
 
 

 

  
Abstract—In this paper, a new kind of deadlock-free 

scheduling method based on genetic algorithm and 
reachability analysis of timed S3PR nets is proposed to solve 
the scheduling problems of job shop without buffers. Under the 
framework of timed Petri nets model, the scheduling problem 
can be described as finding a feasible transition firing sequence 
in the Petri nets model to avoid deadlock situations and to 
minimize the makespan. In order to satisfy the deadlock free 
constraint, a repair procedure is imbedded into the genetic 
algorithm to improve the quality of infeasible solutions and a 
penalty item is involved in the fitness computation procedure 
to prevent the search process from converging to infeasible 
solutions. The method proposed in this paper can get a feasible 
scheduling strategy as well as enable the system achieve good 
performance, and this is empirically shown by simulation 
results. 

I. INTRODUCTION 

n the research area of manufacturing systems, much work 
has been done about the scheduling problems such as job 

shop and flow shop, however most of the scheduling 
algorithms ignore both material handling devices and 
limited buffer space constraints [12]. But for the real-life 
automated manufacturing systems, auxiliary resources are 
limited and not always available, so the existing scheduling 
methods are not readily applied to manage an automated 
manufacturing system. In automated manufacturing systems, 
when various parts compete for the limited resources, 
deadlock may occur if without proper scheduling strategy. 
Deadlock can cause unnecessary costs (e.g. long down time 
and low use of some critical and expensive resources), 
which are particularly important in automated 
manufacturing systems. Therefore, it is important to develop 
efficient algorithm to improve and optimize the system 
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performances while preventing deadlock situations. The 
scheduling problem of job shop without buffers proposed in 
this paper is a problem that no storage capacity is available 
between any two machines and the job should wait in its 
current machine until its following machine is released.  

Deadlock problem was firstly addressed by computer 
scientists developing resource allocation methods in 
operating systems. In particular, Coffman [1] gave four 
necessary conditions that must be held for a deadlock to 
occur: mutual exclusion, no prevention, hold while wait, and 
circular wait. 

The pure logic problem of avoiding deadlock is a 
well-explored problem, and a lot of deadlock resolution 
methods, such as deadlock prevention, deadlock 
detection/recovery, and deadlock avoidance policy have 
been proposed [2-5]. Although all these methods guarantee 
the deadlock free operation of a manufacturing system, they 
don’t take operating times into account, so the performance 
of automated manufacturing systems is not guaranteed, and 
thus scheduling of systems with potential deadlock is still a 
rather open field. Deadlock free scheduling methods 
combine scheduling strategies with deadlock resolution 
approaches. They can bring us a feasible schedule as well as 
enable the systems to achieve good performance. However, 
the joint consideration of scheduling and deadlock 
avoidance can lead to highly combinatorial scheduling 
problems. Many classical scheduling techniques don’t apply 
here and their extension to automated manufacturing 
systems is a challenging work. Until now, not much work 
about deadlock free scheduling has been done. The main 
methods are summarized as follows. 

Ramaswamy and Joshi [6] provided a mathematical 
model for deadlock-free scheduling problem of automated 
manufacturing systems with material handling devices and 
limited buffers and used a Lagrangian relaxation heuristic to 
simplify the models to search for the optimized average flow 
time. Lee and DiCesare [7] proposed a heuristic search 
algorithm based on A* search technique and Petri nets 
theory. The algorithm can seek a makespan optimal or 
near-optimal transitions firing sequence within the 
reachability graph of Petri nets. Abdallah [8] used timed S4R 
nets to model automated manufacturing systems, and 
proposed a search algorithm, which is based on the branch 
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and bound principle, depth-first search strategy and a siphon 
truncation techniques. A user control factor is added to 
search algorithm to achieve an acceptable trade-off between 
the solution quality and search effort. Jeng and Chen [9] 
developed a heuristic algorithm based on best-first search 
technique and state equation of timed Petri nets models for 
minimizing the makespan and their method may need much 
computation for large systems. They also pointed out that 
their method couldn’t handle larger systems with more than 
300 operations. Most of the existing deadlock free 
scheduling algorithms are based on mathematical 
programming or heuristic algorithms, and they usually 
cannot handle larger systems.  

