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The fault detection problem in nonlinear systems

R. Martinez-Guerra, R. Garrido and A. Osorio-Mirén

Abstract—In this work high gain nonlinear observers
are used as residual generators to study the fault
detection problem in a differential algebraic framework.
We analyze the stability of the residual generator when
a fault occurs. We consider two faults types: constant
and constant sign time-varying. It is shown that under
some soft conditions over the aforementioned faults the
residual is different from zero.

[. INTRODUCTION

The high reliability required in industrial processes
has created the necessity of detecting abnormal condi-
tions while processes are operating. These conditions
are called faults and it is important to detect and to
isolate them in the early stages. A fault in a process
is considered as a not allowable deviation which
can be detected by an appropriated signal evaluation.
State observers are suitable structures to evaluate this
change. The difference between the measured outputs
of the process and the observer is the so called residual
value which is used to detect the fault. In this paper
we consider the fault detection problem with a residual
generators approach using high gain nonlinear ob-
servers in a differential algebraic framework. We study
two types of faults: constant faults and time-varying
faults with constant sign. The differential algebraic
approach allows to define the concept of algebraic
observability [3] and supplies state estimation through
observers designed for systems described by differ-
ential algebraic equations [4], [12], [10], [13], [14],
[15], [16], [17]. The paper is organized as follows.
Section 2 presents the some differential algebra basic
definitions. In Section 3, we present the observation
problem, the residual generation problem and the
residual generator stability using the Uniform Ultimate
Boundedness (UUB) theorem [2]. Section 4 presents
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two fault cases. Finally, we close the paper with some
concluding remarks.

II. BASIC DEFINITIONS

We introduce some basic definitions and notations,
further details on the differential algebraic approach
can be found in [3], [6], [11], [12], [10].

Definition 1: A differential field extension L/k is
given by two differential fields k and L, such that:
i) k is a subfield of L, ii) the derivation of k is the
restriction to k of the derivation of L.

Definition 2: A dynamics is defined as a finitely
generated differentially algebraic field extension
G/k{u) (G = k(u,&),£ € G). Any element of G sat-
isfies a differential algebraic equation with coefficients
which are rational functions over k in the components
of u and a finite number of their time derivatives,
i.e., a system with input v and output y consists of a
differential algebraic extension k(u,y)/k(u) and the
components 1, ..., y, are differentially algebraic on

Definition 3: Consider the subset {u,y}. An ele-
ment z in G is said to be algebraically observable with
respect to {u,y} if it is algebraic over k(u,y). This
means that = can be expressed as an algebraic function
of the components of {u,y} and a finite number of
their time derivatives. A dynamics G//k(u) with output
y in G is algebraically observable if and only if, any
state has this property.

Here the concept of algebraic observability means
that the differential field extension G/k(u) is alge-
braic, i.e., the whole differential information is con-
tained in k(u,y).

III. OBSERVATION PROBLEM, THE FUNDAMENTAL
PROBLEM OF RESIDUAL GENERATION AND
STABILITY

A. Observation problem

Consider the following nonlinear system in the
so called GOCF (generalized observability canonical
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form) [6], [11], [12].

éi:£i+lv I<i<n-—1
én: _LO (faua 7u(y)) (1)
y==§&

where Ly is a C! real-valued function, & =
Col (&4, ...,&,) € R", u € R™, y(t) € R, and some
integer v > 0.

Remark 1: In general, a nonlinear system
i(t) = g(x, u)
2
{ y(t) = h(e,u) ®

where x € R", u € R™, y € R, g(-,-) and h(-,-)
are polynomial functions of their arguments, may
be transformed to the GOCF described by (1) as a
consequence of the differential primitive element for
nonlinear systems [3], [6], [11], [12], [18].

System (1) may be written in compact form as

{ y=0C¢ ®

with C = (10 .. 0),a=
elements of A are given by

[ 1ifi=j-1
Aij = b _{ 0 otherwise

and

p(&a)=Col (0 .. 0 —Lo(&7) ) )

is continuously differentiable. Hence, an estimate é of
& can be given by an exponential nonlinear observer
(O) of the form

(0): &=Ab+y(ba)-s;'cTe(E-¢) ©)
where
p(&a)=Col(0 .. 0 —Lo¢m) ) (6
and Sy is the positive definite solution of [7]
So (A 4 gI> + <AT 4 gI> Sy=CTC (1)

for some 6 > 0. The coefficients of (Sp);; are given
by s

(So)ij = 91+—;]—1 (8)
where (o;;) are the entries of a symmetric positive-
definite matrix which does not depend on 6, and C =
(1,0,...,0).

