
Model Predictive Control – New tools for design
and evaluation

Alberto Bemporad
Dip. Information Engineering

University of Siena
bemporad@dii.unisi.it

N. Lawrence Ricker
Department of Chemical Engineering

University of Washington
ricker@u.washington.edu

James Gareth Owen
The MathWorks, Inc.

jowen@mathworks.com

Abstract— A new version of the Model Predictive Control
Toolbox for MATLAB is described. Major improvements
include more flexible modeling of plant and disturbance char-
acteristics, and support for design and simulation involving
nonlinear (Simulink) models.

I. INTRODUCTION

Model Predictive Control (MPC) was popularized in the
1970s for control of petroleum refinery operations, which
often operate at constraints on manipulated variables (e.g.,
valve saturation) or controlled variables (e.g., maximum
catalyst temperature). Since then, MPC has become the
benchmark for complex constrained multivariable control
problems in the process industries.

Briefly, at each sampling time, – starting at the current
state – an open-loop optimal control problem is solved
over a finite horizon. At the next time step, the compu-
tation is repeated starting from the new state and over a
shifted horizon, leading to a moving horizon policy. The
solution relies on a linear dynamic model, respects specified
constraints, and optimizes a quadratic performance index.
Thus, provided that the model is accurate and a quadratic
performance index and linear inequality constraints express
true performance objectives, MPC provides near-optimal
performance.

Over the last decade, a solid theoretical foundation for
MPC has emerged so that large-scale MIMO controllers
with non-conservative stability guarantees can be designed
routinely [1]. Recent developments facilitate applications
requiring high sampling rates [2].

Software for MPC design and implementation has devel-
oped as the technology has matured. There are two “fla-
vors”: 1) tools that work in conjunction with a proprietary
real-time industrial control system such as DMCPlus 1 2)
tools intended primarily for analysis and prototyping. An
example of the latter is the MPC Toolbox for MATLAB,
which appeared in 1995 [3], and currently has over 1000
licensees worldwide. The original (V1.0) MPC Toolbox
was command-driven, difficult to use in conjunction with
nonlinear process simulations, and could not be applied
to an experimental system. This paper describes the V2.0
MPC Tools release, which provides substantial additional
capabilities and better ease-of-use.

1Trade Mark of AspenTech

Plant
model

Controlled
Variables

Manipulated Variables

Unmeasured
Disturbances

Unmeasured
disturbance

model

+ +

Unmeasured
Outputs

White
Noise

Output
disturbance

model

+

+}

}

Measured Disturbances

White
Noise

White
Noise

Measurement
noise model

Measured
Outputs

Inputs

Fig. 1. Model used for prediction, optimization, and estimation

II. MPC ALGORITHM

The core MPC Toolbox algorithm is based on a model
of the system to be controlled, a performance index driving
the selection of the decision variables, a set of constraints to
be fulfilled, and a state estimator to reconstruct the model’s
internal states.

The model used in the MPC Toolbox for prediction /
optimization, and for state estimation is depicted in Fig.1.
The model used for prediction / optimization is a sampled
linear time invariant (LTI) system, which need not be open-
loop stable, consisting of the model of the plant to be
controlled, whose inputs are the manipulated variables, the
measured disturbances, and the unmeasured disturbances,
and a model generating the unmeasured disturbances.

A. Prediction Model

The model of the plant is an LTI discrete-time system
described by the equations⎧⎨
⎩

x(k + 1) = Ax(k) + Buu(k) + Bvv(k) + Bdd(k)
ym(k) = Cmx(k) + Dvmv(k) + Ddmd(k)
yu(k) = Cux(k) + Dvuv(k) + Ddud(k) + Duuu(k)

