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Abstract 

This paper presents an application of the recently 
developed theory of optimal Discrete Event Supervisory 
(DES) control that is based on a signed real measure of 
regular languages.  The DES control techniques are 
validated on an aircraft gas turbine engine simulation test 
bed.  The test bed is implemented on a networked 
computer system in which two computers operate in the 
client-server mode.  Several DES controllers have been 
tested for engine performance and reliability. 

1 Introduction 
Discrete-event dynamic behavior of physical plants 

is often modeled as regular languages that can be 
realized by finite-state automata [RW87].  The 
sublanguage of a controlled physical plant may be 
different under different supervisors such that a partially 
ordered set of sublanguages requires a quantitative 
measure for total ordering of their respective 
performance.  To address this issue, Wang and Ray 
[WR04] have formulated a signed measure of regular 
languages followed by Surana and Ray [SR03] who have 
constructed a metric space of sublanguages based on the 
total variation measure of the language.  Based on the 
language measure, Fu et al. have reported optimal 
control of regular languages in a series of papers [FRL04] 
[FRL03] [FLR03].   

This paper presents an application of the recently 
developed theory of optimal Discrete Event Supervisory 
(DES) control [FRL04], which addresses state-based 
optimal supervisory control of a gas turbine engine 
without considering the event disabling cost.  The 
performance index of the optimal control policy is a 
signed language measure of the supervised sublanguage, 
which is expressed in terms of a state transition cost 
matrix and a characteristic vector [WR04] [SR03].  In 
this application, a new Deterministic Finite State 
Automaton (DFSA) plant model is developed to 

                                                 
† This work has been supported in part by the United States Army 
Research Office under Grant No. DAAD19-01-1-0646 and NASA 
Glenn Research Center under Grant Nos. NAG3-2448 and  
NNC04GA49G. 

represent the discrete-event dynamical behavior of a 
generic gas turbine engine.  It is a component level 
engine model that represents the nonlinear dynamics of 
real engine operation. However, this model does not 
capture various aspects of the engine’s abnormal 
operations (e.g., low oil pressure, high bearing vibration, 
and foreign object impact), which are of paramount 
interest to the pilot. For proper decision and control, this 
information is necessary, and was obtained by running 
various engine scenario simulations and compiling 
information regarding pilot experience. The resulting 
DFSA plant model was used to design an optimal DES 
control system for the engine operation.   

The engine simulation test bed is implemented on a 
networked system, where two computers operate in the 
client-server mode.  The plant (i.e., engine operation) 
computer is the client and executes the engine simulation. 
The control computer is the server and executes the tasks 
of the DES control and other ancillary functions such as 
information display.  Several DES controllers, including 
the unsupervised plant (i.e., the engine without DES 
control), have been tested for comparison of engine 
performance and reliability.  To our best knowledge, this 
is the first time the theory of optimal DES control has 
been applied to a large-scale complex system.   

The paper is organized in six sections including the 
present one.  Section 2 reviews the salient concepts of 
the language measure.  Section 3 summarizes the DES 
control techniques. Section 4 discusses the 
implementation of DES control on the engine simulation. 
In section 5, the experiments carried out are discussed, 
and the experimental results are examined.  The paper is 
summarized and concluded in Section 6. 

2 Brief Review of the Language Measure 
This section reviews the previous work on language 

measure [WR04] [SR03].  It provides the background 
information necessary to develop a performance index 
and an optimal control policy. 

Let the dynamical behavior of a physical plant be 
modeled as a deterministic finite state automaton 
(DFSA) ),,,,( mii QqQG δΣ≡ with nQ = and m=Σ . 



Definition 1: A DFSA iG , initialized at Qqi ∈ , 
generates the language { }QsqsGL ii ∈Σ∈≡ ),(*:*)( δ  
and its marked sublanguage 

{ }miim QsqsGL ∈Σ∈≡ ),(*:*)( δ . 
Definition 2: The language of all strings that, starting at 

Qqi ∈ , and terminating at Qq j ∈ , is denoted 

as ( , )i jL q q .   
Definition 3: The characteristic function that assigns a 
signed real weight to state-partitioned sublanguages 

( , )i jL q q  is defined as: ]1,1[: −→Qχ  such that 
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The )1( ×n  characteristic vector is denoted as: 

 
 T]nχχχ L21[≡χ  

Definition 4: The event cost is defined as 
)1,0[*:~ →×Σ Qπ  such that ,Qq j ∈∀ Σ∈∀ kσ , *,Σ∈∀s  

• 0][~ =jk qσπ  if ),( kjq σδ  is undefined; 1][~ =jqεπ ; 

• [ )1,0~][~ ∈≡ jkjk q πσπ ; 1~ <∑k jkπ ; 

• )],([~][~][~
kjjkjk qsqqs σδπσπσπ = . 

