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Abstract— A representation of actuation effects is developed for low-
order empirical Galerkin models of incompressible fluid flows. These
actuation models fill a missing link and, indeed, provide a key enabler
towards feedback design in flow control utilizing empirical Galerkin
models. A flow control strategy is proposed based on the extended flow
models and on the design of dissipative feedback control. This strategy is
successfully applied to benchmark flow control problems involving vortex
shedding behind a circular cylinder.

I. INTRODUCTION

This proof-of-concept study concerns feedback flow control design
with empirical Galerkin models. Feedback control is increasingly
realized as a key enabler for stretching the dynamic range of operating
conditions in aerodynamic applications. Examples are mixing and
combustion control in engine combustors (e.g. screech prevention)
and separation control for aggressive maneuvers of air vehicles.

Feedback design begins with a choice of the number, location
and basic characteristics of actuators and sensors. The exploration
of good actuation and sensing solutions and eventual control design
are prohibitively expensive with computational fluid dynamics (CFD)
models. Low-dimensional flow models are therefore sought as prac-
tical enablers.

An efficient path to low-dimensional flow models is offered by the
empirical Galerkin method based on a Karhunen-Loève decomposi-
tion of flow data [1] — also known as proper orthogonal decompo-
sition (POD). Utilizing the low-order empirical Galerkin ansatz as a
viable framework for design-oriented models requires the ability to
predict actuation effects. The implementation of actuation effects in
empirical Galerkin models faces two principal challenges. First, the
actuation changes the flow, thus possibly requiring a reshaping of the
dominant expansion modes. Secondly, the effect of actuation must
be explicitly modeled as free input, i.e. the actuation frequency and
amplitude must not be hardwired in the Karhunen-Loève modes.

The ubiquitous cylinder wake flow is used here to illustrate
the problem. It has been considered under a variety of actuation
mechanisms, including volume forces [2], cylinder motion [3], local
synthetic jets and zero-net-flow source / sink actuators [4], [5]. So far,
only few Galerkin models of controlled vortex shedding have been
proposed [6]. Promising Galerkin approaches have been developed
for near-wall actuation, including, e.g., a volume force implemented
in an 8-dimensional model for skin-friction reduction [7] and a
framework for the near-wall effect of the acoustic actuator [8].

In the present study, the hardwiring between wall and flow un-
steadiness is removed by the incorporation of additional dynamic
actuation modes in the Galerkin expansion. The amplitudes of these
actuation modes are free actuation inputs, whereupon the dynamics

of remaining modified Karhunen-Loève modes are derived in a
Galerkin projection on the Navier-Stokes equation. The inclusion of
the actuation modes in the Galerkin approximation is therefore a new
and important aspect, addressing a well recognized gap in existing
POD modeling practice that was inhibitive for the use of such models
for control design. In §II, the corresponding mathematical framework
for actuation effects is elaborated. In §III, this framework is applied
to the actuated cylinder wake.

II. ACTUATION EFFECTS IN EMPIRICAL GALERKIN MODELS

The incorporation of actuation effects in empirical Galerkin models
of incompressible flows in steady domains is discussed in this section.
In §II-A, the standard approach [1] is shown to hardwire the actuation
and flow structure. In §II-B, a non-equilibrium model of [9] is
briefly recapitulated, which has turned out to be a crucial enabler
for capturing flow control transients. In §II-C, the volume force is
incorporated. In §II-D, the concept of dynamic actuation modes is
introduced to separate imposed flow unsteadiness and the coherent-
structure response of the flow. In §II-E, the unsteady body motion is
shown to be resolved by a combination of a volume force and of an
actuation mode.

A. Standard modeling approach

Empirical Galerkin models are based on experimental flow data
or on a direct numerical simulation. This simulation approximates
a solution of the non-dimensionalized, incompressible Navier-Stokes
equation

∂tu + ∇ · (uu) = −∇p +
1

Re
4u, (1)

where x represents the location, t the time, u the velocity and p the
pressure. The Reynolds number Re = UD/ν is the order parameter
and based on scales used for the non-dimensionalization, i.e. the
velocity scale U , length scale D and the kinematic viscosity of the
fluid ν. The equation of continuity is expressed by

∇ · u = 0. (2)