(1)
where x(k) ∈ R

nx is the plant state, u(k) ∈ R
nu is the

vector of manipulated variables (MV), i.e., the command
inputs, v(k) ∈ R

nv is the vector of measured disturbances
(MD), d(k) ∈ R

nd is the vector of unmeasured disturbances
(UD) entering the plant, ym(k) ∈ R

nym is the vector of
measured outputs (MO), and yu(k) ∈ R

nyu is the vector
of unmeasured outputs (UO). The overall output vector
y(k) ∈ R

ny includes ym(k) and yu(k). In the above
equations d(k) includes both state disturbances (Bd �= 0)

and output disturbances (Dd �= 0). A valid plant model for
the MPC Toolbox cannot have direct feed-through of MVs
on MOs, an hypothesis satisfied in most applications. The
unmeasured disturbance d(k) is modeled as the output of
the LTI system{

xd(k + 1) = Āxd(k) + B̄nd(k)
d(k) = C̄xd(k) + D̄nd(k) (2)

System (2) is driven by the random Gaussian noise nd(k),
having zero mean and a unit covariance matrix. For in-
stance, a step-like unmeasured disturbance is modeled as
the output of an integrator.

In many practical applications, the plant model matrices
A, B, C, D are obtained by linearizing the nonlinear
dynamics {

x′ = f(x, u, v, d)
y = h(x, u, v, d) (3)

at some nominal value x = x0, u = u0, v = v0, d = d0. In
(3) x′ denotes either the time derivative (continuous time
model) or the successor x(k+1) (discrete time model). The
linearized model has an affine form⎧⎪⎪⎨
⎪⎪⎩

x′ ≈ f(x0, u0, v0, d0) + ∇xf(x − x0)
+∇uf(u − u0) + ∇vf(v − v0) + ∇df(d − d0)

y ≈ h(x0, u0, v0, d0) + ∇xh(x − x0)
+∇uh(u − u0) + ∇vh(v − v0) + ∇vh(d − d0)

(4)
where Jacobians are evaluated at x0, u0, v0, d0. The matrices
A, B, C, D of the model are readily obtained from the
Jacobian matrices appearing in (4). The linearized dynamics
are affected by the constant terms F = f(x0, u0, v0, d0) and
H = h(x0, u0, v0, d0). For this reason the MPC algorithm
internally adds a measured disturbance v = 1, so that F
and H can be embedded into Bv and Dv, respectively, as
additional columns.

B. Performance and Constraint Specifications

Assume that estimates of x(k), xd(k) are available at
time k (cf. Section II-C). The MPC control action at time
k is obtained by solving the optimization problem

min⎡
⎢⎢⎣

∆u(k|k)

...
∆u(m−1+k|k)

ε

⎤
⎥⎥⎦

p−1∑
i=0

⎛
⎝ ny∑

j=1

|wy
i+1,j [yj(k + i + 1|k)−

rj(k + i + 1)] |2 +
nu∑
j=1

|w∆u
i,j ∆uj(k + i|k)|2 +

nu∑
j=1

|wu
i,j ·

[uj(k + i|k) − utarget,j(k + i)] |2) + ρεε
2

(5a)
where the subscript “()j” denotes the jth component of a
vector, ”(k+i|k)” denotes the value predicted for time k+i
based on the information available at time k; r(k) is the

current sample of the output reference, subject to

umin
j (i) − εV u,min

j (i) ≤ uj(k + i|k) ≤
umax

j (i) + εV u,max
j (i), j = 1, . . . , nu

∆umin
j (i) − εV ∆u,min

j (i) ≤ ∆uj(k + i|k) ≤
∆umax

j (i) + εV ∆u,max
j (i), j = 1, . . . , nu

ymin
j (i) − εV y,min

j (i) ≤ yj(k + i + 1|k) ≤
ymax

j (i) + εV y,max
j (i), j = 1, . . . , ny

∆u(k + h|k) = 0
ε ≥ 0

(5b)
for all i = 0, . . . , p − 1, h = m, . . . , p, with respect to

the sequence of input increments {∆u(k|k), . . . , ∆u(m −
1+k|k)} and the slack variable ε. The MPC controller sets
u(k) = u(k − 1) + ∆u∗(k|k), where ∆u∗(k|k) is the first
element of the optimal sequence. Note that although only
the measured output vector ym(k) is fed back to the MPC
controller, r(k) is a reference for all the outputs (measured
and unmeasured).

