
Software for Modeling and Analysis of
Linear Systems with Delays

Pascal Gahinet
The MathWorks

3 Apple Hill, Natick, MA, 01760
pascal@mathworks.com

Lawrence F. Shampine
Southern Methodist University

Dallas, TX 75275
lshampin@mail.smu.edu

Abstract— This paper proposes a new framework for model-
ing linear time-invariant (LTI) systems with delays. Key bene-
fits of this framework are that it can handle delays in feedback
loops, is general enough for most control applications, and
lends itself well to computer-aided analysis. The accompanying
software tools should facilitate the design of control systems
in the presence of delays, as well as stimulate research into
efficient numerical algorithms for assessing the properties and
performance of such systems.

I. INTRODUCTION

Time delays, also referred to as time lags, dead times, or
transport delays, arise in many control applications. Long
delays are common in process control and can severely
limit the performance of control systems. Short delays are
common in automotive and aerospace applications and can
degrade performance if not properly accounted for. While
much research has been devoted to extending classical and
modern control techniques to accomodate delays, there is a
lack of comprehensive software tools for manipulating and
analyzing systems with delays. Most popular packages for
linear analysis and design [4], [3], [17] offer limited support
for systems with delays, and most available packages for
delay differential equations (DDE) [10], [5] are either too
restrictive or too cumbersome for control design purposes.

This paper proposes a new framework for computer-
aided manipulation and analysis of linear time-invariant
(LTI) models with delays. At the heart of this framework is
an LFT-based representation of such systems (LFT stands
for linear fractional transformation, see [14] and references
therein). This representation has several key advantages:

• It can handle delays in feedback loops and is general
enough for most control applications

• Most classical software tools for analyzing delay-free
LTI systems can be extended to this class of LTI
systems with delays

• Efficient and specialized DDE solvers can be devel-
oped for time-domain simulation of such systems.

Given the widespread use of linear techniques in control
system design, this framework and the accompanying soft-
ware tools should facilitate the computer-aided analysis and
design of control systems in the presence of delays, as
well as stimulate more research into efficient numerical
algorithms for assessing the properties and performance of
such systems.

The paper is organized as follows. First we formally
define the class of delayed LTI systems under consideration,
and show that it covers most practical needs in control
applications. We then discuss algorithms for computing the
time and frequency response of such systems. Finally, we
show how existing software tools for delay-free LTI systems
can be seamlessly extended to this class of systems, and
illustrate the convenience and power of the resulting tools
on a process control example.

II. LFT-BASED MODELING OF LTI SYSTEMS WITH

DELAYS

Recall that the linear-fractional transformation (LFT) is
defined for matrices by

L(
(

M11 M12

M21 M22

)
, Θ) := M11+M12Θ(I−M22Θ)−1M21 .

An equivalent expression when Θ is invertible is

L(
(

M11 M12

M21 M22

)
, Θ) := M11+M12(Θ−1−M22)−1M21 .

(1)
The LFT has been extensively used in robust control the-
ory for representing models with uncertainty, see [14] for
details.

Consider the class GLTI of continuous-time LTI systems
whose transfer function is of the form

H(s, τ) = L(
(

H11(s) H12(s)
H21(s) H22(s)

)
︸ ︷︷ ︸

H(s)

, Θ(s, τ))

Θ(s, τ) := Diag
(
e−τ1s, . . . , e−τNs

)
(2)

where H(s) is a rational (delay free) MIMO transfer
function, and τ = (τ1, . . . , τN) is a vector of nonnegative
time delays. Systems in this class are modeled as the LFT
interconnection of a delay-free LTI model and a bank of
pure delays (see Figure 1). As such, there are clearly linear
time-invariant. Also, pure delays are in this class since

e−τs = L(
(

0 1
1 0

)
, e−τs). Key properties of the GLTI

class are captured in the next two results.
Theorem 2.1: Any block diagram interconnection of

GLTI systems is a GLTI system. In other words, the class of
GLTI systems is closed under series, parallel, and feedback
connections as well as branching/summing junctions.

...

...

u y

H(s)...

H(s, τ)

e−τNs

e−τ1s

Fig. 1. LFT-based modeling of LTI systems with delays.

