
 
 

 

  
Abstract — A novel model predictive control strategy using 

instantaneous linearization of nonlinear models incorporating 
the Generalized Predictive Control (GPC) called Approximate 
Model Predictive Control (AMPC) is used to control a shaft 
speed of a gas turbine engine. This method gives advantages 
over the Nonlinear Model Predictive Control (NMPC), which 
is computationally demanding and has local minimums. The 
performance of the model based control schemes is dependent 
on the accuracy of the process model, so firstly the paper 
examines the estimation of global nonlinear gas turbine models 
using NARMAX and neural network representations. The 
performance of the proposed methods is examined using a 
range of small and large random step tests. The results 
illustrate the improvements in control performance that can be 
achieved to that of gain-scheduling PID controllers.  

I. INTRODUCTION 

Gas turbines are now extensively used in aerospace, 
marine and industrial application. With this increasing use 
in a diverse range of application, designing of controllers 
for the optimal performance is an important consideration. 
This paper deals with the nonlinear modelling and control 
between the fuel flow and shaft speed of an aircraft gas 
turbine. The work presented here is based on a Rolls Royce 
Spey Mk202 aircraft gas turbine. Although it is no longer in 
service, for the control purposes, the Spey possesses the 
same characteristics as a modern engine.     

Model Predictive Control (MPC) has been introduced 
mainly to deal with processes with complex dynamics [1] 
and now is one of the most widely used advanced control 
methods in the process control industry. MPC denotes a 
broad range of control strategies, which uses a model to 
predict future process behavior and calculate the control 
trajectory through the optimization of an objective function 
within a specified horizon.   

Model based control schemes are highly related to the 
accuracy of the process model. Recent work by Evans et al. 
[2] concentrated on testing the engine using small-
amplitude multisine signals and frequency domain 
techniques to identify linear models of high accuracy at a 
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range of different operating points. The errors due to noise 
and nonlinearities were assessed and found to be small for 
these small-signal models. The fact that the dc gains and the 
dynamics of these models change with operating points 
showed that the gas turbine is nonlinear, so the need was 
apparent for a more accurate nonlinear modelling of the gas 
turbine. The work was developed further by Chiras et al. 
[3,4] who used Nonlinear AutoRegressive Moving Average 
with eXogenous inputs (NARMAX) and neural network 
models, to represent the global dynamics of the engine. It 
was demonstrated that both models were suitable for 
representing engine dynamics throughout its operating 
range.  

Since the relationship between the fuel flow and shaft 
speed of the gas turbine is nonlinear, Nonlinear Model 
Predictive Control (NMPC) provided a possible solution to 
the control problem. This is an alternative to a gain-
scheduling PID strategy. However, NMPC involves a 
complex nonlinear programming problem. The need to use 
a simple model predictive control method is apparent. The 
proposed Approximate Model Predictive Control (AMPC) 
is based on instantaneous linearization of a nonlinear model 
at each sampling instant, thus enabling the application of 
linear model predictive control techniques. In this paper, 
Generalized Predictive Control (GPC) originally proposed 
by Clarke et al. [5,6] is applied to control the gas turbine 
engine, enabling the control trajectory to be found by direct 
analysis. The advantages of using AMPC over conventional 
nonlinear design are less computational time and the 
avoidance of the problem of local minimums.  

In this paper nonlinear gas turbine modelling using 
NARMAX and neural networks is presented. Since the 
authors did not have access to a gas turbine to implement 
the control strategy, the neural network model will be used 
for the model predictor, and the NARMAX model to 
represent the “true dynamics” of the system. The motivation 
for using two different models to design AMPC is to show 
the control robustness when model mismatch occurs. The 
control performance of a gas turbine engine using AMPC is 
examined using a wide range of small and large random 
signal tests and it is shown that the control performance of 
the AMPC is superior to that of the gain-scheduling PID 
controllers. 
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II. NONLINEAR GAS TURBINE MODELLING 

A. NARMAX Model 

In order to identify a global model, which is capable of 
representing the engine dynamics for both the small and 
large input amplitudes, Chiras et al. [3] used nonparametric 
data analysis in both time- and frequency-domains and an 
orthogonal estimation algorithm to estimate NARMAX 
models of the engine defined by the nonlinear function: 
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where F is a nonlinear function; y(t), u(t), e(t) represent the 
output, input and noise signals, respectively; and ny, nu, and 
ne are their associated maximum lags. A well-established 
procedure for structure selection of a NARMAX 
polynomial model is based on the error reduction ratio 
(ERR) defined by Billings et al. [7] as 
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where gi are auxiliary model coefficients, wi(t) are terms of 
an auxiliary model that are orthogonal over the data 
records. A forward-regression orthogonal estimation 
algorithm is employed to select at each step the term with 
the highest ERR, in other words the term which contributes 
most to the reduction of the residual variance. The 
procedure is usually stopped using an information criterion 
such as Akaike’s Information Criterion (AIC), defined as 

kpNAIC pe += ))((log 2 θσ ε                                             (3) 

where )(2
pθσ ε is the variance of the residuals associated 

with a p-term model and k is a penalizing factor. One of the 
estimated NARMAX models in (4) is validated in Fig. 1 
and proved to be suitable for both small and large signal 
tests.   

