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Abstract— This paper extends a recently developed ap-
proach to optimal path planning of autonomous vehicles, based
on mixed integer linear programming (MILP), to account for
safety. We consider the case of a single vehicle navigating
through a cluttered environment which is only known within a
certain detection radius around the vehicle. A receding horizon
strategy is presented with hard terminal constraints that
guarantee feasibility of the MILP problem at all future time
steps. The trajectory computed at each iteration is constrained
to end in a so called basis state, in which the vehicle can safely
remain for an indefinite period of time. The principle is applied
to the case of a UAV with limited turn rate and minimum
speed requirements, for which safety conditions are derived
in the form of loiter circles. The latter need not be known
ahead of time and are implicitly computed online. An example
scenario is presented that illustrates the necessity of these
safety constraints when the knowledge of the environment is
limited and/or hard real-time restrictions are given.

I. INTRODUCTION

In recent years, both military and civilian institutions
have expressed increased interest in the use of fully au-
tonomous aircraft or so called Unmanned Aerial Vehicles
(UAV’s). Such systems need no, or minor, human control
from a ground station, thereby reducing operating costs
and enabling missions in harsh or remote environments. A
significant part of the vehicle autonomy consists of its path
planning capabilities: the problem is to guide the vehicle
through an obstacle field, while accounting for its dynamic
and kinematic properties.

In many applications, a detailed map of the environment
is not available ahead of time, and obstacles are detected
while the mission is carried out. In this paper, we consider
scenarios where the environment is only known within a
certain detection radius around the vehicle. We assume
that within that region, the environment is static and fully
characterized. The knowledge of the environment could
either be gathered through the detection capabilities of the
vehicle itself, or result from cooperation with another, more
sophisticated agent [11].

An approach to optimal path planning based on Mixed In-
teger Linear Programming (MILP) was recently introduced
in [9]. MILP is a powerful mathematical programming
framework that extends continuous linear programming to
include binary or integer decision variables [3]. These
variables can be used to model logical constraints such as
obstacle and collision avoidance rules, while the dynamic
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and kinematic properties of the vehicle are formulated as
continuous constraints. As demonstrated by the results in [7]
and [11], thanks to the increase in computer speed and
implementation of powerful state-of-the-art algorithms in
software packages such as CPLEX [1], MILP has become
a feasible option for real-time path planning.

Since in the scenarios of interest the environment is
explored online, a trajectory from a starting to a destination
location typically needs to be computed gradually over
time while the mission unfolds. This calls for a receding
horizon strategy, in which a new segment of the total path
is computed at each time step by solving a MILP over
a limited horizon. Such a strategy was proposed in [9],
and extended to account for local minima in [2]. In the
latter, a cost-to-go function was introduced based on a
graph representation of the whole environment between
start and end point, that guaranteed stability in the sense
of reaching the goal. In this paper, however, we assume
that the environment is not fully characterized before the
mission. As such, we are interested in guaranteeing safety of
the trajectory rather than completion of the mission, which
might be infeasible.

As was shown in our previous work [8], despite the
hard anti-collision constraints, the receding horizon strategy
of [2] and [9] has no safety guarantees regarding avoidance
of obstacles in the future. Namely, the algorithm may fail to
provide a solution in future time steps due to obstacles that
are located beyond the surveillance and planning radius of
the vehicle. This translates into the MILP problem becom-
ing infeasible at a certain time step, and indicates that the
vehicle is on a collision course. In [8], we proposed a safe
receding horizon scheme based on computing two separate
paths at each time step: a locally optimal solution without
safety guarantees and a feasible “rescue” path to a naturally
collision-free state. The latter is executed whenever the
MILP problem associated with the optimal path becomes
infeasible, thus avoiding future collisions.

That previous work, however, only considered vehicles
that can come to a full stop, such as rovers or helicopters. In
this paper, we extend the problem to aircraft constrained by
a minimum velocity and a limited turn rate. Moreover, we
include the safety constraints (i.e. future feasibility guaran-
tees) directly in the optimization problem without the need
to precompute an invariant set explicitly. In this respect,
our work is fundamentally different from the approaches to
safety/feasibility presented in [4], [5] and [10].

