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Numerical Computation of Nash Strategy for Large—Scale Systems

Hiroaki Mukaidani

Abstract—In this paper, the linear quadratic N-players been investigated in [9]. Although the recursive approach
Nash games for infinite horizon large-scale systems are dis- has the advantage that the required workspace for com-
cussed. Nash strategies are obtained by solving the Cross— iing the solution is the same as the dimension of each
coupled algebraic Riccati equations (CARE) via the numerical L .
technique. The asymptotic expansions for the CARE are newly subsystem,_lt is very hard to apply the recursive approach to
established. The main contribution in this paper is that the the generalizedv—players Nash games because the solution
linear convergence of the proposed algorithm which is based of the algorithm depends on the other solutions.
on the fixed point algorithm is proved. In order to demonstrate This paper studies the linear quadraiie-players Nash
the efficiency of the algorithm, numerical example is given for - games for the infinite horizon large—scale interconnected
the practical power systems. systems. After establishing the asymptotic structure for the
CARE, a new algorithm for solving the CARE is proposed.
It should be noted that our algorithm is based on the fixed

The linear quadratic Nash games and their applicationoint algorithm which are quite different from the recursive
have been studied widely in many literatures (see e.Galgorithm. Therefore, the computation of the algorithm is
[1]). It is well-known that in order to obtain a Nashvery simple and independent of the other solutions. As
equilibrium strategy, the cross—coupled algebraic Riccaginother important feature, it is shown that the new algorithm
equations (CARE) must be solved by means of the nihas the linear convergence property. In particular, it is worth
merical algorithm. In [2], the Newton-type algorithm for pointing out that the convergence rate of the proposed
solving the CARE has been applied. However, this researeflgorithm and its exact proof are first given. Finally, in order
has concentrated on determining feedback gain matrices @y demonstrate the efficiency of the algorithm, numerical
the 2—players Nash games. It should be noted that for ﬂ’@(ample is given for the practical power systems [7].
generalN—players Nash games, it is hard to solve flie  Notation: The notations used in this paper are fairly stan-
coupled CARE (see e.g., [3] and reference therein). Thatard. The superscrigf’ denotes matrix transposé, de-
is, when the N-players Nash games are considered vigotes then x n identity matrix. | - | denotes its Euclidean
the Newton’s method, the required workspace is needed t@rm for a matrix.detM/ denotes the determinant of the
N times of the dimension of the full-systems. Recentlymatrix M. vecM denotes the column vector of the matrix
an algorithm which is called the Lyapunov iterations forps [11]. Re\ M denotes the real part of the eigenvalue of
solving the CARE has been introduced [4]. Although thehe matrix M. @ denotes Kronecker produci;; denotes
Lyapunov iterations can be computed in the same subsystehe Kroneker delta.
dimension, there are no results for the convergence rate of
the Lyapunov iterations. In order to improve the conver- Il. PROBLEM FORMULATION
gence rate of the Lyapunov iterations, the Riccati iterations Consider the large—scale linear systems whthplayers
for solving the CARE have been proposed [5]. However, N
the proof of the convergence has not been shown. xi(t) = Auzi(t) + Biuui(t) + ¢ Z Ajjz;(t)

The control problems of the large—scale systems have j=1, j#i
been investigated extensively (see e.g., [6], [7]). These N
large—scale system situations in practice are illustrated by +e Z Biju;(t),
the multiarea power systems [7]. When thé-players J=1, j#i
Nash games are applied to such systems, the reductionz;(0) = 2% i=1, ... N, (1)
of the algebraic manipulation must be needed becaus neo )
the large-scale systems include numerous subsystems\VAS'€ %i € Rﬂ:_’ i =1, .. ,N representi-th state
popular approach to deal with the large—scale systems is tgctors-ui € R™, j = 1, ... , \V represent—th control

hierarchical technique (see e.g., [7]). In particular, a nea Inputs.s denotes a small positive weak coupling parameter

optimal controller has been proposed [7]. However, wheﬁ’h'ch po_nneg: the other fubs¥stems. Eachblplaty(;:r |sltr)gng
the coupling parameter is not small enough, it is known O minimize its own cost performance subject to (1) by

from [8] that the optimality of the cost is not guaranteedexploiting the available information to take the correct deci-