When the reference r is not known in advance, the current
reference r(k) is used over the whole prediction horizon,
namely r(k + i + 1) ≡ r(k) in (5a). In model predictive
control, the exploitation of future references in MPC is re-
ferred to as anticipative action. A similar anticipative action
can be performed with respect to the measured disturbance
v(k), if this is known in advance. In the prediction, d(k+i)
is instead obtained by setting nd(k + i) ≡ 0 in (2).

The scalars wy
i,j , wu

i,j , w∆u
i,j are nonnegative weights for

the the corresponding variable. The smaller w, the less
important is the behavior of the corresponding variable
to the overall performance index. Instead, umin

j , umax
j ,

∆umin
j , ∆umax

j , ymin
j , ymax

j are lower/upper bounds on the
corresponding variables. In (5b), the constraints on u, ∆u,
and y are relaxed by introducing the “slack” variable ε ≥ 0.
The weight ρε penalizes the violation of the constraints.
The larger ρε with respect to input and output weights,
the more the constraint violation is penalized. The Equal
Concern for the Relaxation (ECR) vectors V u,min, V u,max,
V ∆u,min, V ∆u,max, V y,min, and V y,max have nonnegative
entries which represent the concern for relaxing the corre-
sponding constraint; the larger V , the softer the constraint.
V = 0 means that the constraint is hard and cannot be
violated. Hard output constraints may cause infeasibility
of the optimization problem (for instance, because of un-
predicted disturbances, model mismatch). By default, all
input constraints are hard, all output constraints are soft,
and ρε = 105 maxi,j{wu

i,j , w
∆u
i,j , wy

i+1,j}.
Vector utarget(k + i) is a set-point for the input vector.

One typically uses utarget if the number of inputs is greater
than the number of outputs.

As mentioned earlier, only ∆u(k|k) is actually used
to compute u(k). The remaining samples ∆u(k + i|k)
are discarded, and a new optimization problem based on
ym(k + 1) is solved at the next step, k + 1.

The algorithm implemented in the MPC Toolbox uses dif-
ferent procedures depending on the presence of constraints.

If all the bounds are infinite, then the slack variable ε is
removed, and problem (5) is solved analytically. Otherwise
a Quadratic Programming (QP) solver is used. The matrices
associated with the quadratic optimization problem are
described in [3].

C. State Estimation

As the true states x(k), xd(k) are not available to the
controller, predictions are obtained from a state estimator.
In order to provide maximum flexibility, the estimator is
based on the model depicted in Fig. 1.

1) Measurement Noise Model: We assume that the mea-
sured output vector ym(k) is corrupted by measurement
noise m(k). The measurement noise m(t) is the output of
the LTI system{

xm(k + 1) = Ãxd(k) + B̃nm(k)
m(k) = C̃xm(k) + D̃nm(k)

(6)

System (6) is driven by random Gaussian noise nm(k),
having zero mean and unit covariance matrix.

Note that the objective of the MPC controller is to
bring yu(k) and ym(k) − m(k) as close as possible to
the reference vector r(k). For this reason, the measurement
noise model producing m(k) is not needed in the prediction
model used for the optimization in (5).

2) Output Disturbance Model: In order to guarantee
asymptotic rejection of output disturbances, the overall
model is augmented by an output disturbance model. By
default, in order to reject constant disturbances due for
instance to gain nonlinearities, the output disturbance model
is a collection of integrators driven by white noise on
measured outputs. Output integrators are added according
to the following rule:

1) Measured outputs are ordered by decreasing output
weight

2) By following such order, an output integrator is added
per measured output unless there is a violation of
observability, or the corresponding output weight is
zero.

Alternatively, an arbitrary output disturbance model can be
specified.

