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Abstract—This paper uses Stochastic Flow Models (SFMs)
for control and optimization (rather than performance analy-
sis) of queueing systems with multiplicative feedback. Unlike
earlier work based on additive feedback, the multiplicative
feedback scheme considered here requires minimal state infor-
mation and bypasses the problem of delayed state information.
Using Infinitesimal Perturbation Analysis (IPA), we derive
gradient estimators for loss and workload related performance
metrics with respect to a feedback gain parameter, in contrast
to previous work where threshold parameters were considered.
The unbiasedness of these estimators is also established.
Index Terms—Stochastic Flow Model, Discrete Event Sys-

tem, Hybrid System, Perturbation Analysis

I. INTRODUCTION
Fluid models have been long adopted as a modeling tech-

nique of queueing theory, for applications such as commu-
nication networks and manufacturing systems. Introduced in
[1] and later proposed in [2] for the analysis of multiplexed
data streams and network performance [3], fluid models
have been shown to be especially useful for simulating vari-
ous kinds of high speed networks [4],[5],[6], as well as man-
ufacturing systems [7]. Stochastic Flow Models (SFM) have
the extra feature that the flow rates are treated as stochastic
processes. Under this modelling technique, a new approach
for sensitivity analysis has been recently proposed, based on
Infinitesimal Perturbation Analysis (IPA) [8],[9],[10],[11].
The essence of this approach is the on-line estimation of
gradients (sensitivities) of certain performance measures,
such as average workloads and loss rates, as functions of
various controllable parameters. These gradient estimates
may be incorporated in standard stochastic approximation
algorithms to optimize the parameter settings.
Queueing networks have been studied largely based on

the assumption that system state, typically queue length
information, has no effect on arrival or service processes.
If these processes are regarded as input to the queueing
system, their independence from system information implies
the absence of feedback. Thus, we may ignore a potentially
important feature of actual system design and operation. For
example the Random Early Detection (RED) algorithm in
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TCP congestion control provides some form of feedback
for network management. Unfortunately, the presence of
feedback significantly complicates analysis. For instance,
it is extremely difficult to derive closed-form expressions
of performance metrics such as average queue length or
mean waiting time, unless stringent assumptions are made
[12],[13], let alone developing analytical schemes for per-
formance optimization. It is equally difficult to extend the
theory of PA for Discrete Event Systems (DES) in the
presence of feedback.
Motivated by the importance of incorporating feedback

to stochastic DES as well as their SFM counterparts, and
the effectiveness of IPA methods applied to SFMs to date,
we have been studying the problem of deriving IPA gradient
estimators for SFMs with feedback mechanisms. In [14], an
additive feedback mechanism was introduced by setting the
inflow rate to σ(t) − p(x(t)) where σ(t) is the maximal
external incoming flow rate, x(t) is the buffer content
(state), and p(x) is a feedback function. For the problem
of determining a threshold that minimizes a weighted sum
of loss volume and average workload, it was shown that IPA
yields simple nonparametric sensitivity estimators for these
performance metrics with respect to threshold parameters.
Moreover, the estimators are unbiased under weak structural
assumptions on the defining traffic process. However, this
feedback mechanism implies that system information, i.e.,
buffer content, is instantaneously available to the controller
(this is true in situations such as manufacturing systems, but
unlikely to hold in high-speed distributed environments such
as communication networks). This stringent requirement,
together with a natural interest in feedback mechanisms
which are readily applicable to real-world DES, leads to
the present paper which tackles the problem of deriving IPA
gradient estimators for SFMs with multiplicative feedback
mechanisms. Consider a single-node SFM with threshold-
based buffer control as in [10]. We define σ(t) as the max-
imal external incoming flow rate and introduce a feedback
mechanism by setting the inflow rate to c · σ(t) when the
buffer content x(t) is greater than a certain threshold φ.
Compared with [14], the current mechanism has two main
advantages: (i) system information is needed only when the
buffer content reaches or leaves the threshold φ; while in
[14] it has to be continuously available. As a result, com-
munication costs are greatly reduced; (ii) the multiplicative
feedback mechanism can be easily implemented in real-
world DES, for example via probabilistic dropping.
The main contribution of the paper is the derivation of
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Fig. 1. A SFM with multiplicative feedback