In order to avoid such drawback, theplayers Nash games sion according to the sought strategy. The cost performance
for the large—scale systems via the recursive approach he{\% each strategy subset is defined by
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where following structure is considered [8].

e Qn  eQiz - eQan e Py ePny - ePan
eQhy  €7%Qi -+ eQun ePY, el702Py ... ePpy
Qic = . . Pe = .
€Q5N EQZ;N e El_é'iN Q’LN (C:P;Z]TN €PZ€N e 51*61'N P’LN
c RTLXTL c RﬁX'FL.
Rii = Rj; >0 € R™™ ™ i=1, .., N, In the following analysis, the basic assumption is needed.
_ Assumption 2: The triples (Ai;, B, Qii), ¢ =
T . T T 1T A= 115 (R i)
2 = [T - an@®" ] R, ni= ns 1, ..., N are stabilizable and detectable.
=1
I . . I1. ASYMPTOTIC STRUCTURE OF THE CARE
The Nash equilibrium strategi€s:}, ... ,u},) are defined

Firstly, in order to obtain the strategies, the asymptotic
structure of the CARE (5) is established. Substituting the
Ji(uy, ooy wi_q, up, ulg, .., uy) matrices A., Si., Q- and P,. into the CARE (5), set-
ting e = 0 and partitioning the CARE (5), the follow-

as satisfying the following conditions

< Ji(ul, s wioq, U, Ujig, ., UN), . . Sle K
. _ 19 N 3 ing reduced—order AREs are obtained, whétg, i =
i =12 ..,N () 1."... N be the limiting solutions of the CARE (5) as
It should be noted that the following assumption guaranteés_> +0.
the existence of the admissible strategies. PyiAsi + ALPy; — PyiSiPii + Qi = 0, (6)
Assumption 1. Each player uses the linear feedback -
strategiesu; () = Ki.z(t), i = 1, ... ,N such that the WheresSi;:= BiiR; Bj;.

closed—loop system is asymptotically stable for sufficiently The limiting behavior ofP;. as the parameter — +0
smalle. Is described by the following theorem.

The optimal state strategies of the Nash games are given!eorem 1: Under Assumption 2, there exists a small
such that for alke € (0, o*) the CARE (5) admits a positive

b
Y semidefinite solution?;. which can be written as
ui(t) = —R;;'BLPix(t), i=1, ... ,N, 4) P. = Pi+0()
where P;. are the positive semidefinite solutions of the = block —diag ( e! %Py .- elT0uPp,
following N-cross—coupled algebraic Riccati equations cen glThiN oy )+0(5), ©)
(CARE) Proof: The proof can be done by using the implicit
function theorem [9] to the CARE (5). To do so, it is enough
Fi(Pre; .., Pne) to show that the corresponding Jacobian is nonsingular at
N N r e = 0. The derivative of the functiotF;(P., ... , Py.) at
=P, | A — ZSjsts + 1A — Z S;. P; P, the matrix P, is given by
= = J O vecFi(P Pu.)
Q. P, - i = vecF;(Piey - e
+P7,€SZ€PZE + Q’LE - 07 (5) 8VeCPi5 ! N
T
with N
= A, _ZSjEPjE ® I
An ey -+ eAin j=1
eAoy Az <o edon T
A = . . y N
. . +Iﬁ ® As - Zsjspjs ) (83)
eAn1 €An2 -+ AnnN j=1
617617:.8]_' 8
¢ J,“ = sz 5 ,P
gl=0%2i B, _— J dvecP;. veeFi(Pie Ne)
Bis = . y Pig = Bis . B
: S I Bie = —(8jeP)T @ I — I ® (SjePc)". (8b)
e 0N By Using the fact that
Since A. and S;. include the term of the small weak N ~
coupling parametet, the solutionP,. of the CARE (5), A — ZSjera = block — diag ( A11 — S11Pn
if it exists, must contain terms of order Taking this fact j=1 B
into account, the solutio,. of the CARE (5) with the -+ Ann —SnNPyn ) 4+ O(e)
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and S;.P,. = O(e), it can be shown, after some algebra,anol A XN:S- P® s stable. That is. the followin
that the Jacobian of the CARE (5) in the limit as— +0 € . jedje ' ' 9