Proof: This property of LFT-based models is well known
in robust control theory and can be established as fol-
lows. Consider a collection of GLTI models Hi(s, τi) =
L(Hi(s), Θ(s, τi)). Any interconnection of these models is
of the form L(M, Diag(H1(s, τ1), . . . , HN(s, τN))) where
M is a Boolean matrix describing the block diagram
connectivity. Straightforward diagram manipulations show
that

Diag(H1(s, τ1), . . . , HN (s, τN))) = L(H(s), Θ(s, τ))

where

• H(s) is Diag(H1(s), . . . , HN (s)) up to some reorder-
ing of the input and output channels

• τ is the concatenation of the vectors τ1, . . . , τN .

The proof is complete by observing that

L(M,L(H(s), Θ(s, τ))) = L(L(M, H(s)), Θ(s, τ))

where L(M, H(s)) is rational as the LFT interconnection
of M and H(s).

Theorem 2.2: The linearization of any nonlinear block
diagram with time delays is a GLTI system.

These two results show that the GLTI class is general
enough to model any (linearized) system with a finite num-
ber of delays, including delays in the feedback path. Delays
at the inputs or outputs are clearly covered as the series
connection of a delay-free model with pure delays. Yet, for
efficiency reasons, such delays are best kept separate from
the internal delays Θ(s, τ) (see [4] for details). Finally, note
that GLTI models cannot represent time-varying delays or
distributed delays (see [7], [11] for alternatives).

Discrete-time LTI systems with delays can be represented
in a similar fashion as

H(z, δ) = L(
(

H11(z) H12(z)
H21(z) H22(z)

)
︸ ︷︷ ︸

H(z)

, Θ(z, δ))

Θ(z, δ) := Diag
(
z−δ1 , . . . , z−δN

)
(3)

where δ = (δ1, . . . , δN) is a vector of delays expressed as
integer multiples of the sampling period. While H(z, δ) is a
rational transfer function that can be analyzed with standard
LTI tools, its order can grow large when the delays are long
compared to the sampling period. The GLTI representation
is an attractive alternative in such cases because it keeps the
delays separate from the model dynamics H(z) and lends it-
self to efficient time- and frequency-response computations.

Interestingly, GLTI models are also well suited for
computer-aided manipulation and analysis. Because LFT
and transfer functions do not mix well numerically, from
now on we will work with the state-space counterpart of
(2).

III. STATE-SPACE EQUATIONS FOR GLTI SYSTEMS

Let(
H11(s) H12(s)
H21(s) H22(s)

)
=

(
D11 D12
D21 D22

)
+

(
C1
C2

)
(sI − A)−1 (B1 B2)

be a minimal realization of H(s) in (2). State-space equa-
tions for H(s, τ) = L(H(s), Θ(s)) are readily obtained as

dx

dt
= Ax(t) + B1u(t) + B2w(t) (4)

y(t) = C1x(t) + D11u(t) + D12w(t) (5)

z(t) = C2x(t) + D21u(t) + D22w(t) (6)

w(t) = (∆τz)(t) (7)

where

• u(t) and y(t) are the input and output vectors, respec-
tively

• w(t) and z(t) are internal signals commensurate with
the vector τ of time delays

• ∆τz is the vector-valued signal defined by

(∆τz)(t) :=

⎛
⎜⎝

z1(t − τ1)
...

zN(t − τN)

⎞
⎟⎠

Note that standard delay-free state-space models are just
a special case of (4)-(7) corresponding to N = 0, a handy
fact when it comes to integrating GLTI models with existing
sofware for manipulating delay-free state-space models.

Delay LTI systems of the form

dx

dt
= A0x(t) + B0u(t) +

M∑
j=1

(Ajx(t − θj) + Bju(t − θj)) (8)

y = C0x(t) + D0u(t) +
M∑

j=1

(Cjx(t − θj) + Dju(t − θj)) (9)

are often considered in the literature with various restric-
tions on the number and locations of the delays θ1, . . . , θM .
It turns out that any model of this form belongs to the class
GLTI. To see this, use the SVD to compute a minimum
rank factorization(

Aj Bj

Cj Dj

)
=

(
Pj

Qj

) (
Rj Sj

)

2

let ρj be the rank of this factorization, and introduce the
auxiliary vector-valued signals

z(t) =

⎛
⎜⎝

R1x(t) + S1u(t)
...

