
New Developments in Sum of Squares
Optimization and SOSTOOLS

Stephen Prajna Antonis Papachristodoulou Peter Seiler Pablo A. Parrilo

Abstract— We describe the latest additions to SOS-
TOOLS, a freely available MATLAB toolbox for formu-
lating and solving sum of squares programs. Among the
many improvements, there are native polynomial objects,
structure-exploiting techniques for sparse and structured
polynomials, new customized functions, and support for
alternative SDP solvers. We sketch some of the theory
behind the new improvements, and illustrate the new
commands using control-oriented examples.

I. I NTRODUCTION

In this paper we describe recent developments of
SOSTOOLS [1], [2], a free, third-party MATLAB1 tool-
box for solving sum of squares programs. The functions
implemented in SOSTOOLS are based on the sum of
squares decomposition of multivariate polynomials [3],
which can be efficiently computed using semidefinite
programming [4]. SOSTOOLS was the result of the
recent interest in sum of squares polynomials [5], [3],
[6], [7], [8], [9], [10], partly due to the fact that these
techniques provide convex relaxations for many com-
putationally hard problems such as global, constrained,
and Boolean optimization.

In addition to the optimization problems mentioned
above, sum of squares polynomials (and hence SOS-
TOOLS) find direct applications in many control the-
ory problems, such as nonlinear stability analysis [7],
[11], [12], robustness analysis [7], [11], [12], nonlinear
synthesis [13], and model validation [14]. Some other
areas in which SOSTOOLS is applicable are geometric
theorem proving [15] and quantum information theory
[16].

This paper covers in detail recent improvements and
additions to SOSTOOLS, the new version of which
was released in mid 2004. Besides the implementation
of new features, customized special purpose functions
and a number of new application examples have been
added in the new version. Examples will be presented
throughout the paper to illustrate the use of these new

S. Prajna and A. Papachristodoulou are with the Control and Dy-
namical Systems Dept., California Institute of Technology, Pasadena,
CA 91125, USA.
P. Seiler is with the Mechanical and Industrial Engineering Dept.,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
P. A. Parrilo is with the Automatic Control Laboratory, Swiss Federal
Institute of Technology, CH-8092 Z̈urich, Switzerland.

1A registered trademark of The MathWorks, Inc.

features, the motivation and reasons for using them, as
well as the advantages they provide.

The structure of the paper is as follows: in Section II
we describe the new polynomial objects available in
SOSTOOLS. In Sections III and IV, the improvements
in the SOS formulation for structured and multipartite
polynomials are presented, including the connections
with the so-called SOS matrices. We describe next a
few additional customized functions, such as a version of
findbound for multivariate polynomial optimization,
followed by Section VI, where we detail other additions
such as the possibility of using the SDP solver SDPT3
and the computation of rational solutions. Finally, in
Section VII we present our conclusions and outline
future developments.

II. POLYNOMIAL OBJECTS

In the original SOSTOOLS release, polynomials were
represented in MATLAB solely as symbolic objects,
using the Symbolic Math Toolbox (which is essentially
an interface to the Maple kernel). While on the one
hand this gives the user the possibility of utilizing all
the powerful routines in MATLAB’s Extended Symbolic
Toolbox and its Maple library, at the same time it
prohibits those without access to the Symbolic Toolbox
(such as those using the student edition of MATLAB)
from using SOSTOOLS. In the new SOSTOOLS re-
lease, the user now has the option of using an alternative
custom-built polynomial object, along with some basic
polynomial manipulation methods to represent and ma-
nipulate polynomials.

For this, we have integrated the Multivariate Polyno-
mial Toolbox, a freely available toolbox for construct-
ing and manipulating multivariate polynomials. In the
remainder of the section, we give a brief introduction to
the new polynomial objects in SOSTOOLS.

