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Decentralized Cooperative Search by Networked
UAVSs in an Uncertain Environment
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Abstract— This paper addresses the problem of cooperative problem model fit more closely to real battlefield situations.
search in a given environment by a team of Unmanned Aerial \We formulate the updated search problem as a finite horizon
Vehicles (UAVs). We present a decentralized control model for optimal control problem, develop a coordination method

cooperative search and develop a real-time approach for on- o
line cooperation among vehicles, which is based on treating °2S€d on theivaling force approach [7], and evaluate the

the possible paths of other vehicles as “soft obstacles” to Proposed scheme through simulation.
be avoided. Using the approach of “rivaling force” between The remainder of the paper is organized as follows.

vehicles to enhance cooperation, each UAV takes into account Section Il presents the decentralized control model for
the possible actions of other UAVs such that the overall in- the multi-vehicle cooperative search problem. Section Il
formation about the environment is increased. The simulation d ibes th d fi th ol " trat
results illustrate the effectiveness of the proposed strategy. escrl_ eS_ € propose COOper‘? 'Ve path p "’_‘“”'”9 S r_a egy.
The rivaling force based coordination algorithm is given
I. INTRODUCTION ._in Section IV. Some simulation results and discussion are

Control of networked mu Iti-vehicle _systems that areé Ny resented in Section V. Section VI concludes the paper with
tended to perform a coordinated task is currently an |mpoE-

tant and challenging field of research [1], [2], [3], [4], [5]. O nal observations.
This is due to the fact that collaborative teams of aerial and Il. PROBLEM DEFINITION
ground vehicles can perform a number of highly beneficial We consider a team of UAVs engaged in searching for
tasks in military and civilian applications. However, a majofargets in an environment of known size with the objective
obstacle to the realization of such systems still remains ti@ identify as many targets as possible and minimize the
design of coordination and decision algorithms to achiew9ss or damage of the UAVs during the mission.
complex, adaptable, and flexible system behavior. A. The Environment

This paper focuses on the multi-vehicle cooperative The environmentis a boundedL, x L, cellular area,
search problem where a team of UAVs seeks to find targelghere each position is termedcell. The environment is
in a dynamic and risky environment. In this problem, theropulated by stationary non-threatening targets and threats.
vehicles treat all uncertain areas as possible destinatiomie number and locations of the targets are initially un-
in order to identify as many targets as possible. Howeveknown. We assume that there is at most one target in each
due to the UAVs’ energy limitations and the various un<cell. There are als@/ stationary threatsy;, i =1,..., M,
certainties in complex scenarios, such as imperfect sensghich have anti-craft capabilities, such as surface-to-air
accuracy and “pop-up” threats, the UAVs cannot use theiissiles (SAMs). The threa; is located afz],y;) and it
exhaustive coverage path planning methods (e.g., Zambdwisa priori known attack regior; which is the range over
search [6]) to explicitly pass over all points in the searchvhich the threat is capable of destroying the UAVs with
area. Thus the vehicles need highly autonomous path plamiori known kill probability pt.;, € [0, 1].
ning capa_bllltles. Our research focusgs on this problem. We The uav Dynamics Model
have previously proposed a decentralized control framework
for emergent c_oordlnat|on_s among vehlc_les and _develop ﬂronously in discrete time, searching the given environ-
several heuristic cooperative path planning algorllthms [7 ent for targets. Each UAV is equipped with a sensor (with
[8], [9]. Some other related works on the cooperative searg

bl include 1101, 1111, The UAV . perfect detection accuracy) and communication capabili-
problem Include [10], [11]. The U , cooperative S€arthies. At each time step, the UAV can move from one cell to
problem is also related to the multi-robot mapping an

| . bl 121 1131 in th boti nother neighboring cell, subject to some maneuverability
exp orz_itlon problem [12], [13] in t 1€ 10 otics area. ... constraints. In order to simplify the problem we start with
. In this paper, we ext_end our previous method bY eprICItI3fhe assumption of perfect communication among UAVS,
mcorp(_)ratmg threats_ in the co_ntrol m_odel and in the COvhich means that, at each time step, a UAV can receive the
operative path planning strategies, which makes the Sear§gnsing information and state information from other UAVs
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The team consists ofV identical UAVsS moving syn-