The flow domain Ω is assumed to be steady and velocity fields
are embedded in the Hilbert space of square-integrable vector fields
L2(Ω) with the inner product

(u,v)Ω :=

∫

Ω

dV u · v, u, v ∈ L2(Ω). (3)

The Galerkin approximation of the flow is expressed by

u
[N ] =

N
∑

i=0

ai(t) ui(x), (4)



where u0 represents the time-averaged field and ui, i = 1, . . . , N , are
Karhunen-Loève modes, which form an orthonormal set with respect
to the inner product (3). Time dependency is described by the Fourier
coefficients ai. Following a notation of Rempfer [10], a0 ≡ 1 by
definition. In the snapshot method [1], the Karhunen-Loève modes ui

are constructed as linear combinations of fluctuation snapshots u
m−

u0, m = 1, . . . , M , M ≥ N . The chosen combinations minimize
the averaged energy residual of the Galerkin ansatz (4) with respect
to the snapshot ensemble.

The Galerkin projection of the Galerkin ansatz (4) onto the Navier-
Stokes equation (1) yields a system of ordinary differential equations
[1],

d

dt
ai =

1

Re

N
∑

j=0

lij aj +
N

∑

j,k=0

qijk aj ak for i = 1, . . . , N, (5)

where the linear and quadratic terms represent the viscous and con-
vective Navier-Stokes terms, respectively, with constant coefficients
lij := (ui,4uj)Ω, qijk := (ui,∇ · (uj ,uk))Ω. The pressure term
may change the coefficients qijk, but not the form (5) [11].

The Navier-Stokes simulation and the corresponding Galerkin
model may describe a natural or forced flow. Forcing may, in fact,
enhance certain coherent structures and thus help to reduce the
dimension of the Galerkin model. Examples are the 4-dimensional
model of Kelvin-Helmholtz vortices of a shear-layer [11] excited
by periodic inlet condition and the 32-dimensional model of a
transitional boundary layer manipulated by a periodic tripping wire
upstream the observation region considered for the Galerkin model
[10]. Obviously, the chosen Galerkin approximation (4) and the
Galerkin system (5) can — at best — reproduce that simulation
and cannot describe the flow at other forcing amplitudes or at
other frequencies. The Galerkin approximation is hardwired to that
actuation and the Galerkin system has no free actuation input. This
excludes the standard Galerkin modeling approach for control design.

B. Shift-mode

As a non-equilibrium model for transient flow, the authors have
elaborated the need for a shift-mode in [6], [9]. This shift-mode
u∆ is the orthonormalized mean-field correction and is aligned with
the difference between the unstable steady Navier-Stokes solution us

and the time-averaged flow u0. Formally, the shift-mode u∆ and its
amplitude a∆ can be considered as the N + 1-st mode and Fourier
coefficient, respectively.

C. Volume force

A volume force on the fluid flow may physically represent, for
instance, a Lorentz force in magneto-hydrodynamical flows or an
external pressure gradient in pipe flows. In this note, the force is
assumed to be of the form ε g with a time-dependent amplitude ε(t)
and a location-dependent field g(x). This force has to be added on
the right-hand side of the Navier-Stokes equation (1) and leads to
a forcing term of the form ε gi on the right-hand side of the i-
th Galerkin system equation (5). The coefficient gi := (ui,g)Ω is
time-independent. This simple type of actuation is already elaborated
in text books and is included here for reasons of completeness and
nomenclature. Evidently, the volume force modifies only the Galerkin
system and is a free actuation input.

D. Wall-imposed flow unsteadiness

The flow may be actuated by a flow unsteadiness at the boundary
of the domain ∂Ω. Examples are blowing and suction at the wall,
an acoustic actuator, or a transverse wall motion. This unsteadiness

is prescribed by a Dirichlet boundary condition for the velocity. In
order to distinguish between the imposed unsteadiness and the flow
response, the velocity field is decomposed as

u = u0 + ũ + u
?, (6)

where u0 represents the time-averaged flow satisfying the time-
averaged boundary condition, ũ represents an incompressible velocity
field such that u0 + ũ fulfills the instantaneous boundary condition,
and u

? is considered as the fluctuation which fulfills the homoge-
nized boundary condition. The imposed unsteadiness ũ is a design
parameter. Its development may be guided by physical intuition.