The paper is organized as follows. Section II briefly
recapitulates the MILP formulation for path planning of a
single vehicle, and gives an example scenario in which a
nominal receding horizon strategy fails to avoid an obstacle.



Section III introduces additional safety constraints in the
MILP, which are specialized to the case of an aircraft
in Section IV and applied to the example scenario in
Section V. Section VI concludes with topics for future
research.

II. OBSTACLE AVOIDANCE USING MILP

A. Basic Formulation

The basic problem discussed in this paper is to guide
an autonomous vehicle through an obstacle field while
optimizing a certain objective. The latter can be time, fuel
or a more sophisticated cost criterion such as to minimize
visibility or to maximize the area explored. The vehicle
is characterized by a discrete, linear state space model
(A,B) in an inertial coordinate frame and additional linear
inequalities capturing dynamic and kinematic constraints.

Denote the initial state of the vehicle by xinit and the
desired final state by xf . Consider a planning horizon of T
time steps, where the length of the horizon is determined
by both the available computational power onboard the
vehicle, as well as the distance over which the environment
is fully characterized. Let the cost corresponding to the
ith time step be defined as a (piecewise) linear expression
`i(xi,ui,xf ), where ui is the input vector. Using a terminal
(piecewise) linear cost function f(xT ,xf ), the optimal path
planning problem over T time steps can then be formulated
as follows:

min
xi,ui

JT =

T−1
∑

i=0

`i(xi,ui,xf ) + f(xT ,xf ) (1)

subject to xi+1 = Axi + Bui, i = 0 . . . T − 1
x0 = xinit

xi ∈ X
ui ∈ U

(xi, yi) ∈ D
(xi, yi) /∈ O,

(2)

where (xi, yi) denotes the position of the vehicle in the
plane, the set D represents the current detection region, and
the set O characterizes the obstacles that are located within
the known environment. The sets X and U represent the
dynamic and kinematic constraints of the vehicle, such as
maximum turn rate and minimum speed restrictions.

The obstacle avoidance constraints (xi, yi) /∈ O can be
explicitly formulated as follows [9]. Assume for simplicity
of exposition a rectangular obstacle in 2D with lower left
corner (xmin, ymin) and upper right corner (xmax, ymax).
Then, for a point-mass vehicle to avoid the obstacle, each
trajectory point (xi, yi) must satisfy the following set of
constraints:

xi ≤ xmin + Mbi1

−xi ≤ −xmax + Mbi2

yi ≤ ymin + Mbi3

−yi ≤ −ymax + Mbi4
∑4

k=1
bik ≤ 3
bik ∈ {0, 1}.

(3)

Here, bik are binary variables and M is a sufficiently large
positive number. The last constraint ensures that at least one
of the position constraints is active, thereby guaranteeing
that the trajectory point (xi, yi) lies outside the rectangle.
This set of constraints should be formulated for each time
step i = 0 . . . T and for each obstacle in O. Note that
this method can be extended to a 3D environment and to
arbitrarily shaped obstacles, which are then approximated
by a polygon or polyhedron.

The objective function (1) combined with the (linear)
constraints (2) and (3) constitutes a mixed integer linear
program (MILP) that must be solved at each time step.

B. Aircraft Example

For an aircraft modeled as a double integrator, the
constraints xi ∈ X and ui ∈ U can be formulated as
follows. As discussed in [6], a limit on maximum speed
and available turn rate can be expressed by the following
set of linear inequalities corresponding to the edges of a
K-sided polygon:

∀i ∈ [0...T − 1], ∀k ∈ [1...K] :
vxi sin

(

2πk
K

)

+ vyi cos
(

2πk
K

)

≤ vmax

axi sin
(

2πk
K

)

+ ayi cos
(

2πk
K

)

≤ amax.
(4)

Here (vxi, vyi) and (axi, ayi) represent the inertial speed
and acceleration vector at the ith time step. For a maximum
turn rate ωmax, the corresponding maximum acceleration is
determined as amax = ωmaxvmax.