Polynomial variables are created with thepvar com-
mand. For example, the following command creates
three variables:

>> pvar x1 x2 x3

New polynomial objects can now be created from these
variables, and manipulated using standard addition, mul-
tiplication, and integer exponentiation functions:

>> p = x3ˆ4+5*x2+x1ˆ2

p =
x3ˆ4 + 5*x2 + x1ˆ2

Matrices of polynomials can be created from polyno-
mials using horizontal/vertical concatenation and block
diagonal augmentation, e.g.:

>> M1 = blkdiag(p,2*x2)
M1 =

[x3ˆ4 + 5*x2 + x1ˆ2 , 0]
[0 , 2*x2]

Naturally, it is also possible to build new polynomial ma-
trices from already constructed submatrices. Elements
of a polynomial matrix can be referenced and assigned
using the standard MATLAB referencing notation:

>> M1(1,2)=x1*x2
M1 =

[x3ˆ4 + 5*x2 + x1ˆ2 , x1*x2]
[0 , 2*x2]

The internal data structure for anN ×M polynomial
matrix ofV variables andT terms consists of aT×NM
sparse coefficient matrix, aT × V degree matrix, and a
V × 1 cell array of variable names. This information
can be easily accessed through the MATLAB field
accessing operators:p.coefficient , p.degmat ,
and p.varname . The access to fields uses a case
insensitive, partial-match. Thus abbreviations, such as
p.coef , can also be used to obtain the coefficients,
degrees, and variable names. A few additional operations
exist in this initial version of the toolbox such as trace,
transpose, determinant, differentiation, logical equal and
logical not equal.

The input to the SOSTOOLS commands can be
specified using either the Maple objects or the new MPT
objects. There are some minor variations in performance
depending on the degree/number of variables of the
polynomials, due the fact that the new implementation
always keeps an expanded internal representation, but
for most reasonable-sized problems the difference is
minimal.

III. POLYNOMIAL STRUCTURE

For a polynomialp(x), the complexity of computing
the sum of squares decompositionp(x) =

∑
i p2

i (x)
(or equivalently,p(x) = Z(x)T QZ(x), where Z(x)
is a vector of monomials — see [7] for details) de-
pends on two factors: the number of variables and
the degree of the polynomial. However whenp(x) has
special structural properties, the computation effort can
be notably simplified through the reduction of the size
of the semidefinite program, removal of degeneracies,
and better numerical conditioning. Since the initial ver-
sion of SOSTOOLS, Newton polytopes techniques have
been available via the optional argument’sparse’ to
the function sosineq . In the new release, we have

1 2 3 4

1

2

3

4

5

6

1 2

1

2

3

Fig. 1. Newton polytope for the polynomial in Example 1 (left), and
possible monomials in its SOS decomposition (right).

improved our support for structured polynomials, with
two kinds of structures being automatically exploited:
sparsity and bipartite structure.

The first type of simplification can be performed when
p(x) is sparse. The notion of sparseness for multivariate
polynomials is stronger than the one commonly used
for matrices. While in the matrix case this word usually
means that many coefficients are zero, in the polynomial
case the specific vanishing pattern is also taken into
account. This idea is formalized by using theNewton
polytope[17], defined as the convex hull of the set of
exponents, considered as vectors inRn. It was shown by
Reznick in [18] thatZ(x) need only contain monomials
whose squared degrees are contained in the convex hull
of the degrees of monomials inp(x). Consequently, for
sparsep(x) the size of the vectorZ(x) and matrixQ
appearing in the sum of squares decomposition can be
reduced which results in a decrease of the size of the
semidefinite program.

Example 1:This example is taken from [19]. Con-
sider the polynomialp(x, y) = 4x4y6 + x2 − xy2 + y2.
Its Newton polytope is a triangle, being the convex hull
of the points (4, 6), (2, 0), (1, 2), (2, 0); see Figure 1.
By the result mentioned above, we can always find a
SOS decomposition that contains only the monomials
(1, 0), (0, 1), (1, 1), (1, 2), (2, 3). By exploiting sparsity,
non-negativity ofp(x, y) can thus be verified by solving
a semidefinite program of size5×5 with 13 constraints.
On the other hand, when sparsity is not exploited, we
need to solve a11 × 11 semidefinite program with 32
constraints.