For reasons of simplicity, the imposed unsteadiness is assumed to
be of the form

ũ = ac(t) uc(x), (7)

where the normalized field uc(x) is called an actuation mode and
ac is the actuation amplitude. Formally, the actuation mode and its
amplitude can be included as the mode i = −1 in the Galerkin
approximation (4)

u
[N ] =

N
∑

i=−1

ai(t) ui(x), (8)

where a
−1 := ac, u

−1 := uc. In (8), the Karhunen-Loève modes
minimize the energy residual of the approximation u

? = u −

u0 − a
−1u−1 ≈

N
∑

i=1

ai(t) ui(x). These modes are different from

the standard Karhunen-Loève modes which incorporate parts of the
imposed unsteadiness. In the original ansatz (4), the coefficients ai,
i = 1, 2, . . . , N cannot be chosen independently of the unsteady
boundary condition for the velocity field. In contrast, the generalized
Galerkin approximation (8) completely absorbs the unsteady Dirichlet
condition in a

−1 and allows any arbitrary choice of the Fourier
coefficients ai, i = 1, 2, . . . , N to be consistent with the boundary
condition.

The evolution equation of the Fourier coefficients is obtained via
the Galerkin projection of (8) onto (1),

d

dt
ai = fi

d

dt
a
−1 +

1

Re

N
∑

j=−1

lij aj +

N
∑

j,k=−1

qijk aj ak (9)

for i = 1, 2, . . . , N with fi := − (ui,u−1)Ω. Thus, the actuation
input a

−1 enters the right-hand side of the generalized Galerkin
system (9), in form of a first derivative, a linear term, and in the
products with the free ai, i = 1, 2, . . . , N .

E. Unsteady cylinder motion

The proposed Galerkin method for volume and boundary actuation
can easily be generalized for several forces or for several wall
actuators including combinations thereof. In this section, only one
combination for a transversely moving circular cylinder in uniform
free-stream is considered.

Let x, y be a Cartesian coordinate system where the flow is aligned
with the x-direction. Without loss of generality, the center of the
transversely moving cylinder shall be described by [0, Y ] in a
laboratory frame of reference. In a body-fixed frame of reference,
the cylinder is at the origin [0, 0] and the free-stream has a y-
component v = −dY/dt. This imposed free-stream unsteadiness
shall be described by an actuation mode u

−1 which vanishes on
the cylinder and converges to u = [0, 1] away from the cylinder.
The actuation mode is chosen to be the rotated basic mode of a



mathematical Galerkin model [12]. The actuation mode thus essen-
tially represents the transverse potential flow with a thick boundary-
layer at the cylinder. The boundary-layer thickness corresponds to the
parameters of the basic mode at Re = 10. This Reynolds number
is determined by a typical transverse velocity which is one order of
magnitude smaller than the free-stream Reynolds number 100. The
Galerkin model is numerically found to be insensitive to the choice
of this parameter. The Karhunen-Loève modes absorb a change in
the actuation mode by construction (6).

The imposed flow unsteadiness is given by ũ = a
−1 u

−1, a
−1 =

−dY/dt. In the cylinder-fixed frame of reference, the acceleration of
the cylinder leads to a fictitious volume force −d2Y/dt2g, g = [0, 1],
on the right-hand side of the Navier-Stokes equation (1).

Neglecting the cylinder, the actuation mode represents a uniform
flow u

−1 = [0, 1] and the Navier-Stokes equation (1) simplifies to
∂tu = 0 and ∂tv = da

−1/dt = −d2Y/dt2. In other words, the
actuation mode term and the fictitious force annihilate each other.
In the current cylinder wake study, this is numerically found to be
approximately correct, and the actuation input enters mainly in the
linear and quadratic terms.

III. MODEL-BASED CONTROL OF VORTEX SHEDDING

In this section, the framework outlined in §II is applied the cylinder
for two actuations, a local volume force and a transverse cylinder
motion. The focus is placed on ‘least-order’ models which elucidate
the main actuation mechanisms.