RMx(t) + SMu(t)

⎞
⎟⎠ , w(t) =

⎛
⎜⎝

z1(t − θ1)
...

zM (t − θM)

⎞
⎟⎠

With this notation, (8)-(9) can be rewritten as

dx

dt
= A0x(t) + B0u(t) +

(
P1 . . . PM

)
w(t)

y(t) = C0x(t) + D0u(t) +
(

Q1 . . . QM

)
w(t)

z(t) =

⎛
⎜⎝

R1

...
RM

⎞
⎟⎠x(t) +

⎛
⎜⎝

S1

...
SM

⎞
⎟⎠ u(t)

w(t) = (∆τz)(t)

where
τ = (θ1, . . . , θ1︸ ︷︷ ︸

ρ1

, . . . , θM , . . . , θM︸ ︷︷ ︸
ρM

) .

Conversely, note that any GLTI model with strictly upper-
triangular D22 (up to reordering the delays τ1, . . . , τN) is
a special case of (8)-(9). Indeed, combining (6)-(7) yields
the functional equation:

(I − D22∆τ)z = C2x + D21u (10)

When D22 is strictly upper-triangular, the operator D22∆τ

is nilpotent with index at most N , and (I − D22∆τ)−1 =∑N−1
k=1 (D22∆τ)k. It follows that

z =
N−1∑
k=1

(D22∆τ)k(C2x + D21u)

=
s∑

j=1

(Cjx(t − θj) + Dju(t − θj))

where the time delays θj include τ1, . . . , τN and additive
combinations thereof. The result follows by observing that
w = ∆τz is itself of this form, and substituting w into
(4)-(5).

IV. TIME AND FREQUENCY RESPONSE COMPUTATION

Computing the frequency response of GLTI models
presents no particular difficulty when working with the
characterization (2). For a given frequency grid, the fre-
quency response of the rational part H(s) is computed
using standard algorithms [9] and the frequency response of
Θ(s, τ) is readily evaluated. The LFT formula (1) is then
evaluated at each frequency point to compute the overall
response of H(s, τ).

Computing time-domain responses such as the step re-
sponse is more challenging. The equations (4), (6), and
(7) form a system of delay differential-algebraic equations
(DDAEs). As explained in the introductory texts [2], [12],
we still have much to learn about how to solve numerically
DAEs and DDEs by themselves, much less in combination.
DDAEs have received little attention in the literature and

the results available are rather specific to the application,
c.f. [1] and the references therein.

A crude approach to integrating (4)-(7) consists of using
some off-the-shelf variable-step ODE solver together with
finite-length buffers for keeping track of the past values
of z(t) needed to evaluate w(t). Assuming the solver has
so far computed as solution on [0, tn], values of z(t) are
obtained by interpolation for t ≤ tn, and by zero-order-
hold extrapolation for t > tn. While this approach works
well on many problems, it comes with no guarantee when
taking steps longer than the smallest delay due to the adhoc
nature of the z-extrapolation scheme. This encouraged us
to develop specialized solvers for GLTI problems.

An equivalent set of DDEs is obtained by differentiating
the algebraic equation (6). In the parlance of DAEs, this
shows the problem is of index 1. In the parlance of DDEs,
it shows that the equations are of neutral type because the
equation for ż(t) involves ż(t) itself with delayed arguments
(here ż denotes the first derivative of z). If we want to
compute the response to a step input

u(t) =
{

0 for t < 0
1 for t ≥ 0 ,

the discontinuity at t = 0 generally introduces a jump in
z and ẋ there. It is characteristic of DDEs of neutral type
that the delays cause these jumps to propagate to all times
t =

∑N
i=1 mjτj where m1, . . . , mN are nonnegative inte-

gers. Numerical methods do not have their usual behavior
when straddling a jump discontinuity, so we must track
the discontinuities and apply the method only where the
solution is smooth, or we must develop a numerical method
that can cope with a solution that is only piecewise smooth.
We have done both in our solvers.

