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Abstract— A theoretical framework for formulating and im- ~ special behaviors is improved in detectability capability,
plementing model-based monitoring of discrete flow networks information management, and time response.
is discussed. Possible flows of items are described as the pgapavioral analysis of discrete event systems (DES) is an

sequence of discrete-event (DE) traces. Each trace defines the ti f h. O | t field is fail Vi
DE sequence(s) that are triggered when an entity follows a active area o researcn. Une reievant fieid IS tailure analysis,

given flow-path and visits tracking locations distributed within I which special events are identified as faults. Recently,
the monitored system. Given the set of possible discrete flows, significant attention has been given to fault analysis; see
a possible-behavior model -an interacting set of automata- for example [1,3,5-9,11]. The definition of diagnosability

is constructed, where each automaton models the discrete paseq on failure-event specifications was first introduced

flow of items at each tracking location. Event labels or . . . e .
symbols contain all the information required to unambiguously in [7]. The notion of diagnosability introduced in [7, 8]

distinguish each discrete flow. Within the possible behavior, Characterizes single time detection capability of monitoring
there is a special sub-behavior whose occurrence is required agents. Some variations to the initial definition in [7, 8]
to be detected. The special behavior may be specified by the have been proposed recently. Failure states are introduced
occurrence of routing events, such as faults. These intermittent in [11] and the notion of diagnosability is accordingly

or non-persistent events may occur repeatedly. An observation redefined. However. these methodologies are not adequate
mask is then defined, characterizing the actual observation ! ) WEVEr, gl qu

configuration available for collecting item tracking data. The in the context of discrete flow networks, where routing

analysis task is then to determine whether this observation events may occur repeatedly and need to be reported
configuration is capable of detecting the identified special repeatedly as well. In order to capture the repeatable nature
behavior. The assessment is accomplished by evaluating several special events, several efforts have been reported recently.

observability notions, such as detectability and diagnosability. The i f di . tedl ina fault
If the corresponding property is satisfied, associated formal € ISsue of diagnosing repeatedly occurring faults was

observers are constructed to perform the monitoring task at first studied in [6]. The notion of1, oc]-diagnosability is
hand. The synthesis of an optimal observation mask may introduced in [6], along with a polynomial algorithm for
also be conducted to suggest an appropriate observation checking it. However, the time complexity of the algorithm
configuration guaranteeing the detection of the special events provided in [6] for checking this notion i@(|X|6 « |2|2)

and to construct associated monitoring agents. The proposed 4 9 L L
framework, modeling methodology, and supporting techniques and O(] X[ x |X[%) for nondeterministic and deterministic

for discrete flow networks monitoring are presented and D€haviors, respectively, on the number of system states X

illustrated with an example. and the cardinality of the system event set , which severely
restricts its applicability. To improve this complexity, an
l. INTRODUCTION algorithm for checking1, oo]-diagnosability is introduced

The ability to monitor and track the flow of items orin [9] with the reduced complexity of(|X|° x |%|?) and
entities within a system in an effective, nonintrusive manne® (min(| X |5, | X |3 x |£]?)) respectively for those behaviors.
has significant implications in many critical applicationsFor the problem of designing observation configurations,
including item/material tracking (including the tracking ofefforts reported in [3-5, 10] are closely related. The problem
nuclear material and radioactive sources), item movemeaf selection of optimal set of sensors is studied in [3-5]
violation detection, operations accountability, network sethat are sufficient yet minimal. The NP-completeness of this
curity, networked manned and unmanned systems, missieansor selection problem is shown in [10]. This paper builds
planning, mission execution monitoring, operations safetypon the above efforts to introduce a methodology for de-
operations security, and nuclear safeguards. Assuring iteecting routing events in discrete flow networks. Besides the
traceability can in fact be crucial in the establishment obfverall description here provided, further technical details,
many industries (e.g., [2]). However, monitoring systemcluding formal definitions and algorithms, may be found
are seldom designed and instrumented to assure their inher{3] and [9].
ent systgm proper_t|es regarding |tem traceability. Rgther, Il. PROBLEM STATEMENT AND EXAMPLE
observational requirements are often fitted to the monitored
systems a posteriori. It is desirable to develop a behaviordt Problem Statement
analysis formalism, with associated formal methods and The objective is to monitor item/entity motions and
tools, for designing monitoring agents capable of detectindetect special behaviors within the possible behavior of
identified special behaviors. By designing for discrete flothe monitored system by analyzing observable event traces.
observability as an intrinsic system property, detection ofhe possible system behavior is divided into two mutually
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exclusive regions, namely, the special behavior of interestove sequentially to locationS; and Sy, and finally exit
(which is needed to be detected) and the ordinary behavithrough the output por©3;. Multiple in-transit items may
(which does not need detection). When the special behavibe present within the system, with no restriction on their
is specified by events, the task of behavioral analysis type. Multiple flows of items can thus exist concurrently at
to monitor the system behavior and report the occurren@ny time. To simplify the description of the methodology,
of any special event (i.e., detection), identify its type (i.e.it is assumed, without loss of generality, that each tracking
diagnosis) and count the number of occurrences. The istation has a buffer capacity of one item.