IPA gradient estimators for performance metrics related
to loss and workload levels with respect to the control
parameter c. It is worth mentioning that in most papers
applying IPA to SFM, i.e., [10], [15], buffer capacity
parameters were of primary interest. To the best of our
knowledge, the present paper is the first attempt to use IPA
in the SFM context to obtain sensitivity information with
respect to feedback control parameters. Even though the
presence of feedback in the SFM considerably complicates
the task of carrying out IPA, we are able to obtain such IPA
estimators. Despite these complications, we are also able to
prove that the estimators are unbiased under mild technical
conditions, similar to those in [14]. Because of feedback,
however, it is harder to apply these estimators using only
data observable on a sample path of the actual DES. It is
also worth reiterating that in the SFM we consider in this
paper, as well as in [10] and [14], all flow rates are treated as
random processes without distributional assumptions. This
is different from the models adopted in [16] and [17].
Treating rates as random processes allows us to capture
randomness in arrival and service processes as well as the
time-varying behavior of the system.
The paper is organized as follows. First in Section 2,

we present the feedback-based buffer control problem in
the SFM setting and define the performance metrics and
parameters of interest. In Section 3, we carry out IPA by
first deriving sample derivatives of event times in our model
and then obtaining the IPA estimators for the gradients of
the expected loss rate and average workload with respect to
feedback control parameters. Section 4 is devoted to proofs
of unbiasedness. Finally in Section 5 we outline a number
of open problems and future research directions.

II. SFM SETTING
The SFM we consider consists of a server with a buffer

fed by a source as shown in Fig. 1. The buffer content at
time t is denoted by x(t) and it is limited to θ, which may
be viewed as a capacity or as a threshold parameter used
for buffer control as described in [10]. Thus, 0 ≤ x(t) ≤ θ.
When the buffer level reaches θ the underlying queueing
system starts to drop customers. The maximal processing
rate of the server is generally time-varying and denoted by
µ(t). The maximal rate of the source at time t is denoted by
σ(t), but the actual incoming rate is σ(t) · c(x(t)), where

c(x) ≤ 1 is a feedback gain function defined upon x ∈
[0, θ]. In this paper, we shall concentrate on the following
form of c(x), and note that it is independent of σ(t) or µ(t):

c(x) =

½
c if φ ≤ x ≤ θ
1 if 0 ≤ x < φ

(1)

where φ < θ is an intermediate threshold. We assume 0 <
c ≤ 1, which ensures that the effect of feedback is more
pronounced when x > φ. This feedback mechanism implies
that the supply source is instantaneously informed of the
event that x(t) reaches or leaves φ. It is also assumed that
the stochastic processes {σ(t)} and {µ(t)} are independent
of the buffer level x(t), c, φ or θ. Finally, we assume that the
real-valued parameter c is confined to a closed and bounded
(compact) interval C and that c > 0 for all c ∈ C.
Given (1), we can see that the dynamics of the buffer

content are given by

dx(t)

dt+
=



0
when x(t) = 0 and
σ(t)− µ(t) ≤ 0

0
when x(t) = θ and
cσ(t)− µ(t) ≥ 0

0
when x(t) = φ and
cσ(t) ≤ µ(t) ≤ σ(t)