The algebraic variables z(t) appear in a simple way,
so our programs for solving (4,6,7) have much more in
common with a DDE solver than a DAE solver. Many DDE
solvers restrict the step size to the length of the shortest
delay because an explicit formula for ODEs can be used
then. We can neither use an explicit method nor accept
this restriction. For one thing, small delays are common
in control applications, delays so small that simulation is
impractical with this restriction. If we take a step longer
than the shortest delay, the numerical solution is defined
implicitly even when the formula itself is explicit. By
evaluating the numerical solution iteratively in this situation,
it is practical to simulate systems with short delays. We have
to use an implicit method anyway because GLTI problems
can be stiff. The Radau IIa two-stage implicit Runge–
Kutta formula is a one-step method that is L-stable and
of order 3. A one-step method facilitates the handling of
propagated discontinuities. The stability is all that we could
hope for and order 3 is reasonable for simulation. Because
the DDAEs are linear and the matrices are constant, it is
possible to evaluate this implicit method very efficiently
simply by solving a system of linear equations. When
solving DDEs we must be able to approximate the solution

3

everywhere so that we can evaluate delayed terms. A cubic
Hermite polynomial interpolant to the values of x and ẋ
at both ends of a step provides an accurate approximation
over the span of the step. The algebraic variables are less
smooth, so we form a cubic polynomial interpolant to the
values of z at the ends of the step and two interior points.

DDEs of neutral type can be exceedingly difficult to
solve because of propagated discontinuities. Widely-used
programs for the task may track discontinuities, but all have
at least the option of not tracking. Tracking discontinuities
means here that we locate the jumps in z(t), integrate the
smooth solution between successive jumps, and compute
exactly the sizes of the jumps. We do this in our programs,
but there can be so many jumps that it is impractical to
track them all. As a compromise, we track only the first
100 jumps and thereafter approximate z(t) by a continuous
function. Fortunately, for stable GLTI there are reasons
to think that the sizes of jumps decay as the simulation
proceeds.

After we stop tracking discontinuities, we integrate equa-
tions with solutions that are only piecewise smooth. The
residual of a numerical solution is the amount by which
it fails to satisfy the equations. Because we determine a
piecewise-cubic polynomial solution, we can evaluate the
residual wherever we like. We use this to estimate and con-
trol the size of the residual at each step. A reliable measure
of size when the residual might be only piecewise smooth
is obtained by using an integral norm and a quadrature rule
of order 8.

By exploiting the very special form of the DDAEs that
describe GLTI, we can reliably simulate the step response
with performance comparable to that of standard tools for
delay-free state-space models (e.g., step command in [4]).
Indeed, we can simulate the response to arbitrary input
signals. More details about the numerical difficulties and
how we deal with them are found in [13].

V. DISCRETIZATION

Approximate Tustin discretization of continuous-time
GLTI models can be performed by discretizing the rational
part H(s), approximating the delays e−τks by the nearest
discrete delay z−m, and combining the results into a dis-
crete GLTI model. For more accuracy, neglected fractional
delays can be further modeled by Thiran filters [16].

Exact ZOH discretization of continuous-time GLTI mod-
els in the sense of [6] is not possible in general. However,
it can be shown that GLTI models for which

1) D22 is strictly upper triangular (up to reordering the
delays τ1, . . . , τN)

2) there are no state delays, i.e., B2∆τ (I −
D22∆τ)−1C2 = 0

admit a ZOH discretization which is itself a GLTI model
with a properly augmented state vector. This result gener-
alizes well-known discretization formulas for LTI models
with input or output delays [6] and details are omitted for
brevity. Note that this subset of GLTI models coincides

exactly with the set of affine models (8)-(9) where A1 =
. . . = AM = 0 (no state delays). To see this, recall from
Section III that B2∆τ (I − D22∆τ)−1C2 = 0 implies that
B2w(t) depends only on u(t) and its past value, whence
Aj = 0. Conversely, the GLTI realization of any model
(8)-(9) satisfies D22 = 0 and

B2∆τ (I − D22∆τ)−1C2 = B2∆τC2 =
M∑

k=1

Pk∆θk
Rk =

M∑
k=1

PkRk∆θk
=

M∑
k=1

Aj∆θk
= 0

provided that A1 = . . . = AM = 0.

VI. SOFTWARE AND EXAMPLE

As mentioned earlier, GLTI models naturally dovetail into
existing CACSD packages for LTI modeling and control.
In the 6.0 release of MathWorks’ Control System Toolbox,
most functions have been extended to handle GLTI models.
These include functions for modeling such as series,
parallel, and feedback, for time and frequency re-
sponse computation such as step and bode, for stability
analysis such as margin, and for discretization such as
c2d. Dedicated algorithms have been devised and coded
in C for efficient time-domain simulation. This extended
functionality allows for seamless and approximation-free
analysis of control systems with delays. Successive loops
can be closed without approximation and without losing
the ability to simulate time responses. The benefits of these
new tools are now illustrated on a process control example.