SOSTOOLS takes the sparse structure into account,
and computes an appropriate set of monomials for the
sum of squares decompositions. The convex hulls are
computed using either the native MATLAB command
convhulln (which is based on the software QHULL),
or the specialized external package CDD [20], developed

by K. Fukuda. Special care is taken with the case when
the set of exponents has lower affine dimension than
the number of variables (this case occurs for instance
for homogeneous polynomials, where the sum of the
degrees is equal to a constant), in which case a projection
to a lower dimensional space is performed prior to the
convex hull computation.

IV. M ULTIPARTITE POLYNOMIALS

Exploiting the structure of polynomials for which
SOS decompositions are being sought can reduce signif-
icantly the computational burden and result into better
conditioned SDPs. In this section we concentrate on
a particular structure of polynomials that appears fre-
quently in robust control theory when considering, for
instance, Lyapunov function analysis for linear systems
with parametric uncertainty (see Example 6). In this
case, the indeterminates that appear in the Lyapunov
conditions are Kronecker products of parameters (zeroth
order and higher) and state variables (second order).
This special structure should be taken into account when
constructing the vectorZ(x) used in the sum of squares
decompositionp(x) = Z(x)T QZ(x). Let us first define
what we mean by amultipartite polynomial.

Definition 2: A polynomial p(x) ∈ R[x1, . . . , xn] in∑n
i=1 mi indeterminates, wherexi = [xi1, . . . , ximi]

given by

p(x) =
∑
α

cαxα =
∑
α

cαxα1
1 xα2

2 · · · xαn
n

is termedmultipartite if for all i ≥ 2,
∑mi

k=1 αik is
constant, i.e. the monomials in all but one partition are
of homogeneousorder.
In other words, a multipartite polynomial is homogenous
when fixing any(n − 1) blocks of variables, always
including the first block. This special structure ofp(x)
can be taken into account through its Newton polytope.
It has been argued in an earlier section that when consid-
ering the SOS decomposition of a sparse polynomial (in
which many of the coefficientscα are zero), the nonzero
monomials inZ(x) = [xβ] are the ones for which2β
belongs to the convex hull of the degreesα [18]. What
distinguishes this case from the general one, is that the
Newton polytope ofp(x) is the Cartesian productof
the individual Newton polytopes corresponding to the
blocks of variables. Hence, the convex hull should only
be computed for the individualαi, which significantly
reduces the complexity and avoids ill-conditioning in
the computation of a degenerate convex hull in a higher
dimensional space.

A specific kind of multipartite polynomials important
in practice is the one that appears when consideringsum
of squares matrices. These are matrices with polynomial

entries that are positive semi-definite for every value of
the indeterminates.

Definition 3: Let S ∈ R[x]m×m be a symmetric
matrix, andy = [y1, . . . , ym] be new indeterminates.
The matrixS is a sum of squares (SOS) matrixif the
bipartite scalar polynomialyT Sy is a sum of squares in
R[x, y].

Let us give an example.
Example 4: [21] Consider the matrixS ∈ R[x]2×2

given by:

S =
[

x2 − 2x + 2 x
x x2

]
.

This is a SOS matrix, since

yT Sy =




y1

xy1

y2

xy2




T 


2 −1 0 1
−1 1 0 0
0 0 0 0
1 0 0 1







y1

xy1

y2

xy2




= (y1 + xy2)2 + (xy1 − y1)2.
Note that SOS matrices for whichn = 1, i.e. S ∈

R[x]m×m, are positive semidefinite for all realx if
and only if they are SOS matrices; this is because the
resulting polynomial will be second order iny and
will only contain one variablex; the resulting positive
semidefinite biform is always a sum of squares [22].

In this manner a SOS matrix in several variables can
be converted to a SOS polynomial, whose decomposition
is computed using semidefinite programming. Because
of the bipartite structure, only monomials in the form
xk

i yj will appear in the vectorZ, as mentioned earlier.
The new release of SOSTOOLS handles this special

case of polynomials as follows. When an SOS con-
dition of the above structure is added to an existing
sosprogram , the various parts of the multipartite
polynomialp(x) are declared:

>> prog = sosineq(prog,p,...
’sparsemultipartite’,...