σ(t)− µ(t)
when x(t) = φ and
σ(t) < µ(t)

c(x)σ(t)− µ(t) otherwise
(2)

with the initial condition x(0; c) = x0 for some given x0;
for simplicity, we set x0 = 0 throughout the paper. Note
that the cases when x(t) = φ are included in the above
equation to prevent “chattering” of the inflow rate between
cσ(t) and σ(t) when x(t) = φ. Such chattering behavior
is due to the nature of the SFM and does not occur in the
actual DES where buffer levels are maintained for finite
periods of time (for details, see [18]).
Similar to [10], our purpose is to obtain sensitivity

information of some performance metrics with respect to
key parameters. In this paper, we limit ourselves to the
feedback gain c as the controllable parameter of interest. For
a finite time horizon [0, T ], we define the Average Workload
as:

QT (c) =
1

T

Z T

0

x(t)dt (3)

and the Loss Rate as:

LT (c) =
1

T

Z T

0

1[x(t) = θ](cσ(t)− µ(t))dt (4)

where 1[·] is the usual indicator function. Accordingly, the
main objective of the following sections is the derivation of
dQT (c)/dc and dLT (c)/dc, which we will pursue through
Infinitesimal Perturbation Analysis (IPA) techniques. For
any sample performance metric L(c), the IPA gradient
estimation technique computes dL(c)/dc along an observed
sample path ω. If the IPA-based estimate dL(c)/dc satisfies
dE[L(c)]/dc = E[dL/dc], it is unbiased. Unbiasedness



tζnηn

θ

φ

ηn+1
0

ζn+1 ηn+2

Fig. 2. A typical sample path

is the principal condition for making the application of
IPA practical, since it enables the use of the IPA sample
derivative in stochastic gradient-based algorithms. A com-
prehensive discussion of IPA and its applications can be
found in [19], [20] and [21].

III. INFINITESIMAL PERTURBATION ANALYSIS

A. Sample Path Decomposition and Event Definition
As already mentioned, our objective is to estimate the

derivatives dE[QT (c)]/dc and dE[LT (c)]/dc through the
sample derivatives dQT (c)/dc and dLT (c)/dc, which are
commonly referred to as IPA estimators. In the process,
however, it will be necessary to identify events of interest
and decompose the sample path.
For a fixed c, the interval [0, T ] is divided into alternating

boundary periods and non-boundary periods. A Boundary
Period (BP) is defined as the time interval during which
x(t) = θ or x(t) = 0, and a Non-Boundary Period (NBP)
is defined as the time interval during which 0 < x(t) < θ.
BPs are further classified as Empty Periods (EP) and Full
Periods (FP). An EP is the interval such that x(t) = 0; a
FP is the interval such that x(t) = θ. We assume that there
are N NBPs in the interval [0, T ], where N is a random
number, and index these NBPs by n = 1, . . . ,N . The
starting and ending points of a NBP are denoted by ηn and
ζn respectively. Fig. 2 shows a typical sample path of the
SFM. We define the following random index set: ΨF (c) =©
n : x(t) = θ for all t ∈ [ζn−1, ηn), n = 1, . . . , N

ª
.

Clearly, if n ∈ ΨF , the nth BP (which immediately
precedes the nth NBP) is a FP; if n /∈ ΨF , the nth BP
(which immediately precedes the nth NBP) is an EP.
Next we will identify events of interest. To do so, we

view the SFM as a DES in which we define the following
types of events: (i) A jump in σ(t) or µ(t), which is termed
an exogenous event, reflecting the fact that its occurrence
time is independent of the controllable parameter c, and
(ii) The buffer content x(t) reaches any one of the critical
values 0, φ or θ; this is termed an endogenous event, to
reflect the fact that its occurrence time generally depends
on c. Note that the combination of these events and the
continuous dynamics in (2) gives rise to a stochastic hybrid
system model of the underlying DES of Fig. 1.
Finally, we further decompose the sample path according

to the events defined above. Let us consider a typical NBP
[ηn, ζn) as shown in Fig. 3. Let αn,i denote the ith time