By also introducing a minimum speed vmin, the con-
strained double integrator model captures the aircraft dy-
namics reasonably well. The minimum speed requirement
can be handled by ensuring that the speed vector lies
outside a K-sided polygon by introducing binary variables
as follows:

∀i ∈ [0...T − 1], ∀k ∈ [1...K] :
vxi sin

(

2πk
K

)

+ vyi cos
(

2πk
K

)

≥ vmin − Mcik
∑K

k=1
cik ≤ K − 1
cik ∈ {0, 1},

(5)

where M is again a sufficiently large number.
As an illustration of the above, consider the following

example of an imaginary autonomous aircraft with the
following parameters: vmax = 4m/s, vmin = 2m/s and
ωmax = 30deg/s. Assume that the detection radius is 30m,
and that the planning horizon T contains 6 time steps of
1s each. The scenario is illustrated in Fig. 1: the aircraft
is initially in the origin, flying East at 4m/s, and needs
to maneuver to position (70m, 57m). The cost function is
adopted from [8] and aims at proceeding towards the goal,
while minimizing the applied thrust:

min
pi,ui

JT =

T−1
∑

i=0

(q′|pi − pf | + r′|ui| ) + s′|pT − pf | (6)

Here pi denotes the position (xi, yi) of the aircraft, and
q, r and s are appropriate weighting vectors.
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Fig. 1. The aircraft is initially in the origin, flying East at 4m/s, and
has to maneuver to position (70m, 57m). The goal is reached after 28s.

Consider now the case in which the corridor through
which the aircraft is flying, is obstructed as depicted in
Fig. 2. Because of its 30m detection radius and corre-
sponding limited knowledge of the obstacle field, the MILP
optimization guides the vehicle into the concavity, from
which it cannot exit. This is due to its limitation on turn
rate and minimum speed, resulting in a minimum turn
radius that is larger than the available maneuver space. This
observation translates into the MILP becoming infeasible
after 17s and a crash of the aircraft against an obstacle.

It is clear that in such scenarios, the given receding
horizon formulation fails. In what follows, we formulate
additional constraints that ensure feasibility of the MILP
at the next time step, by explicitly solving for a trajectory
that ends in a safe state. As such, safety can be guaranteed
at each time step. One could claim that by choosing a
more sophisticated cost-to-go function that assigns a higher
cost to unsafe regions in the state space, problems as
the one described above could be avoided automatically.
However, our assumption is that nothing is known beyond
the detection radius of the vehicle, such that a cost-to-go
construction as the one used in [2] can only be applied
locally, without guarantees for the future.
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Fig. 2. The aircraft is initially in the origin, flying East at 4m/s, and
has to maneuver to position (70m, 57m). After 17s, the MILP becomes
infeasible, corresponding to the aircraft colliding with the obstacles.

III. SAFETY CONSTRAINTS

To guarantee that the trajectory computed at each time
step is safe in the future, we extend the receding horizon
problem (1)-(2) to account for terminal safety constraints.
To capture the notion of safety, we define a basis state of
the vehicle as a state or motion (i.e. a sequence of states) in
which the vehicle can remain for an indefinite period of time
without violating any of the dynamic, kinematic, detection
region or obstacle avoidance constraints. For a helicopter,
for instance, the basis state can be defined as hover at any
obstacle-free position within the current detection radius.
For an airplane, the basis state can be a loiter pattern at a
predefined speed. We also define a safe state as a state from
which there exists a feasible path to a basis state over the
length of the planning horizon.

Safety is then ensured at each time step if the receding
horizon trajectory terminates in such a basis state, or in
other words, if each state along the trajectory is a safe state.
As such, when the optimization problem is feasible at the
initial time step and assuming that there are no perturbations
acting on the vehicle, the MILP will remain feasible at all
future steps. Namely, at any given time step other than
the initial one, the rest of the trajectory computed at the
previous step, augmented with an extra time step in the
basis state, is always a feasible solution to the optimization
problem defined at that given step. Indeed, since it ends in
a basis state in which the vehicle can remain indefinitely,
that augmented trajectory is feasible.