A. The ‘minimal’ Galerkin model of the natural flow

The laminar wake behind a circular cylinder has been studied
extensively since about hundred years (see, e.g., the review article
[13]). In the current study, the flow is considered at the reference
Reynolds number of 100, well above the laminar instability regime’s
critical value of 47 [14]. The natural flow is characterized by von
Kármán vortex shedding defining a periodic attractor. This attractor
and the oscillatory transients leading to the attractor have been
described in a reduced-order empirical Galerkin model [9]. This
representation is briefly recapitulated here since variants for control
are described in the following sections. A detailed discussion of the
model and its properties can be found in the original publication.

An energy-resolving model is obtained with the first eight
Karhunen-Loève modes which describe the first four shedding har-
monics [15]. In fact, already the first pair captures some 96% of the
perturbation kinetic energy in the near wake, an ample representation
from a control design perspective. However, a Galerkin model which
is based on these two modes alone – essentially an ideal oscillator
– leads to slowly growing unbounded oscillation amplitudes since it
lacks the means to enforce the natural oscillation amplitude. Lacking
a dynamic range, this model is therefore unsuitable as a basis for
control design. A shift-mode (see §II-B) is a key enabler for covering
dynamic properties of the system. This mode captures the energy
exchange between the mean flow and the oscillatory modes.

The energy-resolving Galerkin model is reduced to a three-state
‘minimal’ model in [9]. That model is based on the steady Navier-
Stokes solution us, the two leading Karhunen-Loève modes ui and
the shift-mode u∆. The corresponding Galerkin approximation is
given by

u = us + a1 u1 + a2 u2 + a∆ u∆.

This ansatz is equivalent to an expansion around the mean flow u0

(4) since the mean flow is expressed by us + 〈a∆〉u∆, the brackets

denoting the time average. However, the expansion around the steady
solution simplifies the form of the Galerkin system [9]:

d

dt





a1

a2

a∆



 =





σo ω + γa∆ −βa1

−ω − γa∆ σo −βa2

αa1 αa2 −σ∆









a1

a2

a∆



 .

(10)
Indeed, with the addition of the third shift-mode, this system captures
very transparently key ingredients of the wake flow [9]: (i) The
instability of the steady flow (represented by the zero state), (ii) the
dominant oscillation frequency and its dependence on changes with
the mean flow; (iii) the existence of an attractive invariant manifold
of transients from the neighborhood of the steady solution to the
attractor, and (iv) the stability of a limit cycle attractor. Residual
quantitative discrepancies – well expected given the low dimension
of (10) – can be resolved, e.g., by invariant manifold methods and
the addition of stability modes [9] or by adaptation of the Galerkin
coefficients [16].

B. Design objectives and constraints

A standard design objective, mentioned above, is the attenuation of
vortex shedding dynamics. This objective is motivated by engineering
considerations including the reduction of oscillatory forces on ropes
in water and on chimneys. Referring to the model (10), this objective
means that the amplitude r =

√

a2
1 + a2

2 has to be attenuated.
The following comment concerns critical implications of using the

Galerkin model (10) and subsequent actuated variants for control
design. Any low order model of a truly distributed and nonlinear
system is bound to be restricted to a narrow operating regime
for which it is derived. Here, the model was derived primarily
for and from the natural vortex shedding regime. The shift-mode
enhancement extends this representation to the attractive invariant
manifold of transients from the neighborhood of steady flow to the
natural vortex shedding oscillations [9]. A key aspect of this model,
rooted in the physics of the system, is the natural vortex shedding
frequency. If an actuated variant of (10) is to be used for control
design, it is therefore essential that the actuated system be maintained
within its domain of validity. In particular, it is essential that the basic
frequency will remain intact, and that the rate of forced change in the
amplitude r will be (at most) similar to what can be found in natural
transients, on which the model is based. Beyond this basic logic, this
observation has been supported by both experimental and CFD based
analysis, demonstrating the loss of control authority under modified
frequency, as well as the accumulated experience in the fluid flow
community with failures, when this warning was not heeded.

In summary, the design task that is used as a benchmark in this note
is the slow feedback attenuation of the amplitude r =

√

a2
1 + a2

2,
subject to the constraint that actuation maintains the natural vortex
shedding frequency. The main purpose of this benchmark is to
illustrate the new concept of actuation models as extensions of
empirical Galerkin models of fluid flow systems and their use in
control design. We therefore do not dwell here on observer design
and sensor signal feedback. Those were discussed in [6], [17].