D. State Observer

The state observer is designed to provide estimates of
x(k), xd(k), xm(k), where where x(k) is the state of
the plant model, xd(k) is the overall state of the input
and output disturbance model, xm(k) is the state of the
measurement noise model. The estimates are computed
from the measured output ym(k) by the linear state observer[

x̂(k|k)
x̂d(k|k)
x̂m(k|k)

]
=

[
x̂(k|k−1)
x̂d(k|k−1)
x̂d(k|k−1)

]
+ M [ym(k) − Cmŷ(k)][

x̂(k+1|k)
x̂d(k+1|k)
x̂m(k+1|k)

]
=

[
Ax̂(k|k)+Buu(k)+Bvv(k)+BdC̄x̂d(k|k)

Āx̂d(k|k)

Ãx̂m(k|k)

]
ym(k) = Cmx̂(k|k − 1) + Dvmv(k) +

DdmC̄x̂d(k|k − 1) + C̃x̂m(k|k − 1)

where “m” denotes the rows of C,D corresponding to
measured outputs. To prevent numerical difficulties in the
absence of unmeasured disturbances, the gain M is de-
signed using Kalman filtering techniques on the extended
model[

x(k+1)
xd(k+1)
xm(k+1)

]
=

[
A BdC̄ 0 Ā 0

0 0 Ã

] [
x(k)
xd(k)
xm(k)

]
+

[
Bu
0
0

]
u(k)

+
[

Bv
0
0

]
v(k) +

[
BdD̄ 0 Bu Bv

B̄ 0 0 0
0 B̃ 0 0

] [
nd(k)
nm(k)
nu(k)
nv(k)

]
+

ym(k) = [Cm DdmC̄ C̃]
[

x(k)
xd(k)
xm(k)

]
+ Dvmv(k)

[Ddm D̃ 0 0]

[
nd(k)
nm(k)
nu(k)
nv(k)

]
(7)

where nu(k) and nv(k) are additional unmeasured white
noise disturbances having unit covariance matrix and zero
mean, that are added on the vector of manipulated variables
and the vector of measured disturbances, respectively, to
ease the solvability of the Kalman filter design.

The overall state-space realization of the combination of
plant and disturbance models must be observable for the
state estimation design to succeed.

III. CASE STUDY: MPC SUPERVISORY CONTROL OF A

TWO STAGE THERMO-MECHANICAL PULPING PROCESS

A. Process Background

Thermo-mechanical pulping (TMP) is the most common
process in North America for producing mechanical pulp
for newsprint. Fig. 2 shows the typical process arrangement
for a two stage TMP operation. Two pressured refiners
operate in sequence. The primary refiner produces a coarse
pulp from a feed of wood chips and water. The secondary
refiner further develops the pulp bonding properties so that
it is suitable for paper making. The refiners consist of two
disks (either contra-rotating or one static and the other
rotating) with overlaid grooved surfaces. These surfaces
impact on a three phase flow of wood fibers, steam and
water that passes from the center of the refiner disks to
their periphery. The impact of the disk surfaces on the
wood fibers: i.) breaks rigid chemical and physical bonds
between them; ii.) microscopically roughens the surface of
individual fibers enabling them to mesh together on the
paper sheet. The primary objective of controlling the TMP
plant is to apply sufficient energy to derive pulp with good
physical properties without incurring excess energy costs
or fiber damage. In practice, this reduces to control of the
total electrical energy applied per mass of dry wood fibers,
i.e., the specific energy applied to the pulp. A secondary
control objective is to hold the ratio of dry mass flow rate
(fibers) to overall mass flow rate (water & fibers) (i.e.,
pulp consistency) at a desired value. The process schematic
shown in Fig. 2 illustrates the I/O for a TMP supervisory
control system:

Primary Refiner Secondary Refiner

Input 3:
Primary dilution flow

Input 5:
Secondary dilution flow

Input 1:Feeder rpm

Input 2:
Primary plate
gap set point

Input 4:
Secondary
plate gap set
point

Output constraint 1:
Primary refiner vibration monitor

Output constraint 2:
Secondary refiner vibration monitor

Controlled variable 1:
Primary consistency

Controller variable 2:
Primary motor load

Controlled variable 3:
Secondary consistency

Controller variable 4:
Secondary motor load

Fig. 2. Process schematic illustrating TMP control application

manipulated variables (5): feed rate of chips (screw
feeder rpm), dilution water flow to each of the refiners,
set points to two regulatory controllers that control the gap
between the rotating disks in each set of refiners

unmeasured disturbance inputs (2): fiber filling factor and
fiber-water filling factor

measured outputs (6): primary and secondary refiner
consistencies, primary and secondary refiner motor loads
and vibration monitor measurements on the two refiners
(included for output constraint purposes only).