The example below is inspired by [8] and compares
two control strategies, standard PI control and the Smith
Predictor, for a first-order plus dead-time plant. The plant
transfer function is (see [8] for details):

P (s) = e−93.9s 5.6
40.2s + 1

. (11)

Note that the dead time is more than twice larger than
the time constant. We first consider the standard PI control
structure shown in Figure 2, where

C(s) = K(1 +
1

Tis
) .

C yP
e u

−
+

ysp

Fig. 2. PI Control Loop.

The large dead time severely limits performance and the
loop gain. We settled for the values K = 0.1 and Ti = 100.
To visualize the closed-loop responses in MATLAB, we
first construct a GLTI model TPI of the closed-loop transfer
function by defining the plant and compensators and closing
the loop with the feedback command:

P = tf(5.6,[40.2 1],...
’OutputDelay’,93.9)

4

C = 0.1 * (1 + tf(1,[100 0]))

% Closed-loop transfer [ysp,d] -> y
Tpi = feedback([P*ss(C),1],1,1,1);

We then use step(Tpi,1000) to plot the closed-loop
step response, the resulting plot appearing in Figure 3.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

T
o:

 y

From: ysp

0 200 400 600 800 1000

From: dStep Response

Time (sec)

A
m

pl
itu

de

Fig. 3. Step Response of the PI Loop.

Next we consider the Smith Predictor control structure
sketched in Figure 4. The Smith Predictor uses an internal
model to predict the delay-free response yp(t) of the plant,
and seeks to correct discrepancies between this prediction
and the setpoint ysp(t), rather than between the delayed
output measurement y(t) and ysp(t). To prevent drifting, an
additional compensator F (s) is used to eliminate steady-
state drifts and disturbance-induced offsets. See [15] for
more details on the Smith Predictor.

u
P y

+

+

+

−
C Gp e−τps

F

ysp
e +

−

+

+

y0

yp y1

d

dp dy

Fig. 4. Smith Predictor.

We first assume that the prediction model Pp(s) =
e−τpsGp(s) matches the plant model P (s) in (11), and use
the following compensator settings:

C(s) = 0.5(1 +
1

40s
), F (s) =

1
20s + 1

To compare performance of the PI and Smith Predictor
designs, we start by building a GLTI model of the closed-
loop transfer function T (s) from (ysp, d) to y. To facilitate
the task of connecting all the blocks in Figure 4, we name

the I/O signals of each block (including the summation
blocks) and use the connect command to automatically
build the resulting closed-loop model:

s = tf(’s’);

% LTI blocks
P = exp(-93.9*s) * 5.6/(40.2*s+1);
P.InputName = ’u’; P.OutputName = ’y0’;

Gp = 5.6/(40.2*s+1);
Gp.InputName = ’u’; Gp.OutputName = ’yp’;

Dp = exp(-93.9*s);
Dp.InputName = ’yp’; Dp.OutputName = ’y1’;

C = 0.5 * (1 + 1/(40*s));
C.InputName = ’e’; C.OutputName = ’u’;

F = 1/(20*s+1);
F.InputName = ’dy’; F.OutputName = ’dp’;

% Sum blocks
Sum1 = ss([1,-1,-1],’InputName’,...

{’ysp’,’yp’,’dp’},’OutputName’,’e’);
Sum2 = ss([1,1],...

’InputN’,{’d’,’y0’},’OutputN’,’y’);
Sum3 = ss([1,-1],...

’InputN’,{’y’,’y1’},’OutputN’,’dy’);

% Build interconnection model
T = connect(P,Gp,Dp,C,F,Sum1,Sum2,Sum3,...

{’ysp’,’d’},’y’);

Note that T is a GLTI model with two internal delays in sep-
arate feedback paths. Given this model, the Smith Predictor
and PI responses can be compared by step(T,Tpi,500)
and are shown in Figure 5.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

T
o:

 y

From: ysp

0 100 200 300 400 500

From: dStep Response

Time (sec)

A
m

pl
itu

de

Fig. 5. Step Responses of the Smith Predictor (–) vs. PI (- -).

Finally, robustness to mismatch between the prediction
and plant models is easily investigated with these tools. For

5

example, consider two perturbed plant models

P1(s) = e−90s 5
38s + 1

, P2(s) = e−100s 6
42s + 1

.