C. Actuation model for a volume force

The actuation model for a volume-force actuator is comparatively
simple (see §II-C). The control input is the modulation factor denoted
by ε(t). An important aspect is that this force is assumed to have
no effect on the Karhunen-Loève expansion modes in the Galerkin
approximation. Consequently, its effect on the Galerkin system is the
addition of a linear term B ε.



In an example considered in [6], actuation is provided by a
transversal volume force, supported over a disc in the near-wake as
illustrated in Fig. 1. Due to the y-axis symmetry of the shift mode,

s e n s o rA )  v o l u m e  f o r c e

B )  c y l i n d e r  o s c i l l a t i o n

Fig. 1. Principal sketch of the actuated cylinder wake. The cylinder is
represented by the black disk. The location of the volume-force actuator
(A) is indicated by a grey circle, and the transverse cylinder motion (B) by
arrows. Stream-lines represent the natural flow. The figure includes a hot-wire
anemometer at a typical experimental position. This sensor has been used in
an observer-based control using a Galerkin model [6].

the projection of this volume force on the shift mode vanishes. The
inclusion of the volume force amounts therefore to the addition of a
term Bε = [g1, g2, 0]T ε on the right-hand side of (10). Discussions
of aspects of control design with this volume force actuation has
already been presented in [6], [17] and are therefore left out here.

D. Actuation model for an oscillating cylinder

Here, actuation is provided by forced, nearly periodic vertical
motion of the cylinder in short strokes (see Fig. 1). In open-loop
actuation (used to obtain the vortex shedding POD modes), the
transverse motion is prescribed by Y = 0.1 sin ωt (see §II-E).
The frequency ω is assumed from the natural shedding. This form
of actuation was considered in [3]. One modeling challenge, is
the moving boundary (i.e., the cylinder) and hence, the boundary
conditions in the computation domain. It is therefore convenient to
synchronize the spatial frame of reference with the center of the
cylinder, whereby the boundary becomes stationary. Consequently,
however, the free flow now includes a global sinusoidal vertical
component. The necessary changes in the Navier-Stokes equation
and its boundary conditions, and the corresponding changes of the
Galerkin model were outlined in §II-E.

In the current study, a minimal Galerkin model is constructed
for actuated conditions in analogy to the natural flow. The Galerkin
approximation is given by an N = 2 truncation of (8) with an added
shift- and actuation-mode,

u = us + a1 u1 + a2 u2 + a∆ u∆ + ac uc. (11)

Figure 2 visualizes the employed modes. Note that the base flow is
the steady solution, as in §III-A.

One main consequence is that actuation – represented by ac –
effects the velocity field itself, whereas the volume force effects only
its derivative (i.e. fluid acceleration). To be more specific, the fact
that the actuation mode uc is not orthogonal to the oscillation modes
means that the expressions for the time derivatives of d

dt
[a1, a2, a∆]

will include contributions of both ac and of its derivative, dac/dt,
as obtained from the projections in the u1 and u2 directions,
respectively, of the time derivative of (11). The projection along u∆

vanishes, due to y-axis symmetry of this mode.

a

b

c

d

e

f

Fig. 2. Galerkin approximation (11). The modes include an actuation
representation for the oscillating cylinder and are depicted by stream-lines:
(a) The actuation mode, (b) the (unstable) steady flow u s, (c) the natural
mean-flow u 0 (i.e., under vortex shedding), (d) the shift-mode u∆, and (e),
(f), the Karhunen-Loève modes u1 and u2, representing the first vortex
shedding harmonic. The plots (c,e,f) were derived from a Karhunen-Loève
decomposition of the open-loop actuated cylinder at 0.1D-strokes and at the
natural vortex shedding frequency. They are qualitatively very similar to their
counterpart for the static cylinder.

A second difference from the volume force case is the contribution
of the added term d2Y/dt2 on the right-hand side of the Navier-
Stokes equation. The contribution of this transverse field, is again
principally captured by uc, and is reflected by a second added term,
proportional to dac/dt.