The TMP process is difficult to control using the classical
multi loop method due to the interaction between the
variables [4]. For example, the following actions will cause
similar effects in differing ratios: Increasing the feed rate
increases the power applied on both refiners at constant gap
(due to the higher stresses between the refiner plates) and
elevates the pulp consistency due to increased flow rate of
bone dry mass of fibers; Closing the gap increases refiner
power due to higher stresses and elevates consistency as a
result of increased water evaporation to steam. Dilution flow
changes also cause multiple effects. Moreover, the process
is usually operated under multiple constraints: manipulated
variables are often subject to active physical constraints,
especially when the process is run close to its maximum
capacity. Depending on the ratings of the refiner motors,
there may also be active output constraints on the power
applied by each. A key issue is the need to avoid refiner
plate clash, an event that causes plate surface wear and
damages pulp fibers. In this case study, we shall assume
that plate clashing is prevented by maintaining the measured
vibration levels on each refiner (measured outputs) below
some critical value.

B. Building a Process Model from Simulink 2

The MPC toolbox requires the model used in controller
design to be affine, i.e., a linear, time-invariant (LTI) system

2The Simulink model of the TMP process shown in Fig. 3 was based
on a model provided by Sylvain Gendron at the Pulp and Paper Research
Institute of Canada (PAPRICAN). The model is available as a demo in the
MPC Toolbox or directly from the authors

Feed rpm

Pri gap set point

Pri dil flow set point

Sec. gap set point

Sec. dilution set point

Chip fiber density

Chip mixture density

Pri Vibration

Pri. consistency

Sec. vibration

Pri. motor load

Sec. consistency

Sec. motor load

TMP Refining Line

-C-

Set points
MPCmv

mo

ref

mdmdmdmdmdmdmd

MPC Controller

2

Chip mixture density

1

Chip fiber density

Fig. 3. Simulink model of the TMP control application

describing deviations from a nominal condition. A model
derived from a system identification experiment is usu-
ally affine by construction. However, models derived from
physical principles (such as the Simulink TMP process in
this case study) are frequently non-affine. Such a Simulink
model must be linearized before it can be used as the
basis for an MPC design. Conceptually this is a two step
process: The operating condition represented by x0, u0,
v0, d0 in (3) must be determined for the non linear state
equations represented by the Simulink model; The Jacobian
matrices ∇xf ,∇df ,∇uf ,∇vf describing perturbations from
that operating condition must be extracted in the form of
an LTI model. The Simulink/MPC Toolbox combination
automates these procedures.

1) Finding the operating condition: When performing
linearization, Simulink requires knowledge of the entire
Simulink model state (block interconnections prevent iso-
lation of sub-models in general). There are two ways to
specify the nominal model state: i.) Simulation to steady
state followed by extraction of the model’s terminal condi-
tions; or, ii.) Specification of target values for a subset of
the model’s variables followed by calculation of the corre-
sponding steady state. Fig. 4 shows an annotated screen shot
of the MPC Toolbox user interface displaying the nominal
input and output values determined using method (ii).

2) Plant model derivation: Once a model operating
condition has been specified, Simulink requires the user
to delineate the subsection to be linearized. If the goal
is to create a plant model for use in the MPC Toolbox,
the linearization tool needs to map each component of the
vectors u (plant input) and y (plant output) to signals in the
Simulink model.

When there is an MPC block (as depicted in Fig. 3), the
natural choice is to associate plant inputs u with the MPC
block output port and plant outputs y with the MPC block’s
’measured outputs’ port. The MPC Toolbox linearization

Nodes representing the linearized plant
model and operating condition

Nominal input/output values define the constraints
used to estimate the operating condition

Fig. 4. Linearization of a Simulink plant model connected to the MPC
block

tool assumes this correspondence. The user must manually
identify d and v inputs and unmeasured plant outputs (if
any) by tagging the signals on the block diagram.