The )( mn×  event cost matrix is denoted as: ].~[~
ijπ≡Π  

Definition 5: The state transition cost of the DFSA is 
defined as a function )1,0[: →×QQπ  such that 

,, Qqq kj ∈∀

jk
kqjq

jjk qqq πσππ
σδσ

∑ ≡=
=Σ∈ ),(:

)(~)(  and 0=jkπ  

if ∅=Σ∈ )},(:{ σδσ jq .  The nn×  state transition cost 
matrix, denoted as Π , is defined as: 
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Definition 6: The signed real measure µ  of a singleton 
string set }{s  is defined as: )|(~)(})({ ij qsqs πχµ ≡  

( , ) ( )i j is L q q L G∀ ∈ ⊆ .   

The signed real measure of ),( ij qqL  is defined as: 

( ) ( )
( , )

( , ) { }
j i

i j
s L q q

L q q sµ µ
∈

 
≡   
 
∑  

The signed real measure of a DFSA iG , initialized 
at the state Qqi ∈ , is defined as 

=≡ ))(( ii GLµµ ( )( , ) .i jj
L q qµ∑  

The 1×n  real signed measure vector is denoted as: 
T

n ][ 21 µµµ L≡µ  
Wang and Ray [WR04] have shown that the 

measure of the language )( iGL , where 
),,,,( mii QqQG δΣ=  can be expressed 

as: ∑ += j ijiji χµπµ . Equivalently, in vector notation: 
χµµ +Π= .  Since Π  is a contraction operator, the 

measure vector µ  is uniquely determined as:  

χµ 1][ −Π−= I . 

3 Optimal Discrete Event Supervisory Control  
Fu et al. [FRL04] have introduced the concept of 

unconstrained optimal control of regular languages based 
on a specified measure.  This optimal control technique 
is designed for plants with insignificant event disabling 
cost. The state-based optimal control policy is obtained 
by selectively disabling controllable events to maximize 
the measure of the controlled plant language without any 
constraints.  In each iteration, the optimal control 
algorithm attempts to disable all controllable events 
leading to “bad marked states” and enable all 
controllable events leading to “good marked states.”  It is 
also shown that computational complexity of the control 
synthesis is polynomial in the number of plant states 
[FRL04]. 

Let G  be the DFSA plant model without any 
constraint of operational specifications.  Let the state 
transition cost matrix of the open loop plant be: 

nnplant ×ℜ∈Π  and the characteristic vector be: 
nℜ∈Χ .  Starting with 0=k  and plantΠ≡Π0 , the 

control policy is constructed by the following two-step 
procedure [FRL04]: 

Step 1:  For every state jq  for which 00 <jµ , 

disable controllable events leading to jq . Now, 
001 ∆−Π=Π , where 00 ≥∆  is composed of event 

costs corresponding to all controllable events that have 
been disabled at 0=k . 

Step 2:  Starting with 1=k , if 0k
jµ ≥ , re-enable 

all controllable events leading to jq , which were 
disabled in Step 1.  The cost matrix is updated as: 

kkk ∆+Π=Π +1  for 1≥k , where 0≥∆k  is composed 
of event costs corresponding to all currently re-enabled 
controllable events.  The iteration is terminated if no 
controllable event leading to jq  remains disabled for 

which 0k
jµ ≥ .  At this stage, the optimal performance 

is ΧΠ−≡ −1** ][Iµ . 



4 Implementation of the DES Control Concept 

This section presents an application of the optimal 
discrete event supervisory (DES) control for real-time 
operation of gas turbine engines.  The plant under DES 
control in the simulation test bed is a nonlinear dynamic 
model of the engine together with its continuously 
varying multivariable controller.  With the proper inputs 
of power lever angle (PLA) and ambient conditions, the 
FORTRAN program simulates both steady-state and 
transient operations of the gas turbine engine in the 
continuous setting.  The objectives are to demonstrate 
efficacy of DES control for:  (1) Structural damage 
reduction and life extension of aircraft engines with 
proper discrete command interference; and (2) Decision 
making and mission planning optimization. 