αn,1 tζnηn
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Fig. 3. A typical NBP

when x(t) reaches or leaves φ in this NBP, where i =
1, . . . , In−1, in which In−1 is the number of such events.
It is possible that In − 1 = 0 for a NBP, so to maintain
notational consistency we set ηn = αn,0 and ζn = αn,In .
We can now see that a sample path is decomposed into
five sets of intervals that we shall refer to as modes: (i)
Mode 0 is the set M0 of all EPs contained in the sample
path, (ii) Mode 1 is the set M1 of intervals [αn,i, αn,i+1)
such that x(αn,i) = 0 or φ and 0 < x(t) < φ for all
t ∈ (αn,i, αn,i+1), n = 1, . . . , N , (iii) Mode 2 is the set
M2 of intervals [αn,i, αn,i+1) such that x(t) = φ for all
t ∈ [αn,i, αn,i+1), n = 1, . . . ,N , (iv) Mode 3 is the set
M3 of intervals [αn,i, αn,i+1) such that x(αn,i) = φ or θ
and φ < x(t) < θ for all t ∈ (αn,i, αn,i+1), n = 1, . . . ,N
and (v) Mode 4 is the set M4 of all FPs contained in the
sample path. Note that the events occurring at times αn,i
are all endogenous for i = 1, . . . , In and we should express
them as αn,i(c) to stress this fact; for notational economy,
however, we will only write αn,i. Finally, recall that for i =
0, we have αn,0 = ηn, corresponding to an exogenous event
starting the nth NBP. In the sequel, we will also denote the
buffer content as x(t; c) in order to specify its dependence
on c.

B. Boundedness of Buffer Level Perturbations
In this section we establish an important boundedness

property for buffer level perturbations

∆x(t; c) = x(t; c+∆c)− x(t; c)

with respect to a perturbation ∆c. We assume that 0 <
c+∆c ≤ 1 to ensure that it is consistent with the definition
in (1). For simplicity, let us limit ourselves to a perturbation
∆c > 0. The case where ∆c < 0 can be similarly analyzed.
We use SFMN and SMFP to denote the state trajectory
of the nominal sample path and the perturbed sample path
respectively and state the boundedness property of ∆x(t; c)
in the following series of lemmas (proofs of all lemmas and
theorems in the paper may be found in [18].):
Lemma 1: ∆x(t; c) ≥ 0, for all t, 0 ≤ t ≤ T.
Under the following:
Assumption 1: W.p.1, σ(t) ≤ σmax < ∞, µ(t) ≤

µmax <∞
we are then able to prove the following result:
Lemma 2: Under Assumption 1, for all t ∈ [0, T ),

∆x(t; c) ≤ K∆c (5)



where K = T · σmax.
C. Event Time Sample Derivatives
Our main objective is to derive IPA estimators for certain

performance metrics, which will be presented in the next
section. In this section, we present sample derivatives for
the event times.
First we make the following additional assumptions:
Assumption 2: For every c, w.p.1, no two events (either

exogenous or endogenous) occur at the same time.
This assumption precludes a situation where the queue

content reaches one of the critical threshold values 0, φ
or θ at the same time αi as an exogenous event which
might cause it to leave the threshold; this would prevent
the existence of event time sample derivative ∂αi/∂c which
will be presented in the following derivation (however, one
could still carry out perturbation analysis with one-sided
derivatives as in [10]). Moreover, by Assumption 2, N , the
number of NBPs in the sample path, is locally independent
of c (since no two events may occur simultaneously, and
the occurrence of exogenous events does not depend on c,
there exists a neighborhood of c within which, w.p.1, the
number of NBPs in [0, T ] is constant). Hence, the random
index set ΨF is also locally independent of c. Similarly, the
decomposition of the sample path into modes is also locally
independent of c.
Assumption 3: σ(t) and µ(t) are piecewise constant

functions that can take a finite number of values.
Due to this assumption and recalling the dynamics of (2),

x(t; c) has to be a piecewise linear function of time t, as
shown in Fig. 2.
Assumption 4: W.p.1, there exists an arbitrarily small

positive constant � such that for all t, |σ(t)− µ(t)| ≥ � > 0
and c satisfies

|cσ(t)− µ(t)| ≥ � > 0
Combining the above two assumptions, we obtain¯̄

cσi − µj
¯̄ ≥ � for every pair of possible values of σ(t) and

µ(t), which is equivalent to cσi−µj ≥ � or cσi−µj ≤ −�.
Therefore we obtain c ≥ µj+�

σi
or c ≤ µj−�

σi
which implies

an “invalid interval” of
³
µj−�
σi

,
µj+�

σi

´
for c. According to

Assumption 3, there is a finite number of invalid intervals.
We shall also refer to a valid interval as the maximal
interval between two adjacent invalid intervals.
In what follows, we shall concentrate on a typical NBP

[ηn, ζn(c)) and drop the index n from the event times αn,i
in order to simplify notation.
In the rest of this section, we derive the sample derivative

∂αi/∂c through a series of lemmas which cover all possible
values that x(αi; c) can take in an interval [αi, αi+1).
Lemma 3: Under Assumptions 2−4, if a FP ends at time

ηn, i.e., x(ηn; c) = θ, then ∂ηn/∂c = 0.
Lemma 4: Under Assumptions 2 − 4, if an EP ends at

time ηn, i.e., x(ηn; c) = 0, then ∂ηn/∂c = 0.
The above two lemmas show that an event time pertur-

bation will be eliminated after a NBP ends.

θ
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σ (t)

x(t)

αi+1

βi,1 βi,2 β i,3 βi,4

Fig. 4. The Decomposition of an M3 Interval

Lemma 5: Under Assumptions 2 − 4, if an M2 interval
ends at time αi, i.e., x(αi; c) = φ, then ∂αi/∂c = 0.
We define the following shorthand notations: A(t) =

cσ(t)− µ(t) and B(t) = σ(t)− µ(t).
Lemma 6: Under Assumptions 2− 4, if i ∈M3, then

∂αi+1
∂c

=
A(α+i )

A(α−i+1)
· ∂αi
∂c

− [x(αi+1; c)− x(αi; c)] + T (αi, αi+1)

cA(α−i+1)
(6)

where
T (αi, t) =

Z t

αi

µ(t)dt (7)

is the server throughput during time interval [αi, t) and
[x(αi+1; c)− x(αi; c)] ∈ {φ− θ, 0, θ − φ}
According to Assumption 3, σ(t) and µ(t) are piecewise

constant functions. The interval [αi, αi+1) can be then
decomposed by exogenous events occurring when σ(t)
jumps from one value to another. As shown in Fig. 4, we
use βi,k, k = 1, . . . Si to denote the kth σ(t) exogenous
jump event and let αi = βi,0 and αi+1 = βi,Si+1 in order
to maintain notational consistency. Moreover we define the
value of σ(t) in the interval

£
βi,k, βi,k+1

¢
as σi,k. It follows

that Z αi+1

αi

σ(t)dt =

SiX
k=0

σi,k
¡
βi,k+1 − βi,k

¢
If we use the shorthand bi,k = βi,k+1 − βi,k for all i, k, to
define the length of interval between two exogenous σ(t)
jump events, we get

R αi+1
αi

σ(t)dt =
PSi

k=0 σi,kbi,k. Then,
(6) becomes

∂αi+1
∂c

=
A(α+i )

A(α−i+1)
· ∂αi
∂c
−
PSi

k=0 σi,kbi,k

A(α−i+1)
(8)

Similar to the work in [14], our ultimate purpose is to
apply the IPA estimators (which we will derive in the next
section based on event time sample derivatives) to an actual
underlying DES. The two expressions (6) and (8) provide
alternative ways to evaluate the event time sample derivative
which are equivalent in the SFM context. In the discrete-
event setting, however, some of the information required



by IPA estimation may be more difficult to obtain than
other. For example, (8) depends on the evaluation of σi,k,
the maximal incoming rate and bi,k, the length of intervals
between two σ(t) jump events. This information may be
difficult to acquire or measure if the supply source is remote.
On the other hand, (6) requires a throughput evaluation
during the time interval [αi, αi+1), which may be much
easier to obtain, i.e., in an actual DES, it can be done by
simply counting processed customers. In summary, we want
to remind our readers that different forms of IPA estimators
exist and that one should select the appropriate one based
on implementation considerations.
Lemma 7: If i ∈M1,

