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Approximate Model Predictive Control for Gas
Turbine Engines

Junxia Mu and David Rees

Abstract — A novel model predictive control strategy using
instantaneous linearization of nonlinear models inarporating
the Generalized Predictive Control (GPC) called Appoximate
Model Predictive Control (AMPC) is used to controla shaft
speed of a gas turbine engine. This method gives\ahtages
over the Nonlinear Model Predictive Control (NMPC), which
is computationally demanding and has local minimumsThe
performance of the model based control schemes iggkndent
on the accuracy of the process model, so firstly ¢hpaper
examines the estimation of global nonlinear gas tbine models
using NARMAX and neural network representations. The
performance of the proposed methods is examined ugj a
range of small and large random step tests. The neks
illustrate the improvements in control performancethat can be
achieved to that of gain-scheduling PID controllers

I. INTRODUCTION

range of different operating points. The errors thuaoise
and nonlinearities were assessed and found to b# fon
these small-signal models. The fact that the dosgand the
dynamics of these models change with operating tpoin
showed that the gas turbine is nonlinear, so thesl veas
apparent for a more accurate nonlinear modellindp@fgas
turbine. The work was developed further by Chieasal
[3,4] who used Nonlinear AutoRegressive Moving Aage
with eXogenous inputs (NARMAX) and neural network
models, to represent the global dynamics of thenendt
was demonstrated that both models were suitable for
representing engine dynamics throughout its opegati
range.

Since the relationship between the fuel flow andftsh
speed of the gas turbine is nonlinear, Nonlineardéflo
Predictive Control (NMPC) provided a possible siolutto

Gas turbines are now extensively used in aerospadlg control problem. This is an alternative to &a@nga

marine and industrial application. With this ins&® use
in a diverse range of application, designing oftodlers
for the optimal performance is an important consitien.
This paper deals with the nonlinear modelling aondtol
between the fuel flow and shaft speed of an airayab
turbine. The work presented here is based on & Ralyce
Spey Mk202 aircraft gas turbine. Although it islonger in
service, for the control purposes, the Spey possetise
same characteristics as a modern engine.

scheduling PID strategy. However, NMPC involves a
complex nonlinear programming problem. The needs®

a simple model predictive control method is appar&€he
proposed Approximate Model Predictive Control (AMPC
is based on instantaneous linearization of a neatimodel

at each sampling instant, thus enabling the apjiceof
linear model predictive control techniques. In thiper,
Generalized Predictive Control (GPC) originally posed
by Clarkeet al [5,6] is applied to control the gas turbine

Model Predictive Control (MPC) has been introduceé@ngine, enabling the control trajectory to be fobgdlirect

mainly to deal with processes with complex dynanfids

analysis. The advantages of using AMPC over comnvealt

and now is one of the most widely used advancedraion nonlinear design are less computational time ane th
methods in the process control industry. MPC denate avoidance of the problem of local minimums.

broad range of control strategies, which uses aemtal
predict future process behavior and calculate thetrol
trajectory through the optimization of an objectfuaction
within a specified horizon.

In this paper nonlinear gas turbine modelling using
NARMAX and neural networks is presented. Since the
authors did not have access to a gas turbine tteimgnt
the control strategy, the neural network model il used

Model based control schemes are highly relatechéo tfor the model predictor, and the NARMAX model to

accuracy of the process model. Recent work by Egaab

represent the “true dynamics” of the system. Thé&wvation

[2] concentrated on testing the engine using smaller using two different models to design AMPC isstwow

amplitude multisine signals and
techniques to identify linear models of high accyrat a
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frequency domaithe control robustness when model mismatch occlns.