Now, from (3) and (5), the estimation error dynamic
€ =& — ¢ is given by:

¢=(A—S,1CTC)e+ (e, ) 9)
where
O(e,i) = ¢ (E+ea) —p(&a)  (10)

Now, first of all, we introduce the following notations
and definitions. Denote [|z|g, = (2T Spx)'/2, being
Sp the solution to equation (7). Then, if ®(e,u) is
differentiable, we get || ®(e,u)||g, < 7 l¢lg,, for some
v > 0. In what follows, we present a result which
shows some characteristics and structural properties
of matrix (A — S, *CT0).

Lemma 1: (Ag — S;'CTC) is a Hurwitz matrix.
Furthermore, the characteristic polynomial of Ay is

PO = (A +0)".

Proof: (Sketch) Matrix (Ag)ax2 is given by

—20 1
Aa—l_ez 0] (an
and its eigenvalues are given by: A\ = Ao = —0.
For the case (Ag)3x3 we have
-30 1 0
Ag=1| —30% 0 1 (12)
-6 0 0
with eigenvalues Ay = Ao = A3 = —0.

Finally, by induction, the matrix Ay for the case n xn
is given by

i —nb 1 0 --- 0

fﬂ"m_—]—lg? 01 --- 0

_J_ﬁ_l""—]é!"—Q 93 00 --- 0
(=D (n—(n=(r—1))! gr1

(n—(rl—l))!(r—l)! ' 0 0

AO _ __n(n— ()ni(:;':ﬁnfr) or 0
n(n—1)--(n—(n—(r+1))! gr+1

IR = =) [ m 0

—nlnl) gn-2 00 - 0

—nfn1 00 --- 1

I —o" 00 0

(13)

which has the following eigenvalues:

AM=X==N= A1 =Ny = 0,
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the above means, Ay is Hurwitz matrix and characte-
ristic polynomial is given by
P(\) =det(A] — Ag) = (A +0)" |

B. Fundamental problem of residual generation

The fault detection scheme is composed of a resi-
dual generator and a fault mode rule. The residual
generator is a filter whose inputs correspond to the
inputs and outputs of the plant. And its outputs called
residual values are used for fault detection purposes.

Now, we consider a nonlinear system from (2) with
an additional fault

(14)

where z(t) € R"™ is the state vector, u(t) =
(ur(t), ...,un(t))T € U C R™ is the input vector,
v(t) € R, is a scalar function representing a system
fault. For the sake of simplicity we consider that
only one fault occurs at a given time, y(t) € R is
the measured output vector. g(x,u), and h(x,u) are
functions of class C*°. u(t) and y(t) are the system
input and output signals, respectively, and we suppose
that they are known. Function v(¢) is unknown and
arbitrary and belongs to a compact set.

In this work, we define a good input to a system
input such that the coordinate transformation is not
singular and it can carry out the system (14) into the
GOCF (3). Here, a residual generator can be defined
[8], [9] as a nonlinear dynamic system given by

2(t) = G(z,y,u)
{ "(t) = Hly,2) ()

where 2(t) € R" is the state vector, 7(t) € RP
is the output vector, v and y are the inputs system
and corresponding to input and output vectors of
(14). A residual generator must satisfy the following
conditions

Cl) If v(t) = 0 for each initial condition
(2(0), 2(0)) of the extended system (14)-(15) and for
all admissible good input wu, tlirgo r = 0. Then, in
absence of fault, r asymptotically converge to zero.

C2) If w(t) # 0 for t > t,, then r(t) # 0 for t > t,.

If the above conditions are satisfied, we then say
that r is a residual value.

C. Residual generator stability

In this part, we consider the stability analysis of the
residual generator for the system with fault 14 using
the Uniform Ultimate Stability (UUB) Theorem, given
in [2].