. . Jj=
is given by conditions are satisfied.
i J _ N | _
L 11\.570 | lN.|efO [PY) P | = O(FH), (12a)
- . . . N
I Inile=o -+ Innl|e=o ReA |A: — > 8P| <0, k=0, 1, .. (12b)
Jo - 0 i
0 - Jo Proof: The proof of this theorem can be done by
- using mathematical induction. Whén= 0 for the iterative
where algorithms (10), taking (7) into account, it is easy to verify

that the first order approximationf3. corresponding to the

Jo = block —diag( Dy -+ Dnn ), small parametet are P;. Moreover, since

Dsi = (Ay—Siulyu)" @I, + I, @ (Ais — SiiPy)". N

Obviously, D;; := Ay — S;; Py; is nonsingular because the A — Z Sjer(f) = block — diag( Dqy
ARE (6) has the positive semidefinite stabilizing solution j=1

under Assumption 2. ThusletJ # 0, i.e.,J is nonsingular -+ Dnn )+ O(e)
at ¢ = 0. The conclusion of Theorem 1 is obtained

directly by using the implicit function theorem. On the otheiis satisfied, there exists the small perturbation paransgter
hand, taking into account the fact th&}; is the positive N © . )
semidefinite matrix, for sufficiently small parameterp,. ~ Such thatd;c — Z SjeP;.’ is stable becaus®;; is stable
. o T . ) =

is also the positive ;emldeflnltg solutlon._ The_detalled pro%r sufficiently smalle. Whenk = h, & > 1, it is assumed
can be done by using the similar technique in [12]. &

that
IV. ITERATIVE ALGORITHM FOR SOLVING h
CARE ||P1(s ) - Pi| = O(5h+1)7 (13a)
N
In order tp obFam_the optimal strategies, the following Re) | A, — ZSjan(:) <0. (13b)
useful algorithm is given. =

Theorem 2: Consider the following iterative algorithm
Subtracting (5) from (10a) and settikg= h, the following

N . . g
equations are satisfied.
P 4, - > Sje P q
Jj=1 N
N T (Pi(sh+1) - b ) A= 8Pl
+ A=Y Siep | PETY =1
=1 N g
h h+1
+P’L(Ek)SZEPz(5k) + Qie =0, k= 0,1, ..., (10a) + AE B Sjepj(a) (P’L(E - PZE)
51_6i(1k])3%‘(1k) 5Pi(f§)(k) sP{%, N .
P! 1=bi2 p\&) . P! h
Pi(sk) = c 2.12 ¢ . i2 < lIQN (10b) + Z PisSj (Pjs — Pj(g))
: , : j=1, j#i
(k)T (k)T 1-6;n p(k) N
eP: P, s gt TOIN P
1N 2N iN T Z (Pjs _ Pj(:)> S Pic
with the initial condition jil’(}j}*” “
= block — diag ( %Py - TP, Using the fact that the assumption (13a) hold, it is easy to
LN Py ). (11) derive that
N
Under Assumption 2, there exists a smaillsuch that for ( (h)) h+2
S a . P.S;. (P — P = ,
all e € (0, 5), ¢ < o* the iterative algorithm (10) _;?ﬁ =Sie \Fs Je O")
converges to the exact solution @%. with the rate of = (hj) ! " -
the linear convergence, whef&" is positive semidefinite P’ = b ) Sie (Pis - b ) = 0(*"2).
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Thus, the following relation is satisfied. 0