The force-units term ε = dac/dt is viewed as a control input,
in terms of which the system fits into a conventional, pseudo-linear
pattern

d

dt
a = A(a)a + Bε (12)

where the matrices A(a) assumes the form

A =









σo ω + γa∆ −βa1 + βc1ac κ1

−ω − γa∆ σo −βa2 + βc2ac κ2

αa1 − αc1ac αa2 − αc2ac −σ∆ κ∆ + αc∆ac

0 0 0 0









(13)
and B = [b1, b2, 0, 1]T . Numerical parameter values were obtained
from a numerical Galerkin projection: σo = 0.0471, σ∆ = 0.0602,
ω = 0.9431, γ = 0.0292, α = β = 0.0226, αc1 = βc1 = 0.0358,



αc2 = βc2 = 0.206, αc∆ = 0.0110, κ1 = −0.7416, κ2 = −0.5245,
κ∆ = −0.0164, b1 = 0.0558 and b2 = −0.0182. In Fig. 3, the direct
numerical simulation, the energy resolving Galerkin model, and the
minimal model (12) are compared for the cylinder wake under open-
loop actuation. Even the minimal model is seen to approximate well
the Navier-Stokes attractor.

-2 -1 0 2a1

-2

-1

0

2

a2

Fig. 3. Galerkin attractor of the wake behind the cylinder transversely
oscillating with Y = 0.1 sin ωt at the natural shedding frequency ω. The
figure displays a phase portrait with the Fourier coefficients of the von Ḱarmán
modes a1, a2 for the simulation (solid line), the energy-resolving Galerkin
model (•) and the minimal phase-invariant Galerkin model (◦).

E. Dissipative control of the oscillating cylinder model

The purpose of design, stated in §III-B, is the slow attenuation
of r subject to the constraint that the natural oscillation frequency
w + γa∆ be left (essentially) intact. The special structure of the
system and intended actuation will be utilized to address this task in
the nonlinear (12).

The true actuation command in this system is the force applied to
the cylinder, or, indeed, the voltage applied to the motor producing
that force. Yet, a much simpler setting is used here: As noted earlier,
effective actuation of the cylinder wake is restricted to the natural
vortex shedding frequency. In this sense, actuation is limited to
slow modulation of the phase and amplitude of a periodic motion
at the natural frequency. The narrow bandwidth of the closed loop
system justifies an instantaneous response assumption — ignoring the
actuator’s internal dynamics.

Focusing on nearly periodic motion and actuation, it is convenient
to move to cylindrical coordinates, [a1, a2] = [sin(φ), cos(φ)] r,
transforming the original system to the form:

d

dt
r = (σo − βa∆)r + gr

(

φ, a∆, ac,
d

dt
ac

)

, (14)

d

dt
a∆ = −σDa∆ + βr2 + g∆

(

φ, a∆, ac,
d

dt
ac

)

, (15)

d

dt
φ = ω + γa∆ +

1

r
gp

(

φ, a∆, ac,
d

dt
ac

)

, (16)

where

gr = sin(φ)

(

[κ1 + β1ca∆] ac + b1
d

dt
ac

)

+ cos(φ)

(

[κ2 + β2ca∆] ac + b2
d

dt
ac

)

,

g∆ = [κ∆ + αc∆ac − (βc1 sin(φ) + βc2 cos(φ)) r] ac,

gp = cos(φ)

(

[κ1 + β1ca∆] ac + b1
d

dt
ac

)

− sin(φ)

(

[κ2 + β2ca∆] ac + b2
d

dt
ac

)

.

A nearly periodic actuation at the oscillation frequency is of the form

ac = rc cos(φ + θc),
d

dt
ac ≈ −

dφ

dt
rc sin(φ + θc),

where the approximation is justified by the fact that rc and θc are
slowly varying and dφ/dt is represented by the right hand side of
(16). In fact, if successful, the proposed control policy will be such
that dφ/dt could be further approximated by its slowly varying,
dominant term, ω + γa∆. The purpose of control design is the
selection of the slowly varying phase shift θc and amplitude rc.

Denote [c1, c2] = [κ1 + β1ca∆, κ2 + β2ca∆]. In these terms,

gr = 1
2

rc

[(

c1 − b2
dφ

dt

)

sin(2φ + θc) +
(

c2 + b1
dφ

dt

)

cos(2φ + θc)

−
(

c1 + b2φ̇
)

sin(θc) +
(

c2 − b1
dφ

dt

)

cos(θc)
]

.