4.1 Architecture of the DES Engine Controller 

The DES control is implemented in the C++ 
environment around the existing engine simulation code 
that is written in FORTRAN.  The plant model code is a 
stand-alone program with its own continuous-time gain-
scheduled robust controller that is kept unaltered. The 
C++ wrapper of the simulation code takes over the major 
inputs and outputs of interest and makes them 
transparent to the end user as if the entire simulation runs 
in the C++ environment.  The advantage of working in 
the C++ environment is the convenient utilization of the 
standard Message Application Protocol Interface (API) 
communication routines.  In addition, all other functions 
(e.g., Event generator, Action Generator, and 
Supervisor), are implemented in C++.   

 
Figure 1 Architecture of the DES control system 

Figure 1 shows the architecture of DES control as 
implemented in the simulation test bed.  The DES 
control is implemented on a pair of networked computers 
that operate in the server-client mode.  The plant model 
of the aircraft engine and the Action Generator reside in 
the client computer.  The Event Generator and 
Supervisor are located in the server computer.  The pilot 
commands are entered in the server computer.  The 
server and client communicate with each other over the 

communication network via API messages as seen in 
Figure 1.  Note that the information Fusion module  at 
the bottom of Figure 1 requires ancillary (e.g., oil 
pressure and bearing vibration) information in addition to 
the conventional plant sensor data (e.g., gas temperature 
and engine shaft speed).   

 The Action Generator converts the discrete-event 
symbols of supervisor commands into continuous signals 
that are inputs to the plant model.  The control 
commands (e.g., flight parameter modifications, 
compensating throttle inputs, mission abortion, and pilot 
throttle command) are passed through the Message API 
communication routine to the Action Generator on the 
client side.  The Action Generator converts control 
commands from the supervisor into necessary simulation 
input.  Similarly, the Event Generator converts the plant 
sensor signals and other pertinent information (e.g., 
engine operational data) into event symbols that are 
inputs to the supervisor.  In essence, the role of Event 
Generator is fusion of heterogeneous information and 
real-time expression of the relevant part in the language 
of the supervisor.  The sensor signals are processed with 
built-in information (e.g. threshold values and fault 
detection logic) to generate discrete events as the inputs 
to the supervisor. The DFSA plant model, located in the 
supervisor, serves as the state estimator.   

4.2 DFSA Model of Gas Turbine Engine 

The open-loop discrete event dynamics are modeled 
as a DFSA based on the postulated engine operation 
scenario.  The model may vary for different mission 
scenarios.  The DFSA plant model assumes that a 
military aircraft equipped with a single turbofan jet 
engine is carrying out a routine surveillance mission. 
Abortion of the mission is allowed at certain states when 
an anomaly is detected in the engine.  Three major 
anomalies are considered: Low Oil Pressure, High 
Bearing Vibration and High Fatigue Crack Damage 
Increment.  

The plant model has 42 states, of which four are 
marked states and the alphabet consists of 16 events, of 
which four are controllable events [RW87]. Table I lists 
the marked states and controllable events. 

Table I  Marked States and Controllable Events 
Marked States Controllable Events 

42 - Mission aborted on ground  a - Start engine 
14 - Mission aborted off ground f -Request for abortion 
16 - Unexpected engine halt  i - Request flight parameter change 
15 - Mission successful  p - Maintain current condition 

5 Simulation Experiments: Results and Discussion 
A series of experiments were designed on the engine 

simulation test bed to validate the DES control concept.  
Upon successful implementation of the software modules 
on the client and server computers, the first set of 
experiments was conducted to verify that functions and 
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communications added on both server and client sides do 
not affect the simulated engine dynamics.  Completion of 
these experiments partially assures robustness of the 
DES control relative to exogenous disturbances such as 
communication delays.  The second set of experiments 
was conducted to compare the engine performance and 
damage accumulation for the unsupervised (i.e., without 
DES control) plant and a supervised (i.e., under a 
selected DES control) plant.  Figure 2 shows the given 
PLA input. 