N ’ )
h+1 h 0
(Pi(s )—Pi) AE_ZSJEPJ'(E) s
i=1 block — diag(1 ... 1) :
N T e O
+ | A — Zsjapj(f) (Pigh/-i_l) - Pis) [ X1 X - eXan
Jj=1 é‘X,lTQ eXoy -+ eXon
LO(EH?) =0, asy Tl
r T e
Taking into account the fact that the stability assumption L eXin eXon eXnn
(13b) holds and using the standard properties of the alge- A ehp oo elan
braic Lyapunov equation (ALE) [10], it is easy to verify A ehay  Asx -+ elan
that e : : : : ’
[PLHD — P = O(+?). (16) L ehvielno e A
_ . o U el -+ elin
Furthermore, using the relation (16), it is shown that there UL  elyy --- elhy
exists the small perturbation parametgr,; such that Us = . .
N N sUilTiV eLgk e EU&N
Aie =8PV = A = 3785 + O("?) -
j=1 j=1 In order to guarantee the existence of the solution and the
N ~ convergence of the algorithm, another assumption is needed.
= A =Y S;ePj+0(e) Assumption 3: Ay, ---, Ay are stable.
J=1 Without loss of generality, it should be noted that the

is stable. Consequently, choosifg= min{co, ..., ops1} above assumption is satisfied automatically under the con-
the relation (12b) holds for alk € N. This completes dition of Theorem 2. N
the proof of Theorem 2 concerned with the fixed point 'N€ ALE (17) can be changed as follows by partition-
algorithm. m NG

It should be noted that if the coupling effect between N
sub?y(sjtems are strong, the proposed approach may not be XAy + AT X + €2 Z(XuAu + AT X))
applied.

=2

When the algebraic Lyapunov equation (ALE) (10a) is +U11 =0, (18a)
N
T
solved, the dimensiom :=» "n, larger than the dimen- Xujhjj + A Xag + XAy —eXajhy;
i1 N
sionsn;, i = 0, 1,... ,N is needed. Thus, in order to +5Z(XUAU + AL X)) +U,; =0, (18b)
reduce the dimension of the workspace, the new algorithm 1=2
for solving the ALE (10a) which is based on the fixed point Xiilii + AL X
algorithm is established. Let us consider the following ALE N
(17), in a general form. +e Y (XaAu +AfXu) + Ui =0, (18c)
1=1, I#i
Gle, X.)=XA.+ATX.+U. =0, 17
(6 Xo) = X+ A Xe 4 U ) Xijhjj + AL Xy + e(Xihij — XijA )
In particular, the following special matrices,, A. andU. N .
which are related to the ALE (17) are considered because +e Y (Xaly + AfXy) + Uy =0,
the other casé = 2, ... , N can be changed into the similar =1, I#i
form by using the similarity transformatiof, i, j=2, -+, N. (18d)
where

Taking the form of (18) into account, the algorithm (19)
for solving the ALE (17) is given.

0 I,
. ) . N
: block — diag(1 ... 1) : X1(11€+1)A11 + Aflxl(llﬂ—l) 4+ g2 Z(XSC)A“ + Allel(lk))
T = | I, 0, —
: .. : +Un =0, (19a)
0 0 XN+ AL XY + XA —ex (YA
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Consequently, the error equations (20) hold forkadt IN.
This completes the proof of Theorem 3.

[ |
twocolumn[ ]

V. NUMERICAL EXAMPLE
In order to demonstrate the efficiency of the proposed

algorithm, an illustrative example is given. Consider a
practical power systems plant which are known as the

large—scale system (1) composed of three four—dimensional

N
+e Y (X{P Ay + AR X)) + Uy = 0, (19b)
=2
XFIA, + ATXED 4 o Z PN+ AEx )
1=1, 1#i
+U; =0, (19¢)
XEDN +ATX<?“+1> e(X PN — XA
+e EZ XAy + ALX) + U =0, (199)
=1, 1#i
wherek = 0, 1, X(O) = X, X(O) = Xy, 1 <
j» Xij = X7,
Xiilii + ALX; 4+ Ui =0,i=1, ... ,N,
XA+ AL X4+ XAy + U =0, 5=2, ... ,N,

XijAjj"‘A;TFiXij—l-Uij:O, i, j=2, ---,N.

The following theorem indicates the convergence of the
algorithm (19).