control performance of a gas turbine engine usiMP& is
examined using a wide range of small and large aand
signal tests and it is shown that the control penémce of
the AMPC is superior to that of the gain-scheduli®ifp
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II.  NONLINEAR GAS TURBINE MODELLING 2

ftanh(x) = 1+ —x
A. NARMAX Model e

In order to identify a global model, which is cafeabf The network is described by the magnitude of thigie
representing the engine dynamics for both the samadl and biases, and should be determined by trainirg th
large input amplitudes, Chiras al [3] used nonparametric Ne€twork on the estimation data. In this paper araleu
data analysis in both time- and frequency-domair @n Network AutoRegressive with eXogenous inputs (NNARX
orthogonal estimation algorithm to estimate NARMAXUSING past input and output terms as regressaused to

models of the engine defined by the nonlinear fonct model the gas turbine. Parameter estimation ingothe
minimization of the sum of square errors given by
0 = F(y(t‘1)'---,y(t‘ny),u(t—l),...

ut-n,),et-12),...et-ny)

whereF is a nonlinear functiony(t), u(t), et) represent the
output, input and noise signals, respectively; apnd,, and where & are the model parametesgt) the system output,

ne are their associated maximum lags. A well-establishggt) the model estimatéy the number of samples atf' a

procedur_e for st_ructure selection of a NA_‘RMAX_matrix known as training data given by (7), and the
polynomial model is based on the error reduction ratio

(ERR) defined by Billingst al [7] as parameter estimaté is obtained by (8).

-1 (5)

]+e(t) Y ez =~ Sho-swal =L Sews ©
N\ &e 2N ~ 2N t=1

zN = —1) .- y(t — —1) ... ult - 7
oSl : [y yt-1 - yt-n) ut-1 - ut-ny)| (@)
ERR=—3 (2) @=argminVy(6,2¢) (8)
DUYA Chiraset al [4] showed that a neural network with 6
t=1

hidden layers and one linear output layer provitiesbest
whereg; are auxiliary model coefficientsy(t) are terms of performance on the existing validation data shawfig. 1,
an auxiliary model that are orthogonal over the datend is capable of modelling both the low and high
records. A forward-regression orthogonal estimatioamplitude dynamics of the engine. Fig. 1 shows that
algorithm is employed to select at each step the term witieural network model performs better than the NARMA
the highest ERR, in other words the term which contributesodel for the small signal tests, however for lasggnal
most to the reduction of the residual variance. Thi@sts the NARMAX model is better.
procedure is usually stopped using an information criteric @ o ®
such as Akaike’s Information Criterion (AIC), defined as i

AIC = Nlog, (07 (6,))+kp 3)

84.5

Shaft Speed(%NH)
Shaft Speed(%NH)

whereahf(é?p )is the variance of the residuals associate

with ap-term model andt is a penalizing factor. One of the ol

estimated NARMAX models in (4) is validated in Fif. ° Time(s) © Time(s) ®
and proved to be suitable for both small and |ssigmal @
tests.

y(t) = 0.7206y(t 1) + 0.2885y(t - 2)
+0.00664(t —1) - 331e°u(t - 1) y(t - 2) (4)
-0.7202- 256 *y(t -1) y(t - 2)

o

71

87

64 76

Shaft Speed(%NH)
Shaft Speed(%NH)

57 65

B. Neural Network Model 0 Do ° e 100

Chiraset al [4] used another representation, a two-layerig. 1. Outputs of validation data test based orRNKEAX
feedforward neural network, to model the fuel flamshaft and neural network models. (Measured engine output
speed of the gas turbine. This structure is basea @sult (solid), NARMAX model output (dashed), neural netwo
by Cybenco [8] who proved that a neural networkwahe model output (dashdot)). (a) IRMLBS (Inverse Repeat
hidden layer of sigmoid or hyperbolic tangent unitsMaximum Length Binary Sequence) test at &b (b)
equation (5), and an output layer of linear ursteapable IRMLBS test at 85%, (c) three-level periodic test at 58-
of approximating any continuous function. 70% Ny, (d) triangle wave + IRMLBS test at 65-8580
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C. Linearization of the Neural Network Model Az Yy = 20 Bz D) +ﬂ (12)
In order to implement the AMPC, linear models muest Y= A
extracted from a nonlinear model at each samplistant.
The coefficients of the extracted linear models dsn
calculated by the derivative of the output aga@asth input
[9]. For a two-layer feedforward neural network rabdaith

whereA(z") andB(z") are the denominator and nominator
of the linearized modelg(t) andu(t) are the current output
and input signals respectivel(t) is integrated white noise.