termittent or non-persistent occurrence of special events is

possible. In order to improve information management and I1l. PROPOSED METHODOLOGY

redu_ce _information cogt, the design goal is_'Fo construc_:t a The proposed approach is to first construct formal de-
monitoring observer with a detection capability that reliegcriptions of identified entity flows possible in the system,

on not only observed tracking measurements but also hservational requirements, and observational constraints.
recorded knowledge built from continuous system observgsiven these descriptions, observational configurations and

tion. associated algorithms for data integration and analysis can
B. Working Example be systematically found that optimize given observational
criteria. To formalize item flows, a model: must be
Constructed defining how system states change due to event
occurrences. To formalize observational requirements, two

Monifored System design eleme.n.ts must bg specified, ngmgly,' the set of s.p.eC|aI
r __________ - eventssS requiring detection and the intrinsic observability

(1)

To illustrate the developed methodology, the exampl
shown in Fig. 1 is used throughout this paper.

> Dy, o | property P (i.e., detectability or diagnosability) regarding
I - - > 51 —5 — % \\ | S. To formalize observational constraints, a cost functional
| 2N d N C shoulc_j be inc_luded indicating thg costs associated with
| N }ol observation device types and locations. The cost structure
N of C may be formulated as a partially ordered set or any
| // other topological ordering that better defines observational
L || » S S W R preferences and constraints. Givéh S, P, and C, the
| ©) design task is to compute an observational configuration or
I

|
: |
(n i3 | observation masR/ that guarantee® of S with respect to
1 G, while optimizingC. This maskM defines an underlying
observational configuration that specifies the locations and
types of observational devices required to assure the observ-
ability of special routing events. After a suitable observation
Fig. 1. Monitored system showing normal flows maskM has been computed, the implementation task is to
_ _ ) _ construct an observed that will guarantee thé® of S by
It consists of a monitored system with two input portsgpservingG via the observation mask/. In practice, the
I, and I, four internal stationsS;, i = 1,2,3, and 4, gpserverO is essentially an algorithm for integrating and
and three output ports);, Oz, andO3. This system may gnalyzing retrieved tracking information to report whether
represent a processing facility, a communication network, special event type has occurred.
an air-traffic region, or a battlespace. Item flow-paths are 1o proposed methodology can be summarized as fol-
specified by the sequence of input ports, internal trackingys For verification, the methodology assesses whether
stations, and output ports that should be visited by iny given observation configuration assures the observabil-
transit items. The special behavior is in-turn specified withy "¢ special behaviors within possible system behaviors.
item movements that violate normal routing requirementgsig 2 (a) jllustrates this verification capability. For design,
Three authorized routes, (1), (2), and (3) are identified ifhe methodology identifies, for each event, which attributes
Fig. 1. An item following route (i) is said to be of type heeq 10 be observed and suggests an optimal observa-

(i)- A given item flow specifies the sequence of input Ports;on configuration meeting the observational requirements.
internal tracking stations, and output ports that |tems/ent|t|q_519_ 2.(b) illustrates this design capability.

should visit under its domain. Under route (1), an item

should enter the monitored system through the input port |v. MODELING OF PARTIAL OBSERVATION
1;, move sequentially to location$;, S, and S3, and
finally exit through the output por©,. Under route (2),
an item should enter through the input pdit move to A monitoring agent (or observer) detects special be-
location S1, move to either locatiorby or Sy, and finally haviors by analyzing observable discrete qualitative changes
exit through the output por®,. Under route (3), an item called discrete events (DE). Discrete events are symbols
should enter the monitored system through the input Bort generated by observation devices (e.g., sensors) when items,
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traveling through the monitored system, visit tracking lo-

G
Item Flows

cations. The monitored system can thus be modeled as (what s
a DE system (DES), exhibiting discrete state spaces and possible) .
event-driven dynamics. Suppose that the systéno be 8 A _— ®
monitored has N tracking locations. This mod&hccounts i&e}f;‘ﬁegf —> Vef'ﬁca“O"F P
for both the ordinary (non-special) and special behavior of deeced) A Method Observability Property
the monitored system. The modeling approach is to con- of S satisfed?
struct DES model€ for each of these tracking locations oh Moo