Theorem 3. Under Assumption 3, the fixed point algo-
rithm (19) converges to the exact solutidf; with the rate
of

1X1Y — X11] = O(%+2), (20a)
|8 — Xi5] = O("), (20b)
i<j, i #11, k=1, 2,

Proof: The proof of Theorem 3 can be done by using
mathematical induction. Wheh = 0 for the algorithms
(19), it is easy to verify that the first order approximations
X,;; and XU corresponding to the small parameterare
X;; and XU, respectively. It follows from these equations
that

IX{Y = X11] = [X11 — Xu = 0(e?),  (21a)

1X — Xl = 1.X5; — Xij] = O(e). (21b)
Whenk = h, h > 1, it is assumed that

|X{ — Xi1] = O(+2), (22a)

|X5 — X5 = O™+, (22b)

Subtracting (18) from (19) and settitig= h, the following
equations hold.

(Xl(}fﬂ) X11)A + AT (X (hH) - X11)
+0(2M) =0, (23a)

(Xz‘(j}‘LJrl) - Xij)AJJ + AT( (h+1) Xij)
+0("?) = 0. (23b)

After the cancellation takes place, since;, ¢ =
1, 2,... ,N are stable from Assumption 3, the following
relations hold

h
|x{Y

(h+1)
|x]

(2, (24a)

- X1 =0
- X’Lj ” = O(€h+2). (24b)

subsystems [7]. The system matrices are given as follows.

0 1 —0.266  —0.009
A | 7275 278 -136 —0.037
= 0 0 0 1 ’
—495 0 —55.5 —0.039
[0.0024 0 —0.087 0.002
A, | 70185 0 111 —0.011
£A12 = 0 0 0 0 ’
| 0222 0 817  0.004
[0.073 0 —0.25 0.003
4. | 7046 0 28  —0.02
FAB=109  0 0 0 |’
10924 0 175 0.02
[0.021 0 0.121 0.003
A _ | -L1 0 —162 —0.015
S N R R 0 ’
| —243 0 137  —0.034
—021 1 —1.6 —0.005
A | L9 18 93  —0.12
2= 0 0 0 1 '
-31 0 =56 0.032
[0.06 0 0.46 0.002
A | =1 0 149 —0.04
=10 0 0 0 )
1012 0 298 —0.028
[—0.002 0 0.83 0
A — | 678 0 101 0.09
31— 0 0 0 0 ’
| 124 0 0498 —0.017
[0.011 0 0.22 0
Ay | 721 0 17T 0123
A ) B B 0o |
| —0.07 0 6.38 —0.011
[—0.197 1 —1.2 —0.003
Ao | P45 —20 701 237
33 = 0 0 0 1 '
| 34 0 —21.0 —0.017
[0 0 0
36.1 78.9 1000
B = EE Bay = 0o | B33 = 0 ,
| 0 0 0
Bij =0, i#j

The small parameter is chosenas- 0.5065. The weight-
ing matrices of the cost performance are givenRy =
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Table 1.

k |7 (0.5065)] [F®)(1.0e — 01)] [F®)(1.0e — 02)] [F®)(1.0e — 03)] [FF)(1.0e — 04)]
0 2.6662¢ + 01 5.2643 5.2643¢ — 01 5.2643¢ — 02 5.2643¢ — 03
1 8.3958 3.4809e — 01 3.3150e — 03 3.3014e — 05 3.3003e — 07
2 1.9676 1.1748¢ — 02 1.0246€ — 05 1.0105¢ — 08 3.5639¢ — 11
3 7.9849¢ — 02 9.3374e — 05 9.5683¢ — 09 2.8657e — 11

4 3.6930e — 03 3.1704e — 06 5.8256e — 11

5 4.2296¢ — 04 1.0000e — 07

6 8.1772¢ — 05 1.0304e — 09

7 1.1519¢ — 05 6.5768¢ — 11

8 8.9876¢ — 07

9 6.9238¢ — 08

10 1.7170e — 08

11 2.2137e — 09

12 1.8077e — 10

13 3.9460e — 11

Ros = R3s =1, Q1 = blockfdiag( 0.514 Ogxs ) is quite different from the existing method such as the

Q2 = Dblock — diag( O4xsa 0.514 Ogxy ) Qs = recursive approach [9]. As a result, we have succeeded in
block—diag( Osxs 0.514 ) It should be noted that improving the convergence rate dramatically because the
the algorithm (10a) converges to the exact solution witproposed algorithm has linear convergence.