∂αi+1
∂c

=
B(α+i )

B(α−i+1)
· ∂αi
∂c

(9)

The combination of Lemmas 3-7 provides a linear re-
cursive relationship for obtaining the event time sample
derivative ∂αi/∂c, and the coefficients involved are based
on information directly available from a sample path of the
SFM and the throughput calculators in (7). Moreover, ∂ηn∂c
and ∂ζn

∂c , the event time sample derivatives for the starting
and ending time in a NBP [ηn, ζn), can also be derived
from the above lemma combination. Recall that ηn = αn,0
and ζn = αn,In . Since ηn, the start of the NBP, is the end
of an EP or a FP, from Lemmas 4 and 3 we obtain ∂ηn

∂c = 0.
Using the previous lemmas, we can also obtain a recursive
expression for ∂ζn

∂c as follows:
Lemma 8: For a NBP [ηn, ζn),

∂ζn
∂c

=



B(α+n,In−1)

B(α−n,In )
· ∂αn,In−1∂c if x(ζn) = 0

− T (ηn,ζn)

cA(α−n,In )
if x(ζn) = θ and
x(αn,In−1) = θ

A(α+n,In−1)

A(α−n,In )
· ∂αn,In−1∂c

− θ−φ+T (αn,In−1,αn,In )
cA(α−n,In)

if x(ζn) = θ and
x(αn,In−1) = φ

With the help of these lemmas, we are now able to
derive IPA estimators for various performance metrics in
the following section.

D. IPA Sample Derivative of Average Queue Length

Recalling the definition of the average workload QT in
(3), and making use of the lemmas previously derived, we
obtain the following IPA estimator.
Theorem 9: The IPA estimator of dE [QT (c)] /dc is:

dQT

dc
=
1

T

X
i∈M3

½Z αi+1

αi

x(t; c)− x(αi; c) + T (αi, t)

c
dt

−(cσ(α+i )− µ(α+i ))(αi+1 − αi)
∂αi
∂c

¾
(10)

E. IPA Sample Derivative of Loss Rate

Recalling the definition of the loss rate LT in (4), we
have

LT (c) =
1

T

Z T

0

1[x(t; c) = θ] (cσ(t)− µ(t)) dt

=
1

T

X
n∈ΨF

Z ηn

ζn−1
(cσ(t)− µ(t)) dt (11)

We then establish the following:
Theorem 10: The IPA estimator of dE [LT (c)] /dc is:
dLT (c)

dc
=
1

T

X
n∈ΨF

½
1

c
T (ηn, ζn−1)−A(ζn−1)

∂ζn−1
∂c

¾
+

LT
c

(12)
Similar to our discussion on the IPA event time sample

derivative, the interval
£
ζn−1, ηn

¢
can be decomposed by

σ(t) exogenous jump events. Let us use βi,k, k = 1, . . . Si
to denote the kth σ(t) exogenous jump event and let ζn−1 =
βi,0 and ηn = βi,Si+1 for notational consistency. We also
define the value of σ(t) in the interval

£
βi,k, βi,k+1

¢
as σi,k

and write bi,k = βi,k+1 − βi,k. It follows thatZ ηn

ζn−1
σ(t)dt =

SiX
k=0

σi,k
¡
βi,k+1 − βi,k

¢
=

SiX
k=0

σi,kbi,k

from which we obtain:
dLT (c)

dc
=

1

T

X
n∈ΨF

½
− £cσ(ζn−1)− µ(ζn−1)

¤ ∂ζn−1
∂c

+

SiX
k=0

σi,kbi,k

)
(13)

It is also worth pointing out that although the IPA estimator
expressions (10) and (12) seem complicated, their algorith-
mic implementation is quite simple.