)2()1(56.27202.0

)2()1(31.3)1(0066.0

)2(2885.0)1(7206.0)(

4

5

−−−−

−−−−+

−+−=

−

−

tytye

tytuetu

tytyty

              (4)                    

B. Neural Network Model 

Chiras et al. [4] used another representation, a two-layer 
feedforward neural network, to model the fuel flow to shaft 
speed of the gas turbine. This structure is based on a result 
by Cybenco [8] who proved that a neural network with one 
hidden layer of sigmoid or hyperbolic tangent units, 
equation (5), and an output layer of linear units is capable 
of approximating any continuous function. 
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The network is described by the magnitude of the weights 
and biases, and should be determined by training the 
network on the estimation data. In this paper a Neural 
Network AutoRegressive with eXogenous inputs (NNARX) 
using past input and output terms as regressors is used to 
model the gas turbine. Parameter estimation involves the 
minimization of the sum of square errors given by 
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where θ are the model parameters, y(t) the system output, ŷ
(t) the model estimate, N the number of samples and NeZ a 

matrix known as training data given by (7), and the 

parameter estimate θ̂  is obtained by (8). 
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Chiras et al. [4] showed that a neural network with 6 
hidden layers and one linear output layer provides the best 
performance on the existing validation data shown in Fig. 1, 
and is capable of modelling both the low and high 
amplitude dynamics of the engine. Fig. 1 shows that the 
neural network model performs better than the NARMAX 
model for the small signal tests, however for large signal 
tests the NARMAX model is better. 
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Fig. 1. Outputs of validation data test based on NARMAX 
and neural network models. (Measured engine output 
(solid), NARMAX model output (dashed), neural network 
model output (dashdot)). (a) IRMLBS (Inverse Repeat 
Maximum Length Binary Sequence) test at 65%NH, (b) 
IRMLBS test at 85%NH, (c) three-level periodic test at 58-
70%NH, (d) triangle wave + IRMLBS test at 65-85%NH. 



 
 

 

C. Linearization of the Neural Network Model 

In order to implement the AMPC, linear models must be 
extracted from a nonlinear model at each sampling instant. 
The coefficients of the extracted linear models can be 
calculated by the derivative of the output against each input 
[9]. For a two-layer feedforward neural network model with 
one hidden layer of tanh units and a linear output, 
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where wjk and wj0  are the weights and biases of the hidden 
layer, Wk and W0 are the weights and biases of the output 
layer, respectively, φ k (t) are the output and input lag terms. 
The derivative of the output with respect to input )(tiϕ  is 

calculated in accordance with 
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III. A PPROXIMATE MODEL PREDICTIVE CONTROL 

AMPC is a flexible criterion based design and requires 
the linearization of a nonlinear model incorporating a GPC. 
At each sampling time, a linear model is extracted from a 
neural network model and applied to predict the future 
process output within the prediction range. Predicted output 
depends on known past values of input and output signals 
and on the future trajectory, assuming that beyond a certain 
control horizon further increments in control are zero. The 
control trajectory can be found by minimizing the following 
criterion  
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with respect to the Nu future control inputs and subject to 
the control constraint 

T
uNtututU ])1()([)( −+= L                                                                           

,0)( =+∆ ktu    dNkNu −≤≤ 2   

where N1 denotes the minimum prediction horizon, N2 the 
maximum prediction horizon and Nu the control horizon, ρ  
is a weight factor penalizing changes in the control input to 
get smooth control input signals and d is the system time 
delay. 