accuracy of| F¥)(g)| < 1.0e—10 after13 iterations, where

REFERENCES
k — (k) (k) (k) ) !
”-7:( )(5)“ = ”]: (Pls ’ st ) P )” [1] A. W. Starr and Y. C. Ho, “Nonzero—sum differential gamelglrnal
+||f ( (k (k) )” of Optimization Theory and Applications, vol. 3, no. 3, pp.184-206,
2(Pre’s Pacs 1969.
s (pl(k ’ 2’“)7 p(k ). [2] N. J. Krikelis and Z. V. Rekasius, “On the solution of the optimal
€ €

linear control problems under conflict of intered?EE Transactions
In order to verify the exactitude of the solution, the remain-_ o Automatic Control, vol. 16, no. 2, April pp.140-147, 1971.

. . s (k) . [3] J. -W. Jang, A. Lee and N. Bedrossian, Design of robust Nash Game
der per iteration by substituting;_” into the CARE (5) is theoretic controllers with time domain constraints,phoceedings of
computed. In Table 1, the results for the erf@*) ()| per the American Control Conference, pp.5363-5368, 2003.

iterations are given. It can be seen that the algorithm (104} E:a:Y}: '-Liyaaggna%gfj‘;’ti'aﬁpgm;fgfgzgg;%'“”9 223‘1?; e@'rgie;

has the linear convergence. Table 2 show; the_result for the Riccati Equations of Zero-Sum Games, New Trends in Dynamic
effect of the residual error in the second iterations (19) to Games and Applications, Boston: Birkhauser, pp.333-351, 1994.

the convergence of the first iterations [5] G. Freiling, G. Jank and H. Abou—Kandil, “On global existence of
' solutions to coupled matrix Riccati equations in closed—loop Nash

Table 2. games,” |EEE Transactions on Automatic Control, vol. 41, no. 2,
@) pp.264-269, 1996.
k ||g(1-0€ — 02, Pls )H [6] D. D. Siljak, Large-Scale Dynamic Systems: Stability and Structure,
0 2.2640e — 02 Amsterdam: North Holland, 1978.
1 1.4673¢ — 04 [7] J.D. Delacour, M. Darwish and J. Fantin, “Control strategies for large—
: i scale power systemsfht. J. Control, vol. 27, no. 5, pp. 753-767,
2 7.4634e — 07 1978.
3 8.0243¢e — 09 [8] X. Shen, Q. Xia, M. Rao and V. Gourishankar, “Optimal control for
4 1.0138¢ — 10 large—scale systems: a recursive approabft,”J. Systems Sci., vol.
: 25, no. 12, pp. 2235-2244, 1994.
) 5.0296e — 12 [9] Z. Gajic, D. Petkovski and X. Shei§ingularly Perturbed and Weakly

. . Coupled Linear System- a Recursive Approach. Lecture Notes in
It can be also seen that the algorithm (19) has the linear control and Information Sciences, vol.140, Berlin: Springer—Verlag,

convergence. 1990. ) _

From this example point of view, it is worth pointing out [10] gészhou, Essentials of Robust Control, New Jersey: Prentice—Hall,
that even if number of _the subsystems is more th_an foyrq; 4. R. Magnus and H. Neudeckdatrix Differential Calculus with
but not three, the required workspace for calculating the Applications in Statistics and Econometrics, New York: John Wiley
strategies is the same as the dimension of the subsystemg,and Sons, 1999. . . .

. . . | H. Mukaidani, “Near—optimal Kalman filters for multiparameter
That is, even 'f. the large—scale system (1) is composed T singularly perturbed linear system$EEE Transactions on Circuits
N four-dimensional subsystems, the required workspace is and Systems I: Fundamental Theory and Applications, vol. 50, no. 5,
four. pp.717-721.

VI. CONCLUSION

In this paper, the Nash games for the large—scale systems
which are connected by the weak small coupling parameter
has been studied. The main contribution of this paper is
to propose the new algorithm for solving the large—scale
CARE. It should be noted that the proposed design method
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