{[x1,x2,x3],[y1,y2,y3]});
where inside the curly brackets are the sets of variables
that form the multipartite polynomial.

In particular, the polynomial in Example 4 can be
handled as follows:

>> syms x y1 y2 real;
>> S = [xˆ2-2*x+2 , x ; x, xˆ2];
>> y = [y1 ; y2];
>> p = y’ * S * y ;
>> prog = sosprogram([x,y1,y2]);
>> prog = sosineq(prog,p,...

’sparsemultipartite’,{[x],[y1,y2]});
>> prog = sossolve(prog);

Future versions ofsosineq will handle directly SOS
matrix constraints.

(m, n, d) Without multipartite option With multipartite option

(3, 2, 2) 15× 15, 90 constraints 9× 9, 36 constraints
(4, 2, 2) 21× 21, 161 constraints 12× 12, 60 constraints
(3, 3, 2) 21× 21, 161 constraints 12× 12, 60 constraints
(4, 3, 2) 28× 28, 266 constraints 16× 16, 100 constraints
(3, 2, 4) 35× 35, 279 constraints 18× 18, 90 constraints
(4, 2, 4) 53× 53, 573 constraints 24× 24, 150 constraints
(3, 3, 4) 59× 59, 647 constraints 30× 30, 210 constraints
(4, 3, 4) 84× 84, 1210 constraints 40× 40, 350 constraints

TABLE I

SIZE OF THE SEMIDEFINITE PROGRAMS INEXAMPLE 5.

Example 5:To illustrate the benefit of using the
multipartite option, consider the problem of checking
whether a polynomial matrix inequality

F (x) = FT (x) º 0 ∀x ∈ Rn

holds, whereF ∈ R[x]m×m. A sufficient test for positive
semidefiniteness ofF (x) is obtained by showing that
the bipartite polynomialyT F (x)y is a sum of squares
(equivalently, showing thatF (x) is a SOS matrix). We
denote the degree ofF by d. For various values of
(m,n, d), the sizes of the resulting semidefinite pro-
grams are depicted in Table I.

We conclude this section with a control-oriented
example that illustrates an application of multipartite
polynomials in stability analysis.

Example 6:Consider the following system:

d

dt




x1

x2

x3


 =




−p1 1 −1
2− 2p2 2 −1

3 1 −p1p2







x1

x2

x3




where p1 and p2 are parameters. The region in the
parameter space (p1, p2) for which stability is retained is
shown in Figure 2. Nominal operating conditions for this
system arep1 ∈ [1.7, 3.7] and p2 ∈ [5, 9]. We capture
this parameter set by constructing two inequalities:

a1 , (p1 − 2.7 + κ1)(p1 − 2.7− κ1) ≤ 0
a2 , (p2 − 7 + κ2)(p1 − 7− κ2) ≤ 0,

where κ1 and κ2 are parameters. We want to check
the stability of this system by constructing a Lyapunov
function. We look for a certificate of the formV (x; p)
that is bipartite: quadratic in the statex and any order in
p. The two Lyapunov conditions can be converted into
sufficient SOS conditions as follows:

V (x; p)− ε1‖x‖2 +
2∑

i=1

q1i(x; p)ai is SOS,

− V̇ (x; p)− ε2‖x‖2 +
2∑

i=1

q2i(x; p)ai is SOS,

where εi ≥ 0.1 and q1i and q2i are bipartite sums of
squares, quadratic inx and of appropriate order inp.

0 1 2 3 4 5 6 7 8 9
2

3

4

5

6

7

8

9

10

p
1

p 2

Parameter region and stability certificates

V independent of p
V affine in p
V second order in p
Stability region

Fig. 2. The full stability region (shaded) and the regions for which
stability can be proven by constructing bipartite Lyapunov functions.
Bigger regions require higher order certificates, which nonetheless can
be easily computed because of their structure.

When the Lyapunov function is not a function ofp, we
can prove stability forκ1 = 0.51 andκ2 = 0.53. When
V is affine inp, then we can prove stability forκ1 = 1
andκ2 = 1.84. When it is quadratic inp, we can prove
stability for the full region of interest, i.e.κ1 = 1 and
κ2 = 2. In this case if the bipartite structure of the
conditions is not taken into account then the dimension
of the vectorZ required to represent a non-structured
V (x; p) is 279; taking into account the bipartite structure
this number is reduced to 90.