. . servation Mask
and then derive the global modél as the composition (observational
of theseG"; i.e., G =||; G* where]| is the synchronous configuration)
composition operator. Each of these locations is in-turn (a) verification
modeled by a finite state machine (FSK) of four tuple,
G' = {X%, 24§ 28}, where X' is a finite set of states, )
¥ is a finite set of event labelg! : X* x ¥* x X' is a Observability M
transition relation on the state set, arfde X" is the initial Property Ofestato s
state of the system. The symboldenotes the silent event S \* ob(S%%al
or the empty trace. An important element in formulating A N ~7 configuration)
G is event labeling. In an item tracking application, each hemGFlows /j Method [; 0
event uniquely corresponds to a particular item movement o 4 Observer
between two tracking locations. To this end, three attributes Obsorvation Cost /. %ggggg;é

are here associated with each event symbol, hamely, source

(observational costs

location, target (current) location, and type (or flow-path). or constairts)

Accordingly, events are labeled &5 j, k), where the event
attributesi, j, andk identify the current location, previous
location, and type, respectively, associated with an item.

(b) design

Fig. 2. Proposed methodology for item-flow monitoring

B. Partial Observation

Under full observation, the cost of information may notobservation, special events fimay be observable but with
represent an important deciding factor and all moveme@n Observation symbol that is not unique undet The
attributes (i.e., item type, previous and current |ocationg)otions of detectability and diagnosability are then central in
are assumed to be observable at each tracking locatidh€ monitoring problem here addressed. Under detectability,
Implementing full observation is often prohibitive due tothe interest is in signaling the occurrence of special events
many factors including information cost, intrusiveness, adsuch as faults or route violations), but without explicitly
cessibility, covertness, and safety. Reducing informatiotdicating which routing event exactly has occurred. On the
requirements for monitoring may also lead to monitor.other hand, dlagnosablllty is a refined case of deteCtability,
ing applications with improved information management\,Nhere the interest often is in exact event identification.
reduced information cost, enhanced security, and tamperbus, diagnosis is equivalent to detection when there is
resistance characteristics. Under partial observation, sorfiBly one type of special events; i.él, = {X,}. Because
item attributes may not be observable at some trackirggtectability can be expressed as a relaxed case of diagnos-
locations. Unobservable events may cause changes in @fility, we only provide the definition of diagnosability (as
monitored system, but are not completely communicated B@rmulated in [9]) in this paper. To this end, the necessary
any observation device. To model observational limitationdlotation is presented next. For all;; € II, and a trace
an observation mask function/ : ¥ — A U {e} is s € L, let N denote the number of eventsdrthat belongs
introduced, where\ is the set of observed symbols, whicht0 the special event typE; (or i for simplicity). The post-
may be disjoint withs, with M (¢) = e. languagel/s is the set of possible suffices of a trace.e.,
L/s:={t e (X)*: st € L}. Notice that these observability
notions are inherent properties of the monitored sysfém
for given M and S.

Let &, C X, denote the set of special everfiswhich Definition 1: (Uniformly
should be detected. This sEt, is partitioned into disjoint Diagnosability [6, 9] , _ ,
sets corresponding to different types of special events. This Prefix-closed live language. is said to be uniformly
partition is denoted byll, and defined adl, = {3,; : [1, oo]-diagnosable with respect to a mask functibhand

S, = ¥4 U...US,,, ). Special events can occur repeatedly? special-event partitiofl; on X, if the following holds:

so they need to be detected repeatedly. It is assumed th@tnd € N)(Vi € IL,)(Vs € L)(Vt € L/s)[[t| > ng = Dac]
events inS are not fully-observable because otherwise ° - OO

they could be detected/diagnosed trivially. Due to partiavhereN is the set of non-negative integers and the condition
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V. OBSERVABILITY NOTIONS

A. Definitions

bounded delay) [1,oc]-



D is given by: models. To this end, the proposed methodology suggests

_ 1 i i constructing a possible-behavior model that embodies all

I Doo : (Vw G.M M(st) mL).[NW.Z N;l- L possible routes that an item may follow, including both

Definition 1 ‘is _swtable fc_)r the situation requiring thethe special and the ordinary (non-special) behaviors. The
Lg;e:te;«:]tiegeoct:qo& (:e?a%ei:)albzver:rsr.nz?riﬁ rig?arfg:.’ns ?dinary component is constructed by considering only the
1al ev D€ pe ( " {bm movements that are not required to be detected. The
eﬁegt permapently) after. the|r. initial occurrence. A pOIy'special component results from adding the set of special
npm|al aIg.o.nthm IS prowdeq in [6] fqr CheCkm@.’ ool- events of interest for detection. Thus, two types of states
diagnosability. In order to improve it, [9] provides an

lqorithm that i I order | in ti lexit can be identified, namely, ordinary and special states. From
algorithm that is ongX| order less in time complexity. .the initial (reset) state, an ordinary state is reached by