To assess the Smith predictor robustness when the true plant
model is P1(s) or P2(s) rather than the prediction model
P (s), simply bundle P, P1, P2 into an LTI array, rebuild the
closed-loop model(s), and replot the step response:

P1 = exp(-90*s) * 5/(38*s+1);
P2 = exp(-100*s) * 6/(42*s+1);
Plants = stack(1,P,P1,P2);
T = connect(Plants,Gp,Dp,C,F,...

Sum1,Sum2,Sum3,{’ysp’,’d’},’y’);

step(T,Tpi,500)

The resulting plot in Figure 6 shows a slight performance
degradation, but the Smith predictor still retains an edge
over the pure PI design.

0 100 200 300 400 500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

T
o:

 y

From: ysp

0 100 200 300 400 500

From: dStep Response

Time (sec)

A
m

pl
itu

de

Fig. 6. Robustness of the Smith Predictor (–) to Model Mismatch

The closed-loop frequency response for the nominal and
perturbed plants is obtained by

bode(T(1,1))

and shown in Figure 7.

VII. CONCLUSION

We have shown that the GLTI representation is highly
suitable to computer-aided manipulation and analysis of
control systems with delays, regardless of the control struc-
ture and number of delays. Most Control System Toolbox
functions have been extended to work on GLTI models, all
this without additional complexity or new syntax for the
user. We hope that these new tools will facilitate the design
of control systems with delays and bring new insights into
their behavior.

−25

−20

−15

−10

−5

0

5
From: ysp To: y

M
ag

ni
tu

de
 (

dB
)

10
−3

10
−2

10
−1

10
0

−7200

−5760

−4320

−2880

−1440

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Fig. 7. Closed-Loop Response from ysp to y.

REFERENCES

[1] U. Ascher and L. Petzold, The numerical solution of delay-
differential-algebraic equations of retarded and neutral type, SIAM
J. Numer. Anal., 32 (1995) 1635–1657.

[2] U. Ascher and L. Petzold, Computer Methods for Ordinary Dif-
ferential Equations and Differential-Algebraic Equations, SIAM,
Philadelphia, 1998.

[3] Control System Professional, Wolfram Research, Champaign, 2003.
[4] Control System Toolbox, MathWorks Inc., Natick, 2000.
[5] W.H. Enright and H. Hayashi, A delay differential equation solver

based on a continuous RungeKutta method with defect control,
Numerical Algorithms, 16, 1997, pp. 349364.

[6] G.F. Franklin, J.D. Powell, and A. Emami-Naeini, Feedback Control
of Dynamic Systems, Prentice Hall, 2002.

[7] M. Gza, DifEqu: Solver for Ordinary, Functional and Partial Differ-
ential Equations, http://www.math.u-szeged.hu/ makay, Hungary.

[8] A. Ingimundarson and T. Hagglund, Robust Tuning Procedures of
dead-time compensating controllers, Control Engineering Practice,
9, 2001, pp. 1195-1208.

[9] A.J. Laub, Efficient Multivariable Frequency Response Computa-
tions, IEEE Trans. Aut. Contr., AC-26 (1981), pp. 407-408.

[10] E. Hairer and G. Wanner, RETARD: Software for Delay Differen-
tial Equations, http://www.unige.ch/math/folks/hairer/software.html,
Switzerland.

[11] A. Kim, W.H. Kwon, and L. Volkanin, Time-Delay System Toolbox,
http://fde.usaaa.ru, Russia, 2001.

[12] L.F. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with
MATLAB, Cambridge Univ. Press, New York, 2003.

[13] L.F. Shampine and P. Gahinet, DDAEs in Control Theory, Southern
Methodist University, Dallas, TX, 2003.

[14] S. Skogestad and Ian Postlethwaite, Multivariable Feedback Control,
John Wiley, 1996.

[15] O.J.M Smith, Closer Control of Loops with Dead Time, Chemical
Engineering Process, 53, 1957, pp. 217-219.

[16] J.-P. Thiran, Recursive Digital Filters with Maximally Flat Group
Delay, IEEE. Trans. Circ. Theory, 18, 1971, pp. 659-664.

[17] Xmath Control Design Module, National Instruments Corporation,
Austin, 2002.

6

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP13.2
	Page0: 5600
	Page1: 5601
	Page2: 5602
	Page3: 5603
	Page4: 5604
	Page5: 5605