V. CONSTRAINED OPTIMIZATION

Besides its general facilities for SOS optimization,
SOSTOOLS includes several “ready-made” customized
functions, that solve specific problems directly, by in-
ternally reformulating them as SOS programs. In the
new version, these customized functions have been up-
dated and several new capabilities have been added. For
instance, the customized functionfindbound , which
previously could only handle unconstrained global poly-
nomial optimization problems, can now be used to solve
constrained polynomial optimization problems of the
form:

minimize f(x)
subject togi(x) ≥ 0, i = 1, ..., M

hj(x) = 0, j = 1, ..., N.

A lower bound for f(x) can be computed using
Positivstellensatz-based relaxations. Assume that there
exists a set of sums of squaresσj(x)’s, and a set of

polynomialsλi(x)’s, such that

f(x)− γ = σ0(x) +
∑

j

λj(x)hj(x) +
∑

i

σi(x)gi(x)+

+
∑

i1,i2

σi1,i2(x)gi1(x)gi2(x) + · · · (1)

then it follows thatγ is a lower bound for the constrained
optimization problem stated above. This specific kind
of representation corresponds to Schmüdgen’s theorem
[23]. By maximizing γ, we can obtain a lower bound
that becomes increasingly tighter as the degree of the
expression (1) is increased.

As an example, consider the problem of minimizing
x1 + x2, subject tox1 ≥ 0, x2 ≥ 0.5, x2

1 + x2
2 =

1, x2 − x2
1 − 0.5 = 0. A lower bound for this problem

can be computed using SOSTOOLS as follows:

>> syms x1 x2;
>> degree = 4;
>> [gam,vars,opt] = findbound(x1+x2,

[x1, x2-0.5],
[x1ˆ2+x2ˆ2-1, x2-x1ˆ2-0.5],
degree);

In the above command,degree is the desired de-
gree for the expression (1). The functionfindbound
will automatically form the productsgi1(x)gi2(x),
gi1(x)gi2(x)gi3(x) and so on; and then construct the
sum of squares and polynomial multiplierσ(x)’s,
λ(x)’s, such that the degree of the whole expression
is no greater thandegree . For this example, a lower
bound of the optimization problem isgam= 1.3911
corresponding to the optimal solutionx1 = 0.5682,
x2 = 0.8229, which can be extracted from the output
argumentopt .

VI. A DDITIONAL CHANGES

Several other minor improvements to SOSTOOLS
have been added for the current release. Some of them
are described below.

SDPT3 support: Besides SeDuMi [24], SOS-
TOOLS now additionally supports the SDP software
package SDPT3 [25], written by Toh, Tütünc̈u and
Todd. SDPT3 is a robust high-quality solver that runs
under MATLAB, and uses an infeasible path-following
algorithm. It is also quite fast, and for certain instances
it is considerably faster than SeDuMi.

Rational solutions:For certain applications, it is
particularly important to ensure that the SOS decom-
position found numerically by SDP methods actually
corresponds to a true solution, and is not the result of
roundoff errors. This is specially true in the case of ill-
conditioned problems, since SDP solvers can sometimes
produce in this case unreliable results. There are several
ways of doing this, for instance using backwards error

analysis, or by computing rational solutions, that we
can fully verify symbolically. Towards this end, we have
incorporated an experimental option to round to rational
numbers a candidate floating point SDP solution, in
such a way to produce an exact SOS representation
of the input polynomial (which should have integer or
rational coefficients). The procedure will succeed if the
computed solution is “well-centered,” far away from the
boundary of the feasible set; the details of the rounding
procedure will be explained elsewhere.

Currently, this facility is available only through the
customized functionfindsos , by giving an additional
input argument‘rational’ . On future releases, we
may extend this to more general SOS program formu-
lations. We illustrate its usage below.