IV. UNBIASEDNESS
In this section we establish the unbiasedness of the

IPA estimators (10) and (12). Normally, the unbiasedness
of an IPA derivative dL(θ)/dθ for some performance
metric L(θ) is ensured by the following two conditions
(see [22], Lemma A2, p.70): (i) For every θ ∈ Θ̃, the
sample derivative exists w.p.1, and (ii) W.p.1, the random
function L(θ) is Lipschitz continuous throughout Θ̃, and
the (generally random) Lipschitz constant has a finite first
moment. Consequently, establishing unbiasedness reduces
to verifying the Lipschitz continuity of L(θ) over Θ̃. In the
case of LT (c), however, the presence of invalid intervals in
C creates a problem that we circumvent in what follows.
In order to proceed, we shall need one additional mild
technical condition:
Assumption 5: Let W (c) be the total number of jumps

of σ(t) and µ(t) in the time interval [0, T ]. Then, for any
c ∈ C, E [W (c)] ≤Wmax <∞.
Lemma 11: Under Assumptions 1-5, let c and c + ∆c,

∆c > 0, be in the same valid interval in C. Then,
|∆LT | ≤ r ·∆c



in which r is a random variable with a finite expectation.
Theorem 12: Assume c ∈ C is in a valid interval. Then,

the IPA estimators (12) and (10) are unbiased, i.e.,

dE[LT (c)]

dc
= E

·
dLT (c)

dc

¸
,

dE[QT (c)]

dc
= E

·
dQT (c)

dc

¸
V. CONCLUSIONS AND FUTURE DIRECTIONS

SFMs have recently been used to capture the dynamics
of complex stochastic discrete event systems and to imple-
ment control and optimization methods based on gradient
estimates of performance metrics obtained through IPA.
In [14] we showed that IPA can be used in SFMs with
additive feedback and in this paper we have further explored
the effect of feedback by considering a single-node SFM
with a controllable inflow rate as a multiplicative function
of state (i.e., queue level) feedback parameterized by a
feedback gain c and a threshold φ (capturing a quantization
in the state feedback). We have developed IPA estimators for
the loss volume and average workload with respect to the
feedback gain parameter c and shown their unbiasedness,
despite the complications brought about by the presence
of feedback. The multiplicative feedback scheme bypasses
the need for continuous state information seen in additive
mechanisms and involves only knowledge of a single event
representing the queue level crossing the threshold φ. More-
over, even if this state information is not instantaneously
supplied, the delays involved are naturally built into the IPA
estimator, based on which appropriate control parameters
can be selected.
The work in this paper opens up a variety of possible

extensions. First, looking at the feedback function (1), while
c represents the intensity of feedback, φ represents its range.
Instead of controlling c or φ separately (along the lines of
previous work in [23]), it may be more effective to control
the (c, φ) pair jointly. Next, noticing that probabilistic drop-
ping/marking mechanisms are widely adopted in computer
networks (e.g., in Random Early Detection or Random
Early Marking), it is appealing to apply IPA specifically
to these algorithms although the effect of feedback will be
more complex. Finally, of obvious interest is the possibility
of applying our SFM-based IPA estimators to an actual
underlying DES, i.e., to determine the value of c that
minimizes a weighted sum of loss volume and average
workload, as we have done in [10] and [14]. As mentioned
earlier, one advantage of IPA is that the estimators depend
only on data directly observable along a sample path of
the actual DES (not just the SFM which is an abstraction
of the system); see, for example, [10] and [14]. In this
paper, however, we have seen that this direct connection
to the DES no longer holds because the estimators rely
on the identification of “modes” whose definition has no
direct correspondence to a DES. As a result, in order to
successfully apply the SFM-based IPA estimators to an
actual DES, we need to carefully select and interpret an
appropriate abstraction of the underlying DES.
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