 
Figure 2 PLA input for the simulation 

 

Figure 3 Unsupervised plant output (fixed PLA input) 

 

Figure 4 Supervised plant output (fixed PLA input) 

Under the same fixed PLA input, Figures 3 and 4 
show the engine outputs for the unsupervised plant and 

supervised plant, respectively. Figure 4 shows ~35% 
damage reduction under DES control. Although the 
given throttle inputs are the same, the supervisor 
modifies them only if high damage increment is detected. 
Consequently, input to the engine simulation is adjusted 
to reduce the damage increment rate for the supervised 
case. Damage accumulation is formulated as a function 
of high-pressure turbine gas inlet temperature and shaft 
speed.  

For (statistically identical) random throttle inputs, 
Figures 5 and 6 show the engine outputs for the 
unsupervised plant and supervised plant, respectively. 
Comparison indicates ~60% damage reduction under 
DES control.   

Figure 5 Unsupervised plant output (random PLA 
input) 

Figure 6 Supervised plant output (random PLA input) 

5.1 Language measure parameter identification 

Analysis and synthesis of an optimal DES controller 
require the identification of the event cost matrix.  
Similar to continuously varying dynamical systems 
(CVDS), we use techniques of system identification to 
identify the language measure parameters of the DFSA 
plant model - the elements ijπ%  of the event cost matrix 

Π%  (see Definition 4 in Section 2).  As the number of 
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experiments increases, the identified event costs tend to 
converge in the Cauchy sense.  For stationary operation 
of the engine, since conditional probabilities of the 
events can be assumed to be time-invariant, the identified 
event costs and their uncertainty bounds can be 
determined.  Wang et al. [WRK03] have reported details 
of the identification procedure and its experimental 
validation on a robotic test bed.  As a typical case, Figure 
7 presents identification of event costs at state 6 (engine 
operation under normal damage increment).  During 100 
experiments, the states visited and the events triggered 
were monitored and plotted.   

 
Figure 7 Convergence of event cost identification  

5.2 Optimal DES controller synthesis  

The state transition cost matrix Π  is determined 
from the event cost matrix Π% , and the transition function 
δ  of the finite state automaton.  Given the state 
transition cost matrix Π  and the state characteristic 
vector χ , the optimal DES controller can be synthesized.  
The characteristic values of the four marked states in 
Table I are assigned as: -0.05, -0.20, -1.00, and +0.20, 
respectively.  These values are assigned based on the 
designer’s perception of the importance of terminating 
on specific marked states. For example, the bad marked 
state Unexpected engine halt in Table I is assigned the 
characteristic value of -1.00 because the single engine 
aircraft will most likely be destroyed if the DFSA 
terminates on this state.  On the other hand, the good 
marked state Mission successful is assigned the 
characteristic value of +0.20 based on its relative 
importance to the loss of the aircraft. 

Table II lists the iterations of optimal control 
synthesis for the first 16 states.  The performance 
measure of the unsupervised plant is negative at the 
states 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, and 16 as indicated 
by bold script in Table II. All controllable events leading 
to these states are disabled and the resulting performance 
measure at Iteration 1 shows sign change at states 3, 4, 5, 
and 14 as indicated by italics in Table II.  All 
controllable events leading to these states are now re-

enabled for further increase in performance as seen in the 
column under Iteration 2, where sign change occurs only 
at state 8.  Re-enabling all controllable events leads to 
state 8 increases the performance even further.  The 
synthesis is complete in Iteration 3 (i.e., there is no need 
to go for the Iteration 4) because there is no sign change 
from Iteration 2 to Iteration 3.  However, the Iteration 4 
in Table II is shown to exhibit that there is no further 
improvement in the language measure.   

Table II Optimal controller synthesis iterations 

 Unsupervis
ed plant 

Iteration 1 Iteration 
2 

Iteration 
3 

Iteration 
4 

State 1 0.1392 0.2396 0.2654 0.2749 0.2749 
State 2 0.1406 0.2420 0.2681 0.2777 0.2777 
State 3 -0.1826 0.0475 0.0762 0.0819 0.0819 
State 4 -0.1011 0.0163 0.0462 0.0619 0.0619 
State 5 -0.4348 0.0000 0.0301 0.0346 0.0346 
State 6 0.1576 0.2585 0.2833 0.2930 0.2930 
State 7 -0.3373 -0.0322 -0.0083 -0.0045 -0.0045
State 8 -0.1134 -0.0077 0.0126 0.0268 0.0268 
State 9 -0.8250 -0.7116 -0.7061 -0.7050 -0.7050
State 10 0.1249 0.2250 0.2493 0.2590 0.2590 
State 11 -0.3759 -0.1857 -0.1706 -0.1665 -0.1665
State 12 -0.1318 -0.0241 -0.0066 -0.0007 -0.0007
State 13 -0.8638 -0.8545 -0.8520 -0.8512 -0.8512
State 14 -0.0622 0.0372 0.0628 0.0721 0.0721 
State 15 0.3378 0.4372 0.4628 0.4721 0.4721 
State 16 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