Example 7:Consider again the polynomial from Ex-
ample 1. Running

>> P = 4*xˆ4*yˆ6+xˆ2-x*yˆ2+yˆ2;
>> [Q,Z]=findsos(P,’rational’);

we obtain the rational represention forp(x, y) given by




y
x
xy
xy2

x2y3




T 


1 0 − 1
2

0 −1
0 1 0 −1 0

− 1
2

0 2 0 0
0 −1 0 2 0

−1 0 0 0 4







y
x
xy
xy2

x2y3




T

,

where the matrix is given byQ, andZ is the vector of
monomials. Notice that the monomials inZ are exactly
the ones computed earlier in Example 1.

VII. F UTURE IMPROVEMENTS AND CONCLUSIONS

Future improvements to SOSTOOLS, already par-
tially implemented, will incorporate symmetry reduction
and SOS over quotients. These are described briefly
below.

Symmetries:Another kind of simplification can
be applied when there is a discrete symmetry in the
problem, i.e., when the polynomialp(x) is invariant
under the action of a finite group onx. In this case,
linear representation theory [26] can be used to find
a coordinate change which transforms the semidefinite
program associated with the computation of a sum of
squares decomposition into a set of coupled smaller
semidefinite programs [21]. An alternative viewpoint
also developed in [21] is based on invariant theory [27].
In this approach, the computation of a sum of squares
decomposition is performed using only elements in the
invariant ring, which also has a side benefit since in
many cases symmetric problems are expressed already
in terms of the invariants.

Equality constraints: One application of sum of
squares programming is combinatorial optimization, for
example 0–1 programming. For such problems and

many others, the underlying algebraic variety is zero-
dimensional, as the independent variablex has to satisfy
n given equalities of the formhi(x) = xi(xi − 1) = 0,
for i = 1, ..., n. Then the sum of squares expressions
can be replaced by their remainders modulo the ideal
I generated by thehi(x)’s [28]. This also reduces
the size of the semidefinite program, as the sum of
squares expressions are now elements in the quotient
ring R[x]/I, leading to a reduction in the number of
decision variables.

Conclusions

All the features described in the previous sections
are already implemented in SOSTOOLS. This provides
a friendly user interface to SOS programs, allowing
the use of native polynomial objects. Numerous exam-
ples of the new SOSTOOLS facilities are distributed
as demonstration files. The benefits of using the new
features are apparent from these examples, such as the
notable gains in performance and reliability achieved
by taking into account the polynomial structure. More
importantly, the resulting significant reduction on the
size of the semidefinite programs makes it possible to
handle problems that are otherwise too large to solve
using current state-of-the-art semidefinite programming
solvers.

REFERENCES

[1] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing
SOSTOOLS: A general purpose sum of squares programming
solver,” in Proceedings IEEE Conference on Decision and Con-
trol, 2002.

[2] ——, “SOSTOOLS – Sum of Squares Optimiza-
tion Toolbox, User’s Guide,” 2002, available at
http://www.cds.caltech.edu/sostools and
http://control.ee.ethz.ch/˜parrilo/sostools .

[3] M. D. Choi, T. Y. Lam, and B. Reznick, “Sum of squares of real
polynomials,” Proceedings of Symposia in Pure Mathematics,
vol. 58, no. 2, pp. 103–126, 1995.

[4] L. Vandenberghe and S. Boyd, “Semidefinite programming,”
SIAM Review, vol. 38, no. 1, pp. 49–95, 1996.

[5] N. Z. Shor, “Class of global minimum bounds of polynomial
functions,” Cybernetics, vol. 23, no. 6, pp. 731–734, 1987.

[6] B. Reznick, “Some concrete aspects of Hilbert’s 17th problem,”
in Contemporary Mathematics, vol. 253. American Mathemat-
ical Society, 2000, pp. 251–272.

[7] P. A. Parrilo, “Structured semidefinite programs and semialge-
braic geometry methods in robustness and optimization,” Ph.D.
dissertation, California Institute of Technology, Pasadena, CA,
2000.

[8] ——, “Semidefinite programming relaxations for semialgebraic
problems,”Mathematical Programming Series B, vol. 96, no. 2,
pp. 293–320, 2003.