7 o] C. The UAV Information Base

+ & UAVs use three cognitive maps, tharget probability
Gk map P(t), the threat probability map K(¢), and the
efi=o ot certainty mapX'(¢) as its knowledge base for the mission. In
) I 1 ) 5 the target probability mag’(t), each cell(z, y) has a value
p(z,y,t) € [0,1] representing the probability of a target
. being present in cellz, y), termed thetarget probability

p(z,y,t) = Pltarget present az,y))  (2)

The threat probability mag (¢) stores thehreat probabil-

ity of each cell(z,y) denoted as:(z,y,t) € [0,1] which
represents the probability that the UAV will be destroyed at
cell (z,y) by any threat. We have
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Fig. 1. Possible transition choices for agents in&brientations.

)\z(t) = (:L‘i(t),yi(t)) € {1, 2,..., Lw} X {1, 2,..., Ly} is
the i-th vehicle’s position in the environment at time

The second element;(t) € {0,1,...,8} is the vehicle's  k(z,y,t) = P(UAV destroyed atz,y) by threat$
orientation defined by{0 (north), 1 (northeast),2 (east), " .

3 (southeast)4 (south), 5 (southwest),6 (west), and7 = 1-JJa-ple.y) 3)
(northwest}. The third element;(¢t) € {0,1} of the state J=t

v;(t) is a flag indicating whether the UAV has been wheren is the number of threats whose attack regions cover

destroyed at time, whered; () = 1 means that the UAY  position (z,y).

is alive at timet. The certainty mapt'(¢) stores thecertaintyvalue of each
The UAV’s dynamics is subject to its physical curvaturecell (z,y), denoted ag(z, y,t) € [0, 1], which corresponds

radius constraints, reflected in the fact that it can onlyo the degree to which the cell has been searched. If

change its orientation by at most one step, that;i§+1) € y(z,y,t) = 0 then the cell has not been searched until

{oi(t) = 1,0i(t),0i(t) + 1} mod 8. This essentially means time t. On the other hand, if(x,y,t) = 1 then the cell

that the UAV’s maximum turning capability i¢5°. Thus has been fully searched. This factor is used to drive the

each UAV has three possible positions for the next time steplAVs to explore the un-searched regions.

i.e. turn left, turn right or go straight, which is designated by In the decentralized search model, each UAsarries its

{I (left), f (front), r (right)}. Figure 1 shows this graphically own cognitive mapspPi(¢), K(t) and X*(t). The initial

for various orientations. values of the cognitive map£¢(0), K*(0) and X*(0) are
The control decision for UAV; is its path selection at used to reflect the priori knowledge about environment.

each time step, denoted byu;(t) € {l, f,r}. The UAV's For example, if all targets are land-based, the locations

state can also be changed by threats. The WAVIll be  corresponding to a lake may begin with(z,y,0) = 0

destroyed with probability?,;, in threat;’s attack region, and x‘(z,y,0) = 1 (i.e., the location is free of targets).

thus causing the vehicle’s state flagt) = 1 to change The threat probability mag<®(0) is initialized according

into 4;(t + 1) = 0. The threat actions in the environment,to the locations and types of the known threats. The maps,

denoted byw(t) = w1 (t),wa(t), ..., wn(t)], determine the Pi(t), Ki(t) and X(t) are updated on-line using the

transition ofd;(¢), which is a stochastic event. In summary,new information obtained by UAM's sensor scan and by

a vehicle’s transition function can be expressed as: communication with other UAVs. The assumption of perfect

communication, in fact, makes the information base for all
vