, vol. 17, no. 5, pp.
658-669, 2001..

[6] S. E., Ramaswamy, and S. B., Joshi, “Deadlock-free schedules for
automated manufacturing workstations”, IEEE Trans. on Robotics
and Automation, Vol. 12, No. 3, 1996, pp. 391-400

[7] D.Y., Lee, and F., DiCesare, "Scheduling FMS Using Petri Nets and
Heuristic Search," IEEE Trans. on Robotics and Automation, vol.10,
no.2, pp123-132, 1994.

[8] I. B., Abdallah, and A., Elmaraghy, “ Deadlock Prevention and
Avoidance in FMS: A Petri Net based Approach”, Int. J. Advanced
Manufacturing Technology, vol. 14, n. 10, 704-715, 1998.

[9] M. D., Jeng, and S. C., Chen, ”Heuristic search approach using
approximate solutions of Petri net state equations for scheduling
flexible manufacturing systems,” International Journal of Flexible
Manufacturing Systems, 1998, 10(2), 139-162

[10] H. H., Xiong, and M. C., Zhou, “A Petri net method for deadlock-free
scheduling of flexible manufacturing systems”, International Journal
of Intelligent Control and Systems, 3(3), pp. 277-295, September
1999.

[11] Y., Mati, "Geometric approach and taboo search for scheduling
flexible manufacturing systems" IEEE Transactions on Robotics and
Automation, v 17, n 6, December, 2001, p 805-818

[12] M., Pinedo, Scheduling: Theory, Algorithm and Systems New Jersey,
USA, Prentice Hall 1995.

[13] G., Xu, and Z. M., Wu, "Deadlock-free scheduling method using Petri
net model analysis and GA search" Control Applications, 2002.
Proceedings of the 2002 International Conference on , Vol 2 ,
2002 ,P1153 -1158

[14] T., ElMekkawy, "Deadlock resolution in flexible manufacturing
systems: a Petri nets based approach". Ph.D. thesis, Department of
Industrial and Manufacturing Systems Engineering, University of
Windsor, Windsor, Ontario, Canada

[15] Y. L., Chen, “Petri-net based hierarchical structure for dynamic
scheduler of an FMS: rescheduling and deadlock avoidance”
Proceedings - IEEE International Conference on Robotics and
Automation, n pt 3, 1994, p 1998-2004

[16] B. C., Damasceno, and X. L., Xie, , “Petri nets and deadlock-free
scheduling of Multiple-Resource Operations” Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics, v 1,
1999, p I-878 - I-883

[17] Y., Mati, “A taboo search approach for deadlock-free scheduling of
automated manufacturing systems,” Journal of Intelligent
Manufacturing, vol. 12, n 5-6, October, 2001, p 535-552.

[18] K., Takahashi, M., Yamamura, and S., Kobayashi, “GA approach to
solving reachability problems for Petri nets, ” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, v E79-A, n 11, Nov, 1996, p 1774-1780

[19] W., Resig, “Petri nets: an introduction,” Berlin, New York:
Springer-Verlag, 1985.

[20] I. B., Abdallah, H. A., ElMaraghy, and T., ElMekkawy, “A logic
programming ap proach for finding minimal siphons in S3 PR nets
applied to manufacturing systems”, Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, vol. 2,
1997, P 1710 -1715

M1

M2

M3

1.2

2.2

2.3

3.1

3.2

4.1

4.2

5.2

6.1

7.1

7.2

7.3

6.2 5.1

4.3

2.1

6.3

5.3

1.1

1.3

3.3

8.1

8.2

8.3

95 145

195 315 355

455 491

567 646

678

701

776

776

Figure.4 Gantt graph of 8 jobs

M1

M2

M3

1.2

2.2

2.3

3.1

3.2

4.1

4.2

5.2

6.1

7.1

7.2

7.3

6.25.1 4.3

2.1

6.3

5.3

1.1

1.3 3.3

8.1

8.2

8.3

95 145

9.1

9.2

10.3

50 170

210

310 346 696

10.2

10.1
651 716 791 931

422

501 578 956

9.3

846

856 954

Figure.5 Gantt graph of 10 jobs

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP17.4
	Page0: 5746
	Page1: 5747
	Page2: 5748
	Page3: 5749
	Page4: 5750
	Page5: 5751