one hidden layer aanhunits and a linear output, %: 1 acts as a discrete integral term. Considering
-z
R & the time instant+k, the ARIX model is as follows
y(t) :ZWj tan ijk¢k (t) +wjo [+W 9)
=L k=1 AA(Z ) y(t+K) =27 B(z)Au(t +k) +e(t +K) (13)

wherewy andwj, are the weights and biases of the hidden To systematically derive a predictor, the modehdsv
layer, Wi and W, are the weights and biases of the outpueorganized by introducing the following Diophastin
layer, respectivelyyy (t) are the output and input lag terms.equation
The derivative of the output with respect to ingy{t is) 1:AA(z‘1)Ek(z‘1)+ 7k Fk(z‘l) (14)
calculated in accordance with

where E(Z%) is of degreek-1 andF(z") is of degreen,.

~ N, n, '~ = _ ) :
aa;/_(Z) :szwj{l—tanﬁlzwjkqpk(t)+ijD (10) g?s'e'f;plylng both sides of (13) byE(z") and using (14)

i=1 k=1
y(t+k)=zE (z7H)B(zH)Au(t + k)

lll. APPROXIMATEMODEL PREDICTIVE CONTROL +F (z7Yy() + E (z7h)e(t +k) (15)
AMPC is a flexible criterion based design and reegii
the linearization of a nonlinear model incorporgtanGPC.
At each sampling time, a linear model is extradtedh a
neural network model and applied to predict theurtit
process output within the prediction range. Predicutput  ¥(t +K)= G, (z 1)Au(t +k —d) + F, (z7H) y(t) (16)
depends on known past values of input and outgmats s a e )
and on the future trajectory, assuming that beymnertain Gk (Z ) =E«(z2 )B(z ") is clearly a polynomial of order
control horizon further increments in control asg@ The hy+k-1. The only unknown quantities in (16) are now the
control trajectory can be found by minimizing tlodidwing ~ future control inputs. In order to derive the cohtaw it is

If the sequence of future control inputs is knowime
minimum variance predictor foy(t+k) is the expectation
conditioned on the information gathered up to time

criterion necessary to separate these from the part of fhegsion
N containing past data
JEU®) = D [rt+k) =gt +k)]? J(t+k) =G (zH)Aut+k-d)
k=N, a7

N, A1)+ 2k [G, (zh -Gz ™hau) +F (2 ) y(t)
_1y12
+,0kZ:;[Au(t+k 1] G(zY=gy+gzt+..+g,42%F (18)

with respect to thé\, future control inputs and subject to The remaining problem is now to solve all the
the control constraint Diophantine equations. Based on Clarke al [5,6], a
method referred to as recursion of the Diophareupeation

— T
U®=[u® - ut+N,-1)] is used to solve the Diophantine equation. Ini@lihe
Au(t+k)=0, N,<ks<N,-d recursion by setting
whereN, denotes the minimum prediction horizdw, the E1(z ) =1 then Fy(z7™")=21-0A(z™" )] 19

maximum prediction horizon arid, the control horizony
is a weight factor penalizing changes in the cdritjout to
get smooth control input signals adds the system time
delay.

To remove the offset due to regular disturbancestan polynomialEy.;.
model mismatch, it is necessary to let the cordraficlude
integral action. An integrated ARX model (ARIX) &s

following due to AA being monic, so

B (z7Y) = E () +el D 27k (20)

where e**) specifies the coefficient toz* in the

Fea(z ™) =4F (27 -bAz el ] (21)
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ek+) — kK (22) instant, only the first predicted input signal frothe
k 0 ) : . .

obtained control trajectory is applied to contrbk tgas
G (z ) =Bz HE(z7h) 23) turbine engine.