[9] Y. Nesterov, “Squared functional systems and optimization prob-
lems,” in High Performance Optimization, J. Frenk, C. Roos,
T. Terlaky, and S. Zhang, Eds. Kluwer Academic Publishers,
2000, pp. 405–440.

[10] J. B. Lasserre, “Global optimization with polynomials and the
problem of moments,”SIAM J. Optim., vol. 11, no. 3, pp. 796–
817, 2001.

[11] A. Papachristodoulou and S. Prajna, “On the construction of
Lyapunov functions using the sum of squares decomposition,” in
Proceedings IEEE Conference on Decision and Control, 2002.

[12] S. Prajna and A. Papachristodoulou, “Analysis of switched
and hybrid systems – beyond piecewise quadratic methods,” in
Proceedings of the American Control Conference, 2003.

[13] S. Prajna, P. A. Parrilo, and A. Rantzer, “Nonlinear control syn-
thesis by convex optimization,”IEEE Transactions on Automatic
Control, vol. 49, no. 2, pp. 310–314, 2004.

[14] S. Prajna, “Barrier certificates for nonlinear model validation,”
in Proceedings of the 42th IEEE Conference on Decision and
Control, 2003, pp. 2884–2889.

[15] P. A. Parrilo and R. Peretz, “An inequality for circle packings
proved by semidefinite programming,”Discrete and Computa-
tional Geometry, vol. 31, no. 3, pp. 357–367, 2004.

[16] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, “Distinguish-
ing separable and entangled states,”Physical Review Letters,
vol. 88, no. 18, 2002.

[17] B. Sturmfels, “Polynomial equations and convex polytopes,”
American Mathematical Monthly, vol. 105, no. 10, pp. 907–922,
1998.

[18] B. Reznick, “Extremal PSD forms with few terms,”Duke Math-
ematical Journal, vol. 45, no. 2, pp. 363–374, 1978.

[19] P. A. Parrilo and S. Lall, “Semidefinite programming
relaxations and algebraic optimization in Control,” Dec.
2003, lecture notes for the CDC 2003 workshop. Available at
http://control.ee.ethz.ch/˜parrilo/cdc03 workshop/ .

[20] K. Fukuda, CDD/CDD+ reference manual, 2003, Institute
for Operations Research, Swiss Federal Institute of Technol-
ogy, Lausanne and Z̈urich, Switzerland. Program available at
http://www.ifor.math.ethz.ch/staff/fukuda .

[21] K. Gatermann and P. A. Parrilo, “Symmetry groups,
semidefinite programs, and sums of squares,” 2002,J.
of Pure and Applied Algebra, to appear. Available at
http://control.ee.ethz.ch/˜parrilo/pubs/ .

[22] M.-D. Choi, T.-Y. Lam, and B. Reznick, “Real zeros of positive
semidefinite forms. I,”Math. Z., vol. 171, no. 1, pp. 1–26, 1980.

[23] K. Schm̈udgen, “Thek-moment problem for compact semialge-
braic sets,”Math. Ann., vol. 289, pp. 203–206, 1991.

[24] J. Sturm, SeDuMi version 1.05, Oct. 2001, available from
http://fewcal.uvt.nl/sturm/software/sedumi.html .

[25] K. C. Toh, R. H. T̈utünc̈u, and M. J. Todd,SDPT3 - a
MATLAB software package for semidefinite-quadratic-linear pro-
gramming, available from
http://www.math.cmu.edu/˜reha/sdpt3.html .

[26] A. Fässler and E. Stiefel,Group Theoretical Methods and Their
Applications. Birkhäuser, 1992.

[27] B. Sturmfels,Algorithms in Invariant Theory. Springer-Verlag,
1993.

[28] P. A. Parrilo, “An explicit construction of distinguished
representations of polynomials nonnegative over finite
sets,” 2002, ifA Technical Report AUT02-02, available at
http://control.ee.ethz.ch/˜parrilo/pubs/ .

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP13.3
	Page0: 5606
	Page1: 5607
	Page2: 5608
	Page3: 5609
	Page4: 5610
	Page5: 5611