(17)
and

gp = 1
2

rc

[(

c1 − b2
dφ

dt

)

cos(2φ + θc) −
(

c2 + b1
dφ

dt

)

sin(2φ + θc)

+
(

c1 + b2
dφ

dt

)

cos(θc) +
(

c2 − b1
dφ

dt

)

sin(θc)
]

.
(18)

Each of the terms in (17) and (18) comprises a term involving the
second harmonic of φ and a slowly varying term. The contribution
of the zero-mean, second harmonic terms to the narrow bandwidth
dynamics in (14) and (16), is negligible. Considering the contribution
of the slowly varying terms, it is noted that the terms multiplying
the vector [cos(θc), sin(θc)]

T in (17) and in (18) are mutually
orthogonal. The objective to maximize the amplitude of a negative
“dc” component of gr (for a given stroke amplitude rc) and the
constraint requiring to annihilate the “dc” component of gp, by the
same selection of θc, are therefore complementary. Thus, θc has to
be selected to achieve the desired alignment

[

−c1 − b2
dφ

dt

c2 − b1
dφ

dt

]

∝ ±

[

sin(θc)
cos(θc)

]

.

The minus sign is used here, to serve the goal of attenuating vortex
shedding. A plus sign would have been used if amplification were
desired. The value of the “dc” component of gr is then

gr0 = −
1

2
rc rm, rm =

∥

∥

∥

∥

[

−c1 − b2
dφ

dt

c2 − b1
dφ

dt

]
∥

∥

∥

∥

.

To be effective, the actuation amplitude rc must be selected large
enough to turn the (averaged) (14) dissipative; e.g., rc = 2(ρ+σo −
βa∆)r/rm, leading to the closed loop behavior:

d

dt
r = −ρr. (19)

In that case, the design parameter ρ is kept small enough in order not
to exceed natural transient rates for which both the original model
and the “slowly varying dc component” hypothesis are valid. The
maximum allowed stroke is a design constraint and the preceding
analysis reveals 2(σo − βa∆)r/rm as a lower bound. The design
considerations above did not relate to the dynamics of a∆. The
rationale is that once both r and rc decay, a∆ will follow, as dictated
by (15).

Results are presented here from a simulation with the selection of
ρ = 0.02, and relate to a trajectory that begins at the attractor and
terminates near the stabilized steady flow. Figure 4 depicts an actuated
transient under closed-loop dynamics of ac. From the same figure, the
oscillation amplitude can be seen to decrease as control is turned on.
A logarithmic scale counterpart of r (not shown) reveals the nearly
exponential decay rate, as predicted. The closed-loop dynamics of
dφ/dt implies a frequency which decreases as one approaches the
fixed point. The distance from the fixed point is characterized by
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Fig. 4. Transient from natural shedding with a fixed cylinder (t < 0)
to closed-loop actuation with a moving cylinder (t > 0). The time t is
normalized with the period T . From top to bottom: the actuation amplitude
ac, the first Fourier coefficient a1, the shift-mode amplitude a∆, and the
phase difference θc in degrees.

a∆. An intriguing result is the change of the phase difference θc

as one approaches the fixed point. The necessity of a varying phase
difference to stabilize the near-wake has numerically observed by [3].

Figure 5 shows a phase-space closed-loop dynamics of the state
vector a.

−2

0

2

−2

0

2
0

0.5

1

2

a
1

a
2

a ∆

ρ=0.02 

Fig. 5. Phase-space dynamics for the trajectory displayed in Fig. 4.

IV. CONCLUSIONS

A novel actuation representation for the empirical Galerkin method
has been proposed for imposed flow unsteadiness. Its applicability
has been illustrated for vortex shedding behind an oscillating cylinder.
This actuation model removes the hardwiring between the Karhunen-
Loève modes and the cylinder motion of the reference simulation.
In other words, the cylinder motion is a free actuation input in
the modified Galerkin system. Thus, the enhanced model enables
dissipative control-design for the attenuation of vortex shedding. The

Navier-Stokes simulation with open-loop actuation is well reproduced
by that model. For closed-loop attenuation of vortex shedding, a
dissipative controller is successfully developed for that model. Recent
results show an effective near-wake suppression of vortex shedding
due to the described control in the full system, the Navier-Stokes
simulation, as will be described in a separate study. For wake
control with a volume force [6], similar controllers have reduced
the fluctuation level close to the lowest achievable bound in direct
numerical simulations.
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