More formally, define the set of safe states as S ⊂
(X ∩ Oc) and the set of basis states as B ⊂ S, where
X indicates the set of feasible states defined by the kino-
dynamic constraints and Oc denotes the obstacle free states.
We now want to ensure that the final state xf of the receding
horizon trajectory lies in B, or thus that all states xi along
the trajectory lie in S.

One can add a degree of flexibility to the problem by
dividing the planning horizon T in an optimization part T1

and a feasibility check part T2 = T − T1 as follows:

min
xi,ui

JT1
=

T1−1
∑

i=0

`i(xi,ui,xf ) + f(xT1
,xf ) (7)

subject to:






























xi+1 = Axi + Bui, i = 0 . . . T1 − 1
x0 = xinit

xi ∈ X
ui ∈ U

(xi, yi) ∈ D
(xi, yi) /∈ O

(8)







































x̃j+1 = Ax̃j + Bũj , j = T1 . . . (T − 1)
x̃T1

= xT1

x̃j ∈ X̃ ⊃ X
ũj ∈ Ũ ⊃ U

(x̃j , ỹj) ∈ D
(x̃j , ỹj) /∈ O

x̃T ∈ B

(9)



The trajectory is thus only optimized over the first T1 time
steps, but is constrained by the feasibility of the remaining
T2 steps and the requirement to terminate in a basis state.
This division allows for savings in computation time, with-
out giving up feasibility (i.e. safety) guarantees. Moreover,
since the terminal cost term in the objective function is
defined as a function of xT1

, the optimal trajectory can
end in a rather agile state from where there still exists
a dynamically feasible path to a basis state. Constraining
xT1

∈ B could restrict the aggressiveness of the trajectories.
Moreover, by allowing for more aggressive control in the
feasibility check, as expressed by the constraint sets X̃ ⊃ X
and Ũ ⊃ U , the feasible region of xT1

is enlarged. For in-
stance, considering hover as the basis state for a helicopter,
the maximum feasible speed in xT1

is larger if a more
aggressive braking sequence ũj ∈ Ũ (j = T1 . . . T − 1)
is allowed to bring the helicopter back to hover.

Strictly speaking, for the MILP problem (7)-(9) to remain
feasible at all future time steps, the constraint sets X̃ and Ũ
must be subsets of X and U rather than supersets. However
– still assuming that no disturbances acting on the vehicle–
, there will always be a dynamically executable, though
possibly aggressive, safe trajectory “available” that is the
remaining part of the trajectory computed at the previous
time step. To avoid this discrepancy between feasibility and
“availability”, we will assume in the remainder of this paper
that X̃ = X and Ũ = U .

IV. SAFETY CIRCLES

In this section, we specialize the safe receding horizon
formulation (7)-(9) to the case of an aircraft constrained
by the kino-dynamic inequalities (4)-(5). Because of the
minimum speed constraint, a natural basis state B is a
circular loiter pattern. If we can ensure that the trajectory
computed at each time step ends in either a left or right
turning loiter circle that does not intersect any of the
obstacles, the aircraft is guaranteed to be safe at each time
step.

A. Linear Loiter Expressions

Assuming that the aircraft behaves like a double integra-
tor, the radius R of the smallest possible loiter circle at a
given speed v corresponds to R = cv2. Here c is an aircraft
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Fig. 3. Safe trajectory ending in either a right or left turning loiter circle.

specific parameter associated with the maximum applied
side force. As depicted in Fig. 3, to describe the loiter circle
as a function of the last state xT = (xT , yT , vxT , vyT )T in
the planning horizon, we need to find the vectors (pT −pR)
and (pT −pL). Here, pT = (xT , yT )T denotes the ingress
position of the loiter, and pR and pL are the center points of
the right and left circle respectively. The latter are scaled
versions αv⊥

T and −αv⊥
T of the orthogonal complement

v⊥
T = (−vyT , vxT )T of vT = (vxT , vyT )T .
The scaling factor α has a lower and upper bound,

corresponding to the minimum and maximum allowed
ingress velocity. With ||vT || the magnitude of vT , we have
α = R

||vT || = c||vT || and thus αmin = cvmin ≤ α ≤
αmax = cvmax. However, to avoid quadratic constraints
in (vxT , vyT )T , we use a constant scaling factor αc. By
conservatively setting αc = αmax, the radius of the loiter
circles will be larger than necessary for ingress velocities
lower than vmax, which corresponds to not applying the
maximum available lateral thrust. Since this is an over-
approximation of a safety condition, however, we are only
giving up some performance rather than safety.