The controller’s presence in the Simulink diagram re-
quires special handling during linearization. The MPC Tool-
box uses a newly introduced feature of the Simulink Control
Design product that automatically opens the feedback loop
during linearization. If this were not done, the numerical
perturbations introduced during linearization would deter-
mine the closed-loop system dynamics rather than the plant
dynamics.

C. Controller Design

Once the internal plant model has been defined the
remaining design decisions comprise:

i.) Characterization of each plant model input and output
signal (e.g., manipulated variable, measured disturbance,
etc.) and assignment of their nominal values. (See Fig. 4.)

ii.) Description of unmeasured and additive disturbance
characteristics. (See section II.C) In the case study we
initially accept the defaults of negligible measurement noise
and additive integrated white noise on each measured out-
put.

iii.) Assignment of horizons and weights. We assign the
two vibration outputs zero weights since their only purpose
is to represent plate clash constraints. Consequently, the ap-
plication has 5 manipulated variables (MVs) and 4 outputs
to be controlled at setpoints. The feeder rpm MV is assigned
a setpoint, representing the plant production rate. The other
MV weights are left at their defaults, i.e., a small penalty on
rate-of-change. The prediction horizon is set to 20 samples
and the control horizon to 5 samples.

iv.) Definition of input and output constraints and as-
signment of their ECR vectors. The vibration and motor
load output have upper bounds. All other outputs are
unconstrained. The MVs have hard upper and lower bounds
(ECR values are zero).

The model and detailed design specifications are available
from the authors.

D. Simulation

Simulation can be performed either in the MPC Toolbox
GUI or in Simulink using the MPC block. GUI simulation
enables rapid visualization of the effect of changing design
parameters, but is limited to linear plant models. (Mismatch
between the controller model and the plant is an option.)
Simulink enables simulation to be performed on nonlinear
plant models. When a nonlinear plant model is available, as
it is in this case study, it can be used to assess the controller
behavior under more realistic conditions. For example,
consider the effect of a change in primary motor load from
7 to 8.5 MW, which is large enough to make the first output
constrain active and cause significant nonlinear effects. Fig.
5 compares the results of a linear simulation in the GUI
with no plant/model mismatch to a nonlinear Simulink
simulation. Both predict that the controller’s attempt to
reach the higher motor load target (by closing the primary
plates) will elevate the primary vibration signal to its upper
constraint at 0.1. The oscillations (and constraint violations)
in the Simulink case are a result of prediction errors in the
controller’s linear model. Also, in the linear simulation the
primary motor load attains its new target. The nonlinear
simulation predicts that the primary load target must be
sacrificed in order to satisfy the vibration constraint. If
these results were unacceptable, the designer could easily
modify the controller specifications in the GUI and rerun
the Simulink simulation. The model obtained by the default
linearization procedure does not account for the effect of
unmeasured chip packing density disturbances, which are
the last two inputs in Fig. 1. They can be explicitly modeled
by manually assigning linearization ’input points’ to these
inputs, and then re-running the linearization step to obtain
an expanded plant model. This additional step may be war-
ranted if packing density changes are a major disturbance
source and specific information is available about the power
spectrum of such disturbances. Consider the case where the
screw feeder is fed by a rotary valve, which often introduces
random ’periodic’ packing density variation. In these cases
the power spectrum of the packing density disturbances
will concentrate in a narrow frequency range around the
rotational frequency of the rotary valve. Consequently,
an LTI model of such disturbances must include one or
more under-damped poles. If these resonant disturbance
characteristics can be accurately modeled within the MPC
controller, its state estimates will be improved, resulting in
improved disturbance rejection.