To remove the offset due to regular disturbances and to 
model mismatch, it is necessary to let the controller include 
integral action. An integrated ARX model (ARIX) is as 
following 
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where A(z-1) and B(z-1) are the denominator and nominator 
of the linearized models, y(t) and u(t) are the current output 
and input signals respectively. e(t) is integrated white noise. 
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 acts as a discrete integral term. Considering 

the time instant t+k, the ARIX model is as follows 
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To systematically derive a predictor, the model is now 
reorganized by introducing the following Diophantine 
equation 

)()()(1 111 −−−− +∆= zFzzEzA k
k
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where Ek(z
-1) is of degree k-1 and Fk(z

-1) is of degree na. 
Multiplying both sides of (13) by Ek(z

-1) and using (14) 
gives 
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If the sequence of future control inputs is known, the 
minimum variance predictor for y(t+k) is the expectation 
conditioned on the information gathered up to time t. 
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)()()( 111 −−− = zBzEzG kk  is clearly a polynomial of order 

nb+k-1. The only unknown quantities in (16) are now the 
future control inputs. In order to derive the control law it is 
necessary to separate these from the part of the expression 
containing past data 

)()()()]()([

)()()(ˆ
111

1

tyzFtuzGzGz

dktuzGkty

kk
dk −−−−

−

+∆−+

−+∆=+
              (17) 

kd
dk zgzggzG −

−
−− +++= ...)( 1

10
1                         (18)                             

The remaining problem is now to solve all the 
Diophantine equations. Based on Clarke et al. [5,6], a 
method referred to as recursion of the Diophantine equation 
is used to solve the Diophantine equation. Initialize the 
recursion by setting  
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where )1( +k
ke specifies the coefficient to z-k in the 

polynomial Ek+1. 
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due to A∆  being monic, so 
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To derive the control law, firstly the predictors derived 
from (17) are expressed using the following vector notation 

Φ+Γ= UY
~ˆ                                                                    (24)                                                                            
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Γ  is a matrix of dimension uNdN ×+− )1( 2 : 
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From the definitions of the vectors above and with 
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the cost function (11) can be written as 
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The sequence of future control action is obtained by 
setting the derivative of the criterion equal to zero,  
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Since real processes are subject to constraints, which 
limit the range and gradient of the control signals. The 
following constraints need to be satisfied. 
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IV.   GAS TURBINE CONTROL 

The control arrangement shown in Fig. 2 is employed to 
enable the control of a shaft speed of the engine. The engine 
throttle gives the operating point required. Due to the limit 
on fuel feed, saturation occurs at 440cc/s. Also it is 
necessary to employ a rate limiter in order to prevent engine 
surge. The rising slew rate is 40cc/s2 and the falling slew 
rate is –40cc/s2. A future control trajectory is generated as a 
possible solution by the optimizer based on the linearized 
models using proposed AMPC methods. At each sampling 

instant, only the first predicted input signal from the 
obtained control trajectory is applied to control the gas 
turbine engine.  

Fig. 2. Control arrangement for the gas turbine engine using 
AMPC. 

A. Tuning of AMPC for Gas Turbine Engines 

Tuning of AMPC is quite intuitive compared to other 
control methods. Soeterboek [10] gives an elaborate 
discussion on how to tune predictive controllers. This is 
widely supported by illustrative simulation studies. N1, N2, 
Nu and ρ  should be set as suggested in the following: 

Minimum prediction horizon N1: It is always set to the 
model time-delay d. There is no reason for choosing it 
smaller because the d-1 first predictions depend on past 
control inputs only and cannot be affected by the first action 
u(t). On the other hand it is not recommended to choose it 
bigger since this can lead to quite unpredictable results 
[10]. For the gas turbine, it is set to 1 (sampling period) and 
not tuned. 

Maximum Prediction horizon N2: A rule of thumb is that 
the prediction horizon should be selected approximately to 
the rise time of system [5,6]. However, often it is not 
possible to choose it this long because the calculation time 
required by AMPC is too demanding. Usually it is 
empirically tuned based on actual performance. From 
repeated experiments on the gas turbine system, the 
maximum prediction horizon is set around 30 (sampling 
periods) for the best control performance for both small and 
large random step changes.  

Control horizon Nu: Soeterboek [10] suggest Nu is equal 
to the number of output lag terms. If Nu is made longer, the 
control performance is slightly improved and the 
calculating time is also increased. Based to the simulation 
results, it is set to 2 (sampling periods), which is the same 
as the number of output lag terms.  

The control penalty factor ρ : The purpose of the control 
penalty factor is to penalize large changes in the process 
input and reduce actuator wear. It is usual to set ρ  as a 
constant in the range [0,1]. For the gas turbine system, to 
achieve the best control performance, it is set 0.05. 