=G, (zH+z Bz ) & Engine | (g [ Mimmizaton of 3|y [ Gas |
»  with rate limiter - Turbine
To derive the control law, firstly the predictorsrived [ T"™%e and saturation Engine
from (17) are expressed using the following veaimation A
~ ~ Linearized
Y=TU+® (24) NN
Predictor
where
R Jt+N,)..J(t+N,)
Y=[9t+N) Jt+Np+1) o JE+Ny)TT
V] =[Au(t) Au(t+1) .. Au(t+N,-1)]" Fig. 2. Control arrangement for the gas turbindrengsing
AMPC.

D=[P(t+N;) Ft+N,+1) .. Jt+N,)]" A Ui of AMPC for Gas Turbine Eni
_ _ _ _ . ning o or Ga rbine Engine
p(t+K) = 2 (G (271) - 9o - 12 1~ 9g 2 JAU(Y) ol - ot =as uraine Engmnes
o Tuning of AMPC is quite intuitive compared to other
+F(27)y(t) control methods. Soeterboek [10] gives an elaborate
discussion on how to tune predictive controllerbisTis

I is a matrix of dimensioifN, —d +1)x N,,:
N> )Ny widely supported by illustrative simulation studids, N,

Jdo 0 0 i Ny andp should be set as suggested in the following:
0 Minimum prediction horizorN;: It is always set to the
91 Y0 : . T
r= . 25 model time-delayd. There is no reason for choosing it
- . g_l ’ (25) smaller because thd-1 first predictions depend on past
' 90 control inputs only and cannot be affected by the &ction
| IN,-d INp-d-1 7 IN,-d-N, | u(t). On the other hand it is not recommended to oldbs

bigger since this can lead to quite unpredictalgisults
[10]. For the gas turbine, it is set to 1 (sampliegiod) and
R=[r(t+N;) r(t+Ny+1) - rt+N,)] (26) not tuned.

Maximum Prediction horizof,: A rule of thumb is that
the prediction horizon should be selected approtéipao
JtU@®)=[R-TU -] [R-TU -]+ 0 TU (27) the rise time of system [5,6]. However, often it rist

o _ possible to choose it this long because the cdlouldime

The sequeqce _of future c'on'FroI action is obtaingd brequired by AMPC is too demanding. Usually it is
setting the derivative of the criterion equal tooze empirically tuned based on actual performance. From
7] :[FTF +0l ]‘1FT(R—cD) (28) repeated experiments on the gas turbine system, the

’ maximum prediction horizon is set around 30 (sangpli

Since real processes are subject to constraintishwhperiods) for the best control performance for batrall and
limit the range and gradient of the control signalbe |arge random step changes.
following constraints need to be satisfied. Control horizonN,: Soeterboek [10] suggehL, is equal
Upin S U(E) S Upoy 0t, to the number of output lag terms.Nfis made longer, the
~ AU, <Au(t) < Au Ot (29) control performance is slightly improved and the

max max calculating time is also increased. Based to thaulsition
results, it is set to 2 (sampling periods), whishttie same
IV. " GAS TURBINE CONTROL as the number of output lag terms.

The control arrangement shown in Fig. 2 is emplayed  The control penalty factgr: The purpose of the control
enable the control of a shaft speed of the engihe.engine penalty factor is to penalize large changes inieess
throttle gives the operating point required. Duehe limit  input and reduce actuator wear. It is usual topses a
on fuel feed, saturation occurs at 440cc/s. Alsoisit constant in the range [0,1]. For the gas turbirstesy, to
necessary to employ a rate limiter in order to pré\engine achieve the best control performance, it is s€8.0.0
surge. The rising slew rate is 40éctnd the falling slew  With the AMPC variables set tN; =1, N, =30, N, =2
rate is —40ccfs A future control trajectory is generated as @nd p =0.05, the global nonlinear controller resultsttie
possible solution by the optimizer based on thediized system responses shown in Fig. 3 and 4. This idafge
models using proposed AMPC methods. At each sagiplinandom step changes (Fig. 3) and for small stemge®s

From the definitions of the vectors above and with

the cost function (11) can be written as
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(Fig. 4). The results show that a fast rise timadkieved, models exhibit slightly different dynamics, but ttesponse
with almost no overshoot, demonstrating proposethodk is offset free.