Lemma 2: Suppose that there exists a differential
primitive element such that it is possible to transform
system (14) into the GOCF given by

€ = AL + (¢, 1) + W (1)
y(t) = C¢
where the term W(t) = Col< 0 0 w(t) > is

the fault in the transformed system. Furthermore, the
following system:

b= ab+p(60)+ 50T (y—9)
§=Cé
r=y—y

(16)

(09 :

(17)
is an observer for (16), with Sy the gain matrix
satisfying (7) and r is the residual value. Then, the
estimation error dynamic given by
€ = Ape + P(e,u) + W (t)
r="Ce
is Uniform Ultimate Bounded, where ®(e, @) is given
in (10), Ag = (A — S, 'CTC), and € belongs to the
compact set By, = {e||le|]| < b,b>0}.
Proof:  (Sketch) Consider the following Lya-
punov function candidate for system (18):

V(t) = €' Spe >0

(18)

Taking the time derivative we have

V(t) = &'Spe+ el Spé

= el Spe — ' CTCe 4 2¢T Sy®(e, )
+2¢" SgW
For the sake of simplicity we have drop the argument
t in W (t). Since
ATSp+ SyA — CTC = —0Sy (19)

and using the fact €ZCTCe > 0, V(t) is upper
bounded as

V(t) < —0e" Spe + 2e7Sp®(E, €) + 2¢7Sy W (20)

analizing each right hand side term of inequality, using
the Cholesky decomposition for a symmetric positive-
definite matrix, the Cauchy-Schwarz inequality, and
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assuming that the fault is bounded, i.e. [|[W|g, < T,
where I > 0, it readily follows that the time derivative

V (t) remains bounded, that is to say
V(t) < =0llell§, +2v[lell§, + 20 llells, D)

Here, it is clear, that if the fault is zero i.e., W = 0, this
leads us to obtain the particular case of exponential
convergence of the high gain nonlinear observer,

V(t) < =0 lells, +27 [lells, = —(@ =27V (1)

i.e.
lells, < lle(0)]lg, e ()"

with 8 > 2v. Now, if W # 0, consider inequality (21),
then,

(22)

V() < —(0 —27) [lel3, + 2T [lells,
Using the Rayleigh-Ritz inequality
Amin (Sp) [l€ll” < llell5, < Amax(Sp) [lell”

we conclude that V(t) satisfies

V() < —(0 — 27)Mnin(So) [l€l* + 2T'/ Ammax(Sp) | el

By applying the UUB Theorem [2], it directly follows
that €(¢) is bounded uniformly for any initial state ¢(0),
and €(¢) remains in a compact set

By ={e||le] <b,0>0}

where

b:

)\max(59> 2T vV )\max(SO) >0
)\min(SO) (0 - 27>)\m1n(59>
H

In the next section we will study two fault cases:
constant fault and constant sign time-varying fault.

IV. STuDY CASES OF FAULTS
A. Constant fault case

We consider system (14) in the GOCF (16). From
Lemma 2, an observer for this system is given by (17)
with estimation error dynamics (18). First, we tackle
the constant fault case problem with a lemma related
with the existence and uniqueness of solutions of the
error dynamics (18).

Lemma 3: Consider the estimation error dynamics
(13)
€ = Age + P(e,u) + W (t)

r=Ce )

when the fault W(t) is constant, i.e. W(t) = W, =
Col ( 00 We ), |we| > 0. Then, there exists a
unique constant solution €5 ¥ ¢ € [0, 00).

Proof: The proof is split into two parts.
a) Existence. Since ® (¢, u) is differentiable, then, there
exists a solution for (23) V ¢t € [0, 00) [1].
b) Uniqueness. First, let ¢; be a solution of the
algebraic equation

Ages + P(es,u) + We =0 (24)
with
D(es, ) :coz( 0 0 —Lo(es, ) )
and defining z = € — €5, we have
2= Agz+ Apes + P(z + €5, u) + W,
From (24), we replace Ages
2=Agz+{P(z +e5,u) — Ples,u)} (25)

Consider the Lyapunov function candidate V =
2T Spz, then,

V = 2TSpz+2TSyz
= [7AF +{0(z + &, ) — D(es, W)} Sz
+27 59 [Apz + {D(2 + €5, 1) — B(es, 1)}

now, substituting Ag = (A— Sy, LOT ) and after (19),
and since z7CTCz > 0, 27'Spz = |2[|3,, as well as
(e, u) is differentiable, then we have

V< —0||213, + 2v)12l1%, = — (0 — 2v) ||213,

From which it follows that z converges exponentially
to zero for @ > 2, then, € converges to ;. [ |

Using results from Lemma 1 we establish the fol-
lowing theorem.

Theorem 4: Consider equation (24)
Apes + P(es,u) + W =0

with solution ey, [|[WW,|| > 0, and ®(e, @) is differen-
tiable, i.e.

(26)

| (e, @) < el 27)

then, the residual value rs = Ce, satisfies the follow-
ing inequality

|we| < (0" + 7/ H(0)) |rs]

where VH(0) |rs| = |||, with H(#) a positive
function for 6 > 0.