Fig. 6 shows a comparison of the closed loop control
of primary consistency with the default disturbance model

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25
Primary Vibration

di
m

en
si

on
le

ss

0 20 40 60 80 100 120
6.5

7

7.5

8

8.5

9
Primary Motor Load

M
W

0 20 40 60 80 100 120
0.34

0.35

0.36

0.37
Primary Consistency

di
m

en
si

on
le

ss

Simulink simulation

MPC GUI simulation

Region excluded by constraint

Set point

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25
Primary Vibration

di
m

en
si

on
le

ss

0 20 40 60 80 100 120
6.5

7

7.5

8

8.5

9
Primary Motor Load

M
W

0 20 40 60 80 100 120
0.34

0.35

0.36

0.37
Primary Consistency

di
m

en
si

on
le

ss

Simulink simulation

MPC GUI simulation

Region excluded by constraint

Set point

Fig. 5. Simulated reaction of primary vibration signals, load and
consistency to a primary motor load set point change

0 400 800 1200
0.3

0.32

0.34

0.36

0.38

0.4

0.42

Time: min

P
rim

ar
y

C
on

si
st

en
cy

 (
di

m
en

si
on

le
ss

)

Default disturbance model

Fiber filler model

Fig. 6. Comparison of controller performance using a custom LTI input
disturbance model versus using the default disturbance model

versus an accurate under-damped LTI model describing the
density disturbance random process. For clarity all distur-
bances were assumed to be introduced by these density
variations.

E. Implementation

Once designed, the controller can be implemented in a
real-time application in several ways. An approach suitable
for an educational environment is described in [5]. It uses
Simulink and the Data Acquisition Toolbox. Implementa-
tion as C code using MathWorks Real Time Workshop
is another possibility. Yet another is the combination of
MATLAB and the OLE for Process Control (OPC) Toolbox.
The following steps set up the connection to an OPC server
that allow the deplotment of the application from MATLAB.

1) Extract the MPC design by exporting the controller
from the MPC GUI as a MATLAB object

2) Connect to the OPC server
h = opcda(hostipaddress,ProgID);

connect(h);

3) Build one OPC group for the measured plant outputs
and another for the manipulated variables
g_measured_op = ...

addgroup(h,’Measured vars’);
additem(g_measured_op,’feedrate_rpm’);
additem(g_measured_op,’primarygap’);
... (remaining measured variables)
g_manipulated_vars = ...

addgroup(h,’Manipulated vars’);
additem(g_manipulated_vars,’primary_vib’);
additem(g_manipulated_vars,’primary_cons’);
... (remaining measured disturbances)

4) Trigger MPC execution from a clock tag on the
OPC server whose value changes each time a control
interval has elapsed.
g_timer = addgroup(h,’timeer’);
time_tag = additem(g_timer,’Time_tag’);

5) Set the ”DataChangeFcn” callback which will execute
each time the clock tag changes. The callback func-
tion ”localMPCStep” has arguments defined by the
OPC measured variable & manipulated variable OPC
groups and the MPC object representing the controller
design.
gtime.DataChangeFcn = ...

{@localMPCStep g_measured_op ...
g_manipulated_vars mpcobj};

The callback calls the MPCMOVE method of the MPC
object to re-compute target values for the manipulated
variables each step.

[manipulated_variables,thismpcstate] = ...
mpcmove(mpcobject, measured_outputs, ...
set_points,[],thismpcstate);

Measured output data is accessed in the callback by calling:

measured_outputs = g_measured_op.Item.Value;

The new manipulated variable targets are written back to
the OPC server using:

writeasync(g_manipulated_vars, ...
num2cell(manipulated_variables));

IV. CONCLUSIONS

The TMP case study illustrates the importance of test-
ing an MPC design in realistic nonlinear simulations. To
facilitate such testing, one needs automated linearization
tools and a convenient way to implement the controller in
a nonlinear system. We have also outlined one method for
implementing the final design in a real-time application.

REFERENCES

[1] S. Qin and T. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, pp. 733–
764, 2003.

[2] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[3] A. Bemporad, N. Ricker, and M. Morari, Model Predictive Control
Toolbox for Matlab. The Mathworks, Inc., 2004.

[4] R. S. Roger Evans and K. Saarinen, “Refiner control effectively ac-
complished through adaptive control,” Control Systems ’92 (Published
by IFAC and the Canadian Pulp and Paper Association), 1992.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP13.6
	Page0: 5622
	Page1: 5623
	Page2: 5624
	Page3: 5625
	Page4: 5626
	Page5: 5627