In this paper, a new kind of deadlock-free scheduling 
algorithm based on timed S3PR nets and genetic algorithm is 
proposed to solve the scheduling problems of job shop 
without buffers. Genetic algorithm is an effective global 
search algorithm. By reachability analysis of Petri nets, the 
scheduling algorithm can effectively sequence the 
operations on the resources to minimize the makespan as 
well as avoid the deadlock. The rest of the paper is organized 
as follows: section 2 introduces the manufacturing systems 
under consideration and describes the use of timed S3PR 
nets in modeling procedure and defines the scheduling 
problem under the Petri nets model. Section3 describes the 
coding and decoding scheme and fitness computation of 
chromosome. Section 4 proposes design method of genetic 
operators. Section 5 uses examples to show the effectiveness 
of the proposed scheduling algorithm. Section 6 is a 
conclusion. 

II. PROBLEM SETTING AND TIMED S3PR MODEL  

In this section, we propose a manufacturing system model 
called job shop without buffers. In the given system, there is 
no storage capacity available between any two machines and 
any job should wait in its current machine until its following 
machine is released. In the following, we discuss the system 
in detail. The automated manufacturing system is composed 
of a set of resources },...,1|{ miRR i ==  where m is the 
number of the resources. Each resource has a single unit, i.e. 
all resources are different from each other. There is a set of 
jobs },...,1|{ niJJ i == need to be performed, where n is 
the number of jobs. Each job requires a sequence of 
operations )}(,...1|{ , ikjOO jii == in term of the 

manufacturing process where )(ik  is the number of 

operations of job iJ . Each operation jiO , needs a resource 

in R  to be performed, and requires a given amount of time, 
called processing time and denoted by ijx . In the 

manufacturing systems described above, resources cannot 
be preempted and jobs use resources in an exclusive mode 

and hold resources while waiting for the next resources that 
are specified by their operation sequences, so the first three 
necessary condition of deadlock are always satisfied, and 
thus deadlock may occur in the system due to improper 
scheduling strategy. Therefore, the job shop problem 
without buffers presented here is different from classical 
job-shop problem [17]. In classical job shop problems, after 
the completion of one operation, the same resource needed 
for another operation is released immediately, so the third 
necessary condition of deadlock “hold while wait” is not 
satisfied and thus deadlock never occur in classical job shop 
problems, while job shop problem without buffers is 
characterized by “hold while wait” as described before, so 
the possible deadlock should be avoided to enhance the 
system stability.  

Petri nets can be used to describe system dynamic 
characteristics, such as concurrency, conflict, and deadlock, 
etc. Many researchers use Petri nets as a formalism to 
describe automated manufacturing systems and to develop 
appropriate deadlock resolution methods [14]. In this paper, 
the Bottom-Up method is used to model the whole system.  

The first step is to partition the whole system into several 
sub-systems in terms of the manufacturing process of each 
job iJ  and construct the Petri nets model for each 
sub-system. Suppose processing a job iJ  need a sequence of 
resources { )(21 ,...,, iikii rrr } ( Rri ∈1 ), then the places in the 
Petri nets sub-model of job iJ  can be composed of input 
places 0iO , output places )1)(( +ikiO , resource places 

{ 1iP , 2iP ,…, )(iikP }, and operation places 

{ 1iO , 2iO ,…, )(iikO }. Token in the input place represents that 
the job waits outside the systems to be operated, and token in 
the output place represents the completion of the job. 
Transitions )}(,...1|{ ikjtij = correspond to the start of next 

operation, and )1)(( +ikit means that the job iJ  finishes all of 
its operations and goes into output place. Fig1 shows a Petri 
net sub-model of job 

iJ  where 2)( =ik . 

0iO
iJ

1iO 2iO 3iO

1iP 2iP

 
 

Fig.1 Petri nets sub-model of Ji  ( )(ik =2) 

The second step is to merge the sub-models to get the 
whole Petri nets model by taking into account shared 
resource places. For example, suppose that there is a set of 
resources (

321 ,, RRR ) in the system and two jobs ( 1J , 2J ) that 



 
 

 

need to be processed. The resource sequence that job 
1J  

needs to require is ( 321 ,, RRR ), and the other one that 2J  
needs is (

312 ,, RRR ). Fig.2 represents the whole Petri nets 
model after merging the sub-model of 

1J  and 
2J . The Petri 

nets model constructed by above Bottom-Up method is 
called S3PR nets. The detailed definition of the S3PR nets 
can be found in the references [2][20]. In this paper, the job 
routing flexibility is not taken into consideration. 