By introducing a rotation matrix R(θ), any point pR,θ

along the right loiter circle CR(xT ) can then be expressed
as:

pR,θ = pR + R(θ)(αcv
⊥
T )

= (pT − αcv
⊥
T ) + R(θ)(αcv

⊥
T )

= pT + αc(R(θ) − I)v⊥
T

(10)

Similarly, any point pL,θ along the left loiter circle CL(xT )
is given by:

pL,θ = pL − R(θ)(αcv
⊥
T )

= (pT + αcv
⊥
T ) − R(θ)(αcv

⊥
T )

= pT − αc(R(θ) − I)v⊥
T

(11)

B. Sampling Points Requirements

Maintaining safety now comes down to ensuring that ei-
ther the left or right loiter circle does not overlap with any of
the obstacles that are located within the detection radius of
the vehicle. This can be achieved by sampling both circles
for fixed values of θ and introducing avoidance constraints
similar to (3). However, ensuring obstacle avoidance for
sample points along the circle does not guarantee that the
loiter circle does not intersect obstacles in the segments
between the sample points.

min
ws

Fig. 4. Situation where undersampling of the loiter circle leads to a safety
violation. Although the obstacle avoidance constraints for the sample points
are satisfied, the circle intersects the obstacle.
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Fig. 5. Situation where the loiter circle cuts the corner of an obstacle. This
situation can be avoided by enlarging the obstacles with a safety boundary
dsafe.

Consider for example the situation depicted in Fig. 4:
although the avoidance constraints for all sample points are
satisfied, the circle cuts through the obstacle because the
sample angle spacing is too coarse. This type of under-
sampling can be avoided by choosing a minimum number
of sampling points N as follows:

N ≥ Nmin =
π

arcsin( wmin

2rmax

)
(12)

Here wmin denotes the width of the narrowest obstacle, and
rmax = cv2

max is the radius of the largest loiter circle.
The derivation of this condition is based on the insight
that the maximum spacing in distance between the sample
points along the largest circle should not exceed wmin. As
such, (12) is only necessary when wmin ≤ 2rmax.

If wmin > 2rmax, a situation like the one in Fig. 4 cannot
occur, and therefore no minimum number of sample points
is required. However, as illustrated in Fig. 5, the loiter
circles can now cut the corners of obstacles. Nevertheless,
safety can still be guaranteed by enlarging the obstacles with
a safety boundary dsafe such that the circle can enter the
boundary, but does not intersect the actual obstacle. Using
basic geometry, one can derive the following expression for
dsafe as a function of N :

dsafe(N) =

√
2

2
rmax

(

1 + sin
π

N
− cos

π

N

)

<
√

2rmax

The enlargement principle also holds for the “cruise” part
of the trajectory: due to the time discretization with step
∆t, each obstacle must be enlarged by dsafe = vmax∆t√

2
.

C. MILP Formulation

Using the sampling approach from above, we can specify
the safety constraint xT ∈ B from (9) as the following loiter
conditions:






















CR(xT ) = {(xRj , yRj)} ∈ D, j = 1 . . . N
CR(xT ) = {(xRj , yRj)} /∈ O

OR
CL(xT ) = {(xLj , yLj)} ∈ D, j = 1 . . . N
CL(xT ) = {(xLj , yLj)} /∈ O

(13)

where the index j indicates the sample point on the circle.
By introducing a binary variable d that selects either the
right or left circle, and using (10)-(11) for the coordinates of

the sample points, the obstacle avoidance constraints in (13)
can be explicitly written as follows:

∀l ∈ [l...L], ∀j ∈ [1...N ] :














































xT − αc (cos jθs − 1) vyT − αc (sin jθs) vxT

≤ xmin + Mblj1 + Md
−xT + αc (cos jθs − 1) vyT + αc (sin jθs) vxT

≤ −xmax + Mblj2 + Md
yT − αc (sin jθs) vyT + αc (cos jθs − 1) vxT

≤ ymin + Mblj3 + Md
−yT + αc (sin jθs) vyT − αc (cos jθs − 1) vxT

≤ −ymax + Mblj4 + Md

AND














































xT + αc (cos jθs − 1) vyT + αc (sin jθs) vxT

≤ xmin + Mblj1 + M(1 − d)
−xT − αc (cos jθs − 1) vyT − αc (sin jθs) vxT

≤ −xmax + Mblj2 + M(1 − d)
yT + αc (sin jθs) vyT − αc (cos jθs − 1) vxT

≤ ymin + Mblj3 + M(1 − d)
−yT − αc (sin jθs) vyT + αc (cos jθs − 1) vxT

≤ −ymax + Mblj4 + M(1 − d)
{

∑4

k=1
bljk ≤ 3

bljk, d ∈ {0, 1}
Here the index l indicates the (rectangular) obstacles, and
θs = 2π

N
is the spacing angle. Note that the obstacle

coordinates (xmin, ymin, xmax, ymax) are those of the obstacles
enlarged with dsafe.

V. EXAMPLE

We now apply the safe receding horizon formulation to
the example of Section II. The planning horizon contains
T = 6 time steps, of which T1 = 3 are used to optimize,
and T2 = 3 are used for the feasibility check. For the loiter
circles, we used N = 8 sample points. The result is shown
in Fig. 6. Thanks to the loiter constraints, the UAV does
not fly into the concavity, but chooses an alternative route
to reach the goal. As a result, the MILP remains feasible at
all time steps, and a collision in the concavity is prevented.
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Fig. 6. Receding horizon trajectory with safety constraints. Because of the
loiter constraints, the UAV avoids the concavity and chooses an alternative
route to reach the goal.
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Fig. 7. Sequence of intermediate receding horizon trajectories ending in
loiter circles.

The total trajectory time is now 33s. The sequence of partial
trajectories computed at each time step is depicted in Fig. 7.

Assume now that the width of the concavity is such
that the UAV can make a 180◦ turn in it. In this case,
the aircraft does fly into the concavity, but can avoid the
obstacle by executing a loiter pattern as displayed in Fig. 8.
Although the mission was not fulfilled, the aircraft remains
safe at all times. While loitering, the vehicle can apply some
higher level decision logic or more sophisticated cost-to-go
function to compute a path out of the concavity.

It is worthwhile mentioning that the trajectories in this
paper were computed in quasi real-time, i.e. almost all
iterations terminated within the time step duration of 1s.
The simulations were done using MATLAB and CPLEX8.1
on a Pentium4 PC with 2GHz clock speed. At the few
time steps where the computation did not finish in time,
however, a good suboptimal solution was usually still found
within 1s. This highlights the use of the safety constraints
from another perspective: if, in a hard real-time system,
the optimization does not solve in time at a particular step,
the remaining part of the solution from the previous time
step can be used. Assuming that a safe trajectory exists at
the first time step, and that the vehicle can compensate for
perturbations along the way, safety will be maintained at all
future steps.

VI. CONCLUSION AND CURRENT WORK

A. Conclusion

We considered the problem of navigating an autonomous
vehicle through a cluttered environment that is explored
online. We formulated a receding horizon strategy for real-
time path planning based on MILP with safety and future
feasibility guarantees. The partial trajectory planned at each
time step was constrained to terminate in a safe basis
condition, in which the vehicle can remain indefinitely. An
explicit formulation for a UAV was worked out using the
concept of obstacle-free loitering circles.

B. Current Work

To demonstrate the applicability of the presented frame-
work to real-time guidance of UAV’s, we are currently
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Fig. 8. Sequence of intermediate receding horizon trajectories for a wider
concavity. Although the UAV enters the concavity, it does not crash and
the trajectory ends in a loiter.

integrating it with Boeing’s Open Control Platform for
flight testing on a T-33 aircraft [11]. This urges us to
extend the safety formulation to account for robustness
against disturbances in the trajectories. Furthermore, we are
applying the loiter principle to guarantee a priori collision
avoidance in decentralized cooperative path planning of
multiple autonomous aircraft.
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