(28)
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Proof: From (26) and (13) we have obtain

€s, = €, (n0)

€s, = €g,; (ﬂg'__ll02)
€sn(n_my_1 = Esy (n(n_l)(;(;2—)7.:).!(13_(”_7“))!On(nr))

€s,_, — €5, (‘%gna

€s, = €s, (n@"il
we — Lo(es, 1) = €5,0™
(29)
T
where €; = [ €s;, €s, ‘' €5, €s, } . Then, the
norm of €z is written compactly as
les|® = H(6)eZ,
or
lesll =/ H(0) [rs| (30)
where r; = C'e; = €5, and
_ 2
HO) = [1+(00)?+ (%92) T
<n(n— Hn—=2)---(n—(n—r))!
+
(n—r)lr!
2
n—(n—r) 2 L n(n — 1) n—2
0 ) < T

+ (n&”_l) ? ]

Note that H(6) > 0 for # > 0. Now, from (29), we
have B
we — Lo(€es, 1) = €5,0™

Note that ||Lo(es, @)|| = [|®(es, @)|| < 7|/€s]|. Then
|we < 0™ |esa| + 7 [esll

and using (30) we finally obtain

|we| < (0™ 47/ H(0)) [r]

|
B. Constant sign time-varying fault case
In this case, the fault term is considered as W (t) =
W, + F(t) where W, = Col (0 0 w, ) and
F(t) = Col < 00 f@) > We assume that
W (t) satisfies the following properties:
P1) [|[W.|| > 0.

P2) 0 < [|F(t)]| < Fiax < |wc|

Theorem 5: Consider the estimation error dynamics
(18) with W (t) = W, + F(t),

€ = Age+ D(e,u) + We + F(t) (31)

Then, r is strictly greater that zero if the following
inequality is satisfied

|w6| Amax (S)

i ()
TEVID D O 7

Proof: Let us define z = € — ¢, then, from (31)
and (26) we have

z2=Agz+ O(z,u) + F(t) (33)

where we have used the fact that

D(e,u) — P(es, 1) D(z+€5,u) — P(es, @)

= (10(6 +z+ Esaﬂ) - Sp(évﬂ)
—p(§ + €5, 1) + (&, 1)

= plz+&+en)
_90(5 + €s, a)

= ®O(z,u)

The above dynamics is analyzed using the following

Lyapunov function candidate V = 27 Spz, then

V = 2TSpz+ 2TSyz
_ [zTAgT + 07 (2, 0) + FT(t)} Spz
+27 Sy [Agz + ®(z, ) + F(t)]
Using Ag = (A — S, 'CTC) and 08y + ATSy +
SpA = CTC, and since ®(z,u) is differentiable
|87 msoz| < Alalg, and [IFT@See] <
Finax||2|ls,, then, V is upper bounded as follows

Vo< —0)2l13, + 27]2l%, + 2Fmax]2]ls,
< —(0—27)|2|1%, + 2Fmax| |5,

with Amin(So) 2] < (1213, < Amax(So)llz[* we
obtain

V< —(0— 2'7))‘min(50)||2||2 +2Fmax/ Amax(Sp) |||l

(34)
By applying the UUB Theorem [2] we have that z is
bounded uniformly and converges to the compact set
Br ={z/||#|| < R} where

o )\max(59> 2Fmax
= Amin(Sa)]*/? <(9 - 27))

(35)
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then
)‘maX(Se) 2F max
i (Sa)]*/ ((0 - 27))
Now, since z = € —e¢;, then, |le — €5|| < R from which
we have |eg, | — |e1] < |e1 — €5, | < R, i.e.

Izl < R =

Irs| = R < el (36)

where we have using the fact that » = €; and r; = €47.
From (28) it follows that

lw|
S| > 37

+yvH(0)
Then, replacing (35) and (37) into (36), we get

rs| — R [ e
0" + v/ H(0)
~ Amax(Sp) 2Fnax
Amin(Sp)]*/? <(9 - QV))]
Finally, if inequality (32) is satisfied we conclude that
|r| > |rs] — R > 0. [ ]

From the above result it is clear that the constant
part W, of the fault must dominate over the time-
varying part F'(t) for a nonzero residual r.

V. CONCLUDING REMARKS

In this paper we studied the fault detection prob-
lem using a residual generator based upon a high
gain nonlinear observer obtained using a differential
algebraic approach. Stability of the residual generator
under a fault was studied. We have also considered two
faults types: constant and constant sign time-varying.
It was shown that under some mild conditions over
the aforementioned faults the residual is different from
zero. For the sake of space we left the incipient fault
case outside of this work.
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