By assigning processing time ijx  to the corresponding 

operation place ijO  in S3PR nets, Timed S3PR nets can be 
obtained. In the timed S3PR nets, the tokens in the operation 
place ijO  become available after duration of time ijx . When 
there are some jobs not finished, all the tokens in the 
operation place are available, and there are no enabled 
transitions, we can say that the Timed Petri nets come into a 
state of deadlock. If the system is in the deadlock situation, 
all the jobs cannot get progress, so the performance of 
manufacturing system is dramatically reduced. The goal of 
deadlock free scheduling algorithm proposed in this paper is 
to avoid this situation. 

Under the framework of timed S3PR nets model, job shop 
scheduling problem without buffers consists in finding a 
feasible transition firing sequence in the Petri nets model in 
order to avoid deadlock and to minimize the makespan. If 
the system could evolve successfully from the initial state to 
objective state in term of the feasible transition firing 
sequence, that is to say, the objective state is reachable under 
the firing sequence, then the deadlock would not occur.  

In the scheduling problem of this paper, the initial state 
represents the state that all the jobs waits outside the system 
and all the resources are available, the objective state is the 
state that all the jobs are completed and all the resources are 
released and can be reused. In the Petri nets model, we use 
initial marking 0M  to denote initial state, and objective 

marking 'M to denote objective state. A is the incidence 
matrix of Petri nets. State equation can be denoted as 

TAMM ⋅+= 0
' [19]. In the timed S3PR net model, if the 

system can evolve from initial state to the final state, all the 
transitions must be fired only once. Then we can get that 

]1,..1,1[=T . If the transition sequence σ composed by all 
the transitions in Petri nets model is called a complete 
sequence, then a complete sequence is necessary condition 
for the system to evolve to the objective state.  

 
In timed S3PR net, if all the transitions fire according to 

the given firing sequence, the system evolves from initial 
state to target state successfully, then the transition firing 
sequence is called a feasible transition sequence. It is 
obvious that a feasible transition sequence must be a 
complete sequence in the timed S3PR net. A complete 
transition sequence σ ( Nτττ ,..., 21 ) is feasible, if and only if 
it satisfies the following reachability constraint: 

0
1

0 ≥⋅+ ∑
=

n

i
iAM τ  ( Nn ,...,2,1= ). 

III. ENCODING OF TRANSITION SEQUENCES AND FITNESS 
COMPUTATION 

In order to get a feasible and optimal transition firing 
sequence, an effective algorithm based on Petri nets theory 
and genetic algorithm (GA) is proposed. This algorithm 
encodes transition firing sequence of Petri nets. With the 
help of repair procedure and genetic operators, population 
evolves generation by generation to converge to optimal or 
near optimal solution. 

A.  Encoding Scheme 
Encoding of transition firing sequence is carried out by 

using natural numbers. Each chromosome is composed of 

)1)((
1

+= ∑
=

n

i

ikN genes. Every gene represents a transition. 

The number in the gene means the part type corresponding 
to the transition, and the relative position of gene in the 
genes with the same number determines the concrete 
transition. Suppose the number in the gene is i , and the 
relative position in the genes with the same number i  is j , 
then the gene represents transition ijt . For example, if there 
is a chromosome 32323211, then the transition sequence 
corresponding to the chromosome is 1211233322322131 tttttttt . If 
the chromosome could represent a complete transition firing 
sequence, then the coding scheme of genetic algorithm is 
reasonable. 

B.  Check and Repair procedure 
Using the method addressed in the above section, we can 

check up the feasibility of a transition sequence. If the 
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Fig2. Merged Petri nets model 



 
 

 

transition sequence is not feasible, a proper repair procedure 
is added to the scheduling algorithm to improve the solution. 
(1) Assume to be given an encoded chromosome and initial 
Petri nets marking 0MM = . A pointer P is placed initially 
at the first gene. The number of enabled transitions p is 0, 
and an iteration parameter q is 0. 
(2) If the transition t represented by the gene that is pointed 
by the pointer P satisfies the firable condition at a marking 
M , i.e. 0≥⋅+ tAM , then fire the transition and update the 
marking tAMM ⋅+← , P ← P+1, p ← p+1, and q ← 0; 
otherwise, move the pointed gene to the end of the 
chromosome. 
(3) If p+q equals the length of given chromosome, then stop 
this procedure; else go to (2). 