Thls algorithm was implemented in sqftwarg ar_1d used "Bvent traces containing no special events. A special state is
this paper to compute the sensor configuration IIIUStratedreached by traces containing a special event. To illustrate the
B. Computation of Member-by-Member Optimal Observaconstruction of a possible-behavior model for a monitored
tion Masks system, consider the system of Fig. 1, with the three
n(normal) item routes described. Any event belonging to
one of these routes is denoted ordinary to signify that its
Gcurrence is within the ordinary behavior of the monitored
stem. For simplicity, consider that each internal tracking

The problem of selection of an optimal mask functio
is studied in [5]. A mask function is called optimal if any
coarser selection of the equivalent class of events results 9
some loss of the events observation information so that

task at hand cannot be accomplished. This study also shofggations; has a unit capacity. The corresponding models of

that the optimal mask function selection problem is npeach tracking locationare shown in Fig. 3 and constructed

hard, in general. Assuming a mask-monotonicity propertfS follows. At each tracking location define an “empty
tate0O that indicates that there is no item in @ (stands

it then introduces two algorithms for computing an optimafS N ., X L ) .
mask function. However, these algorithms assume that'@ “ordinary”). After identifying the set of ordinary item
sensor set supporting the mask function can be alwag-gws 4; that can bring an item to location define |4;|
found, which may not be true in practice. Given the abovi!!! States, with|4;| denoting the cardinality oft;. Each
considerations, an algorithm is introduced in [3] that idU!! StatekO indicates that there is an item at locatiothat
related to the approaches presented in [4, 5]. This algorith]fived following thek € A; ordinary route. Special events
instead searches the sensor set space rather than the n%(éﬁterest also need to be included in these models. To illus-

function space. The computed sensor set induces a mdkate, consider the five additional movements labeled with
function naturally. Thus, it does not suffer from the issudn ° (for special) in Fig. 4, classified (by the observer) as
of realization of the mask function. special moves that should be detected, wWitly) denoting

a special movement of type
C. Procedure for Constructing a Observer

After computing an acceptablg/ that guarantees the Location 1 Location 2
desired observability property (i.e., detectability or diag
nosability) using the optimization algorithm of [3], ar
associated observed is constructed. The observer algo
rithm will integrate and analyze tracking information (o
measurements) and report the occurrences of special eve
To implement it, either an offline or an online desig
approach may be used for its construction. Under an offli
design approach, the deterministic automaton representa

(2,1,1)

(0, 2,2)

Location 3 Location 4

of the observer is priori constructed, which takes expo: @@

nential time and space. To overcome this computatiol Py

complexity, an online approach may be used instead [ @33 G.1.3)

Further improving [6] regarding computational complexit

an algorithm is provided in [9] that reduces not only th

space required for realizing the observer statg X}? but Note: o

also the time complexity byX| if log(|X|) ~ || SRS - focaticmiineill i eeran.crtininyaeivaituder e A i
VI. MODELING OF ITEM FLOWS Fig. 3. Finite state models of each (inside) tracking location

It is desirable to develop a modeling methodology that
enables automatic construction @f This objective can be  These events are added to each relevant mételas
accomplished if the methodology uses standard operatoshjown in Fig. 5. A staté&S denotes that there is an item of
such as the shuffle and the synchronous composition opéype k at location: after completing a special movement.
ators, to constructy from simple, readily-obtainable FSM Notice that at the moment of their occurrence, special
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Monitored System Location | Location 2

special event

(3,2,1).(4,2,1)

2,1,2)

Location 3 Location 4

Fig. 4. Monitored system showing identified special movement of event:

S e special events @R
event
e . N k(4,2,2)\ /
events may be indistinguishable from ordinary events & 3 4,
the observer, depending on tiié¢ selected for the system. / v
For example, assume that a “type” observation device i
installed at the tracking location 4 in Fig. 4. In this case,
the special eveni, 2, 2) and the ordinary eveltt., 1, 2) are
both seen with the same observation symol-, 2) at the (43,3).
observerO so indistinguishable (at the observation instant) (23,3
where— is an unique symbol indicating that no information
is available regarding the corresponding attribute. Howeve e
if the system is diagnosable w.r{t{(4,2,2)}} (and M), O For any G, state 00- location i is empty
will eventually report its occurrence. To complete the con- k0: location i is full due 1o an ordinary item arrival under flow k
. .- . . k$: location iis full dueto a special item arrival under flow k
struction of G, one additional modeling step is performed.
AS On,ly logical spec!flcatlons are C0n5|dered. helre' ,th%g. 5. Finite state models of each tracking location with both ordinary
modeling absence of time leads to severe practical implicand special behaviors
tions for the detection of logical specifications. To consider
broader applications, the notion efevent-causality may
need to be enforced. This notion limits the number ofocation (i.e., attributgj), and type (i.e., attributé) of an
system events that may occur between the occurrendégm, respectively.
of two consecutive events belonging to a given route. To To identify optimal observation configurations, the
model thisn-event-causality requirement, additional statepossible-behavior modél is constructed. The monitoring
are added to eaoi’ illustrated in Fig. 5. For example, Fig. goal P regarding the set of special evest&ind an informa-
6 shown the modified model for location 1 when enforcingdion costC criterion are also specified. Assume that event
a one-event-causality requirement. The symbpldenotes diagnosis is of interest. The sgtmay thus be partitioned as
the set of events defined for the system, excluding thodés = {X; : i = 1,...,3} with ¥, = {(4,2,1),(3,4,1)},
events defined for a given locatianAn n-event-causality X2 = {(4,2,2)}, and ;3 = {(2,3,3),(4,2,3)}. The
requirement is modeled similarly by adding n more stategrocedure described in Sections Il and V is then invoked
at each branch. to compute anM that optimizesC'. For example, Fig. 8
illustrates an observation configuration where the design
VI ILLUSTRATIVE EXAMPLES goalC is to reduce information requirements and preferably
Consider the monitored system described in Figs. dvoid using square observation devices. For this case, the
and 4. The design objective is to identify an observatiofonitoring goalP is the detectability ofS and the model
configuration)! that provides sufficient item/entity tracking ¢ considered satisfies a 2-events-casuality. Additional sim-
data to an observe© for detecting the occurrence of ylations were conducted with different designetiand O,
special events. For comparison purposes, Fig. 7 illustrategnsidering different?, C, and “»” event casuality. The
an observation configuration (from an ad hoc design) th@hbserver was always able to signal the occurrence of special
would allow an observer to immediately detect any speci@vents, with no miss-detection and no false alarms.
event after its occurrence (i.e., with zero detection delay).
Three types of observation devices are shown for retrieving Vill. CONCLUSION
item movement data. A circle, square, and triangular device A mathematical framework and associated techniques
provides the current location (i.e., attribui previous for systematically designing and implementing model-based
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Fig. 6. DE model for location 1 including possible behavior and 1-event:

causality requirement

Monitored System :
‘ - current location.

(e.g., motion sensor)

Monitored System

@ : current location.
(e.g., motion sensor)

B : previous location.
(e.g., tag sensor)

A :type

(e.g., assay sensor)

N

-
|
|

a

[]

Optimal observation configuration for detecting special events,
assuming 2-event-causality

Fig. 8.

sensitivity, and what-if analysis), guarantees mathematical
consistency and intended monitoring performance, yields
a systematic method to deal with system complexity, and

I : previous location.
(e.g., tag sensor)

30—
BV

+

A e
(e.g., assay sensor)

enables portability of system monitoring. Monitoring of
item flows can thus be efficiently implemented in many ap-
plications, including large manufacturing facilities, complex
computer networks, and dynamic battlespace operations
centers.
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Fig. 7. Observation configuration for detecting special events with zero
detection delay

(1]

monitoring of discrete flow networks was presented. The,
methodology can be used to: i) assess the intrinsic ob-
servability property (e.g., detectability and diagnosability)
of a monitored system, given the selected observatiof®
configuration and the special behavior of interest; ii) im- 4
plement model-based monitoring of discrete flow networks
using a set of observation devices that optimize specifie%]
observational criteria; and iii) construct observers that auto-
matically integrate and analyze item tracking data, formally
guaranteeing observability of special item movements. Théd
proposed methodology can thus be used to answer the
guestion of how to optimally instrument a given monitored [7]
system based on its anticipated item/entity flows and the
specified signatures or behaviors of concern. 8]

Monitoring observers use not only current but also pre-
viously observed item tracking information for decision g
making. Knowledge and observation requirements are bal-
anced for decision-making. This design and implementatio[r110
methodology opens the possibility for information man- ]
agement optimization to reduce costs, decrease intrusive-
ness, and enhance automation, for example. Furthermolg]
it provides rich analysis capability (enabling optimization,
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