With the AMPC variables set to N1 =1, N2 =30, Nu =2 
and ρ  =0.05, the global nonlinear controller results in the 
system responses shown in Fig. 3 and 4. This is for large 
random step changes (Fig. 3) and for small step changes 
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(Fig. 4). The results show that a fast rise time is achieved, 
with almost no overshoot, demonstrating proposed method 
provides a near optimal performance for both small and 
large random step changes. 
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Fig. 3. Performance of AMPC on several large random set 
point changes. Set points (dashed). Gas turbine output 
(solid). 
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Fig. 4. Performance of AMPC on small set point changes. 
Set points (dashed). Gas turbine output (solid). 

B. Disturbance Rejection using AMPC 

The performance of the predictive control scheme is also 
explored in the face of disturbances. This is shown in Fig. 
5, where an input disturbance of 100cc/s occurs at 30s and 
an output disturbance of 10%NH takes place at 40s. The 
response shows that the scheme ensures zero steady state 
error in the face of the large disturbances. Also the 
proposed method is offset free in the face of model 
mismatch. This is demonstrated in the results since the 
neural network model is used for the model predictor with 
the NARMAX model representing the real plant. The two 

models exhibit slightly different dynamics, but the response 
is offset free. 
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Fig. 5. Performance of AMPC with input-output 
disturbances. Set points (dashed). Gas turbine output 
(solid). 

V. COMPARISON BETWEEN AMPC AND GAIN SCHEDULING 

PID CONTROLLERS 

PID controllers were developed based on NARMAX and 
neural network models for gas turbine engines using 
Integral of Time Absolute Error (ITAE) performance index 
and is reported in [11]. It is shown that one set of PID 
parameters can not provide the optimal control because of 
the nonlinearities of the engine. So the gain-scheduling PID 
controllers are deemed essential in order to obtain optimal 
control performance. To enable a comparison to be made, 
the PID parameters obtained using a neural network model 
are used to control the gas turbine, which is modelled using 
a NARMAX model.   

Initially, one set of PID parameters obtained based on a 
neural network model and a large step change from 52%NH 
to 87%NH and AMPC controller (N1 =1, N2 =30, Nu =2 and ρ  =0.05) are applied to a NARMAX model. The control 
performances are shown in Fig. 6 using a set of large 
random step changes. It shows that one PID controller is not 
suitable for controlling the random set changes, especially 
for the smaller step changes, but AMPC gives a good 
performance across the ranges. The resulting ITAE using 
one PID controller is 2654.9, which is rather higher than 
that of using AMPC (745.3). The next comparison is 
between the gain-scheduling PID controllers shown in 
Table 1 and AMPC for the small step changes. The control 
performances are shown in Fig. 7. It shows that both of 
them can provide the optimal control for the gas turbine. On 
the basis of these results, the performance of AMPC is 
better and less affected by the model mismatch than that of 
gain-scheduling PID for small step changes. Also from 



 
 

 

Table 1, ITAE using the gain-scheduling PID are slightly 
higher than using AMPC. So AMPC performance compares 
favorably with that of gain-scheduling PID controllers. 
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Fig. 6. Performance of AMPC vs. one PID (Kp = 25.62, Ki 
= 1.68, Kd = 0) on several large random set point changes. 
Set point (dashed), AMPC controlled output (solid), PID 
controlled output (dashdot). 
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Fig. 7. Performance of AMPC vs. gain-scheduling PID on 
small set point changes. Set point (dashed), AMPC 
controlled output (solid), PID controlled output (dashdot). 
 
TABLE 1. ITAE using gain-scheduling PID (Kd = 0) and 
AMPC across the operating range. 

Gain-scheduling PID AMPC Set Points 

  Kp   Ki     ITAE    ITAE 
   52-57    22.56 2.35 14.2  8.9 
   62-67    23.65 4.94 15.0  8.2 
   72-77    28.62 5.66 10.2  8.7 
   82-87    39.20 7.62 14.3  9.5 

VI. CONCLUSIONS 

NARMAX and neural network representations were 
identified to provide models capable of representing the 
engine dynamics throughout different operating ranges. 
These models provided the basis for the design of a model 
predictive control. AMPC based on neural network 
linearization incorporating GPC techniques was presented, 
which was applied to the gas turbine engine to control a 
shaft speed of a Spey engine. The proposed method 
provided the optimal performance not only for the small 
step changes but also for large random step changes. It has 
also been shown that the implementation can deal with 
disturbances and model mismatch. It was shown that the 
AMPC performance is superior to that of gain-scheduling 
PID controllers for the ranges examined. 

AMPC as a global nonlinear controller has a smaller 
computational burden to that of NMPC and avoids the 
problem of local minimums. It can provide an efficient 
approach to the adaptive control of the gas turbine engine. 
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