If transition t in the transition sequence pointed by a 
pointer is not firable successfully from the current state, 
other transitions behind the pointer would be checked by 
carrying out the check and repair procedure, so more 
transitions have the opportunity to be fired under the repair 
procedure, and the chromosome can be improved to some 
extent. The parameter p represents the number of transitions, 
which have been fired successfully from initial marking. The 
other parameter q shows the number of transitions which 
have not been judged yet on the right-hand side from the 
number pointed by the pointer. By calculating a parameter q, 
we can avoid checking the same transition which has been 
judged already. 

When the system evolves according to the repaired 
transitions sequence, if the firable transition number p 
equals N , the system would come to the object state 
eventually; otherwise if p< N , the system would enter into 
the deadlock state. 

C. Transition controlled timed S3PR nets 
In order to force the timed S3PR nets model to run 

automatically according to the friable transition sequence 
σ ( pτττ ,..., 21 ) ( p is the number of firable transitions) 
represented by the repaired chromosome, it is necessary to 
modify the original Petri nets model. In the original timed 
S3PR nets model, place iC , directed arc ( ii C,τ ) and ( 1, +iiC τ ) 

are added between transitions iτ and 1+iτ )1,...1( −= pi . It 

is noted that if iτ and 1+iτ  belong to the transitions of the 
same job, then there is no need to add place and arcs. The 
modified Petri nets model is called Transition controlled 
timed S3PR nets, and it turn out to be a net without conflict. 
The transitions in transition controlled timed S3PR nets can 
be fired according to the first p firable transitions in the 
given transition sequence. The method can be referenced 
from [16]. 

Suppose in the first p firable transitions, the number of 
transitions related to the same job iJ  is is , and the firing 
time of transition ijt  is ijtr  ( ni ,...1= , isj ,...1= ). Since 
conflict phenomenon is avoided in transition controlled 
timed S3PR nets, the firing times of the first p firable 
transitions are easy to get. If Np = , all the jobs would be 
finished, and the makespan is )max( )1)(( +ikitr ; if Np < , the 
systems would come into the deadlock situation, and the 
time when deadlock happens is )max(

ii isis xtrt += . The 
whole processing time of unfinished operations 

∑ ∑
= +=

n

i

ik

isj ijx
1

)(

1
can be used to construct the penalty items of 

infeasible solutions. 

D. Computation of fitness: 
The procedure of fitness computation can be represented 

as follows. 
1) Given a chromosome, under the action of check and 

repair procedure, a new chromosome and the number of 
firable transitions p can be obtained. 

2) Construct transition controlled timed S3PR nets, and 
compute the firing time of the first p  firable transitions. 

3) If p equals N, the solution is feasible and 

fitness= )max(/1 )1)(( +ikitr . If p< N , the solution is 

infeasible and a penalty item should be added to the fitness 
computation. 

fitness= ))/(max(1
1

)(

1
∑ ∑

= +=

⋅++
n

i

ik

sj
ijisis

i

ii
xkxtr  where k  

is an adaptable parameter. 
From the computation procedure of fitness, we can see 

that the smaller the makespan of feasible solutions, the 
larger the fitness. For the infeasible solutions, they are not 
discarded by the genetic algorithm directly, and can be 
included in the populations for a long time. This is because 
the infeasible solutions may have some fine structures that 
are important for genetic operations, so the infeasible 
chromosomes are allowed to exist in the populations. 
However, their fitness is decreased by adding penalty items.  

IV. DESIGN OF GENETIC OPERATIONS 

A. Selection operation: 
 We employ the spinning roulette wheel selection method. 
The probability of individual being selected is 

∑
=

= S

i

i

fi

fip

1

, 

where if  is the fitness of individual i  and S  is population 
size. 



 
 

 

B. Crossover operation: 
Implementation of crossover can introduce new 

individuals by recombining current population. Based on the 
coding scheme introduced above, the classic crossover 
operators for traveling salesman problems cannot be applied 
here, such as partially mapped crossover and order crossover. 
So we design a special crossover operator by making full use 
of the information that the chromosomes have. The detailed 
algorithm is as follows. 

1) Choose two individuals P1 and P2 as parents from the 
population randomly. Suppose that the number of firable 
transitions of P1 is 1p  and the one of P2 is 2p . Generate a 
random number )]2,1min(,1[ ppi ∈  as the crossover point. 
Record the left part of P1 and P2 from gene 1 to gene i  with 
strings T1 and T2 respectively.  