 
Figure 8 Supervised plant output (fixed PLA input) 

The performance of the optimal controller was 
compared with that of Controller 1 and Controller 2, 
which are designed using the conventional procedure 
[RW87] [WRPL03].  The optimal controller not only 
yields the best mission performance of all controllers and 
unsupervised plant, but also reduces the accumulated 
damage of the unsupervised plant. However, it may not 
necessarily yield less damage accumulation than all other 
controllers because damage criteria were not addressed 
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in the formulation of the optimal control policy.  Figure 8 
shows the engine outputs for the input given in Figure 2 
under the supervision of optimal controller whose 
damage accumulation is less than that of unsupervised 
plant, but slightly exceeds that of Controller 2.  Table III 
compares damage accumulation for each case.  

Table III Damage under Different Supervisors 

Unsupervised Controller1 Controller2 OptimalControl 

5.51 x 10-6 5.51 x 10-6 3.65 x 10-6 3.96 x 10-6 

Theoretical performance of the supervisors can be 
associated with the language measure of each supervisor. 
The language measure of the unsupervised plant and that 
of the three controllers are listed in Table IV.  

Table IV Performance under Different Supervisors 

µUnsupervised µcontroller1 µcontroller2 µOptimalControl 
0.1392 0.1312 0.2269 0.2749 

The performance of the null and the three 
supervisors are compared based on observations of 
mission execution on the simulation test bed. For each 
controller, 100 missions were simulated, and the mission 
outcomes were recorded with respect to the characteristic 
values assigned to the four marked states.  Assigning the 
characteristic values (χ): -0.2, 0.2, -1.0, -0.05 to states: 
Mission Abortion off-Ground (14), Mission Success (15), 
Engine Halt (16) and Mission Abortion on-Ground (42), 
respectively, simulated performance of the unsupervised 
plant and each of the three controllers is calculated as 
given below:   
ν Unsupervised  =   33*(-0.2)+59*0.2+4*(-0.05)+4*(-1.0)= 1.00 
ν Controller1 =        81*0.2+19*(-1.0) = -2.80 
ν Controller2 =        25*(-0.2)+68*0.2+3*(-0.05)+4*(-1.0)= 4.45 
ν OptimalControl =31*(-0.2)+63*0.2+6*(-0.05)+1*(-1.0)= 5.10 

 
Figure 9 Simulated Performance of Controllers 
The bar chart in Figure 9 shows a comparison of 

mission behavior for each supervisor under simulation 
experiments.  It is seen that the theoretical performance 
of the supervisors, listed in Table IV, is in qualitative 
agreement with the experimental results.  

6 Summary and Conclusions 

This paper presents a quantitative approach to 
synthesis of an optimal discrete-event supervisory (DES) 
control of a complex engineering system based on the 
recent theoretical work in this field [WR04] [FRL04] 
[SR03] [WRK03].   

The optimal DES control law has been validated on 
a gas turbine engine simulation test bed.  The plant 
model in the simulation test bed is built upon the model 
of a generic turbofan gas turbine engine.  The software 
architecture of the simulation test bed is flexible to adapt 
arbitrary DFSA models and controller designs and to fit 
other complex systems such as power plants or robots. 

The results of simulation experiments have shown 
the DES supervisor is capable of simultaneously 
reducing structural damage and improving the mission 
behavior of the engine system.  Real events were 
generated as the simulation executed the DES control 
policy, and control commands were issued by the 
supervisor based on the observed events.  Simulation 
experiments on the test bed establish feasibility of the 
optimal DES control theory for applications to other 
large-scale engineering systems.  To the best of the 
authors’ knowledge, this is the first application of 
optimal DES control to a large-scale engineering system 
reported in open literature.   
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