provides a near optimal performance for both sraali % @

large random step changes. ' ' ' '
(@) ,X

©
(=]
T
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T
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o o
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@
o
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. . . . . . .
15 20 25 30 35 40 45 50
Time(s)
50 1

. . . . . . . . . (b)
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(b)

Shaft Speed(%NH)
~
o

Fuel Feed(cc/s)
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e —— F_ig. 5. Performance_ of AMPC with inpqt—output
Time(s) disturbances. Set points (dashed). Gas turbine ubutp

Fig. 3. Performance of AMPC on several large randet (solid).

point changes. Set points (dashed). Gas turbinpubut

(solid). V. COMPARISONBETWEENAMPC AND GAIN SCHEDULING

PID CONTROLLERS

@ : : PID controllers were developed based on NARMAX and
neural network models for gas turbine engines using
Integral of Time Absolute Error (ITAE) performancelex
and is reported in [11]. It is shown that one sktPtD
parameters can not provide the optimal control beeaf
1 the nonlinearities of the engine. So the gain-suliegl PID
20 4 e s 10 1m0 w1  controllers are deemed essential in order to olptimal
Y control performance. To enable a comparison to hdem
- the PID parameters obtained using a neural netwmttel
are used to control the gas turbine, which is medalsing
a NARMAX model.
Initially, one set of PID parameters obtained based
neural network model and a large step change fra¥iNg,
. . . . . . . to 879N, and AMPC controllerN, =1, N, =30, N, =2 and
20 40 60 e ° 120 140 160 p =0.05) are applied to a NARMAX model. The control
performances are shown in Fig. 6 using a set dfelar
random step changes. It shows that one PID coetrislinot
suitable for controlling the random set changepgeially
B. Disturbance Rejection using AMPC for the smaller step changes, but AMPC gives a good
The performance of the predictive control schemade performance across the ranges. The resulting ITAEgu
explored in the face of disturbances. This is shawRkig. one PID controller is 2654.9, which is rather higligan
5, where an input disturbance of 100cc/s occu0atand that of using AMPC (745.3). The next comparison is
an output disturbance of 1044 takes place at 40s. The between the gain-scheduling PID controllers shown i
response shows that the scheme ensures zero seddy Table 1 and AMPC for the small step changes. Térab
error in the face of the large disturbances. Albe t performances are shown in Fig. 7. It shows thah kit
proposed method is offset free in the face of modéhem can provide the optimal control for the gabite. On
mismatch. This is demonstrated in the results sihee the basis of these results, the performance of AM®C
neural network model is used for the model prediutith  better and less affected by the model mismatch tiainof
the NARMAX model representing the real plant. T®t gain-scheduling PID for small step changes. Alsomfr

©
o

®
o
T

Shaft Speed(%NH)
[o2] ~
o o
T

3]
o
T

Fuel Feed(cc/s)

Fig. 4. Performance of AMPC on small set point gfen
Set points (dashed). Gas turbine output (solid).
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Table 1, ITAE using the gain-scheduling PID arghdly

VI. CONCLUSIONS

higher than using AMPC. So AMPC performance compare NARMAX and neural network representations were

favorably with that of gain-scheduling PID contesH.

©
o

®
o

Shaft Speed(%NH)
o ~
o o

3
=]

100
Time(s)

(b)

Fuel Feed(cc/s)

! ! ! L

20 40 60 80

L L L L L
100 120 140 160 180 200
Time(s)

Fig. 6. Performance of AMPC vs. one P(R, = 25.62 K;

= 1.68,Ky = 0) on several large random set point changes.

Set point (dashed), AMPC controlled output (solig)D
controlled output (dashdot).

identified to provide models capable of representihe
engine dynamics throughout different operating esng
These models provided the basis for the designrmbdel
predictive control. AMPC based on neural network
linearization incorporating GPC techniques was qmed,
which was applied to the gas turbine engine to robra
shaft speed of a Spey engine. The proposed method
provided the optimal performance not only for thea$
step changes but also for large random step chahdess
also been shown that the implementation can detd wi
disturbances and model mismatch. It was shown ttiet
AMPC performance is superior to that of gain-schiedu
PID controllers for the ranges examined.