2) For each gene in T1, search for a gene which has the 
same value with it in parent individual P2, and then replace 
the value of the gene with 0. After doing that, move all the 
genes which have the value of 0 in P2 to the left part, and 
maintain the relative sequence of other genes. P1 is altered in 
the same way. 

3) Replace the left part of P1 with T2, and then we can get 
a new child individual Child1; by the same way, we can get 
another child individual Child2. 

C. Mutation operation: 
Mutation operation serves to maintain diversity in 

population. In this paper, mutation operation can’t be 
implemented by changing a randomly selected gene, 
because this operation would bring us a meaningless 
chromosome. What’s more, if the position of changed gene 
is after the last firable transition, then the chromosome after 
mutation operation is still an infeasible solution. 

The mutation operation presented in this paper can be 
described as follows. 

Given a parent individual P1, suppose the number of the 
firable transitions related to P1 is p. Select two mutation 
positions ],1[ pi ∈ , ],1[ Lj ∈  randomly. If the genes in the 
two positions are different, then exchange them; otherwise, 
select exchange positions again. 

V. EXPERIMENTS 
An commonly used example with 3 machine and 4 jobs 

which is cited from Ranmaswamy and Joshi [6] is shown in 
the following table. 
 Here we chose the following parameters: population 30, 
crossover probability 0.65, mutation probability 0.2, and 
parameter k 1. After 15 generations, we can get the optimal 
solution 512. Comparison of results obtained using the 
proposed method and others is given in table 2. It is obvious 
that the algorithm proposed in this paper is very efficient. 
Furthermore, compared with heuristic methods and 

mathematical programming methods, genetic algorithm is 
more fitted to handle large problems. 

Here we give another three examples in which more jobs 
are added into the original system. Processing time and 
production sequence of jobs are shown in table 3. We select 
the first 6 jobs as the second example, the first 8 jobs as the 
third example, and all of the ten jobs as the fourth example.   
The scheduling results of genetic algorithm are shown in 
table 4. The Gantt graphs of different examples are shown in 
figure 3, figure 4 and figure 5. From the above results, we 
can see that scheduling algorithm proposed in this paper can 
solve large problems efficiently. 

Table.2 comparison of results obtained using the proposed method 
and others 

Method Optimal 
makespan 

CPU 
time (s)

Computing 
machine 

Mathematical 
programming 

(Ramaswamy and 
Joshi 1996 [6]) 

512 0.71 
IBM 

ES/3090-60
0S 

Heuristic search based 
on Petri nets (Xiong and 

Zhou 1997 [10])
512 0.13 Sun 

SPARC 20

Genetic algorithm based 
on timed S3PR nets 

(Proposed in this paper)

Best: 512 
Mean: 519 0.04 Celeron 

800MHz 

Table.3 Job information  

J1 J2 J3 J4 J5 

1M :40 2M :45 1M :212 3M :55 1M :50 

2M :100 1M :65 2M :73 2M :65 3M :120 

3M :36 3M :98 3M :32 1M :35 2M :30 

J6 J7 J8 J9 J10 

2M :95 3M :155 2M :15 3M :55 2M :20 

1M :50 1M :55 3M :45 2M :85 1M :45 

3M :40 2M :75 1M :50 1M :25 3M :95 

4.2

4.1 5.2M1
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Figure.3 Gantt graph of 6 jobs 

Table 1. Processing time of jobs 

1J  2J  3J  4J  
1M :40 2M :45 1M :212 1M :55 
1M :100 1M :65 1M :73 1M :65 

1M :36 3M :98 1M :32 1M :35 



 
 

 

VI. CONCLUSION 
In this paper, a new scheduling method based on the timed 

S3PR nets and genetic algorithm is put forward in order to 
solve the scheduling problem of job shop without buffers. 
This algorithm checks up the feasibility of solutions through 
reachability analysis of Petri nets. The infeasible solutions 
can be improved in a certain extent through a repair 
procedure and the fitness of them should be reduced by 
adding the penalty items. Transition controlled timed S3PR 
nets models are constructed according to the firable 
transitions represented by chromosomes. The fitness of 
chromosome can be easily acquired from the related 
transition controlled timed S3PR nets. By taking full 
advantage of information in the chromosome, the 
appropriate genetic operators can be designed to gain fast 
convergence speed. Examples are offered in this paper to 
support the validity of the algorithm. 
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Figure.4 Gantt graph of 8 jobs
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Figure.5 Gantt graph of 10 jobs 
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