AMPC as a global nonlinear controller has a smaller
computational burden to that of NMPC and avoids the
problem of local minimums. It can provide an efiof
approach to the adaptive control of the gas turbirgine.

ACKNOWLEDGMENT

This work was conducted on the data gathered at the
Defence Evaluation and Research Agency (DERA) at
Pyestock with the support of Rolls Royce plc. Théhars
would like to thank all staff involved.

REFERENCES

[1] A. Rusnak, M. Fikar, K. Najim and A. Mészard$Generalized
predictive control based neural networkBleural Process Letters
vol. 4, 1996, pp. 1107-112.

Shaft Speed(%NH)

Shaft Speed(%NH)

20

Time(s)

()

~
J

~
»
wn

~
N

20

30 40
Time(s)

Shaft Speed(%NH)

Shaft Speed(%NH)

20

30
Time(s)

(d)

]
J

©
»
)

o]
[S)

20

30
Time(s)

40

[2

(3]

[4]

(5]

(6]

Fig. 7. Performance of AMPC vs. gain-scheduling D
small set point changes. Set point (dashed), AMPE;
controlled output (solid), PID controlled output&hdot).

TABLE 1. ITAE using gain-scheduling PICKg¢ = 0) and &

AMPC across the operating range.

Set Points Gain-scheduling PID AMPC 9]

Ko Ki ITAE ITAE

52-57 22.56 2.35 14.2 8.9 [10]
62-67 23.65 4.94 15.0 8.2 (11]
72-77 28.62 5.66 10.2 8.7
82-87 39.20 7.62 14.3 9.5

C. Evans, D. Rees and A. Borrell, “Identificati of aircraft gas
turbine dynamics using frequency-domain technique3ontrol
Engineering Practicgvol. 8, no. 4, 2000, pp. 457-467.

N. Chiras, C. Evans and D. Rees, “Global nagdinmodeling of gas
turbine dynamics using NARMAX structuresRSME Journal of
Engineering and Powerol. 124, no. 4, 2002, pp. 817-826.

N. Chiras, C Evans and D. Rees, “Nonlinear gabine modeling
using feedforward neural networks®SME Turbo Expo congress
Amsterdam, Netherlands, 2002, GT-2002-30035.

D. W. Clarke, C. Mothadi and P. S. Tuffs, “Geslized predictive
control — Part I. The basic algorithmAutomatica vol. 23, no. 2,
1987a, pp. 137-148.

D. W. Clarke, C. Mothadi and P. S. Tuffs, “Gealezed predictive
control — Part Il. Extensions and interpretation&titomatica vol.
23, no. 2, 1987b, pp. 137-148.

S. A. Billings, S. Chen and M. J. Korenbergdéhtification of
MIMO nonlinear systems using a forward-regressigthagonal
estimator,”Int. J. Contro| vol. 49, no. 6, 1989, pp. 2157-2189.

G. Cybenco, “Approximation by superposition$ @ sigmoidal
function,” Mathematics of Control, Signals and Systewl. 2, no.
4, 1989, pp. 303-314.

M. Ngrgaard, O. Ravn, N. K. Poulsen and L. Kariden,Neural
Network for Modelling and Control of Dynamic Systeépringer-
Verlag, London, UK, ¥ edition; 2001.

R. SoterboekPredictive control — a unified approactiPrentice
Hall, New York, NY; 1992.

J. Mu, D. Rees, and N. Chiras, “Optimum gatheduling PID
controllers for gas turbine engines based on NARM#&X neural
network models”, ASME Turbo Expo congresétlanta, Georgia,
USA, 2003, GT-2003-38667.

5709



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP16.3
	Page0: 5704
	Page1: 5705
	Page2: 5706
	Page3: 5707
	Page4: 5708
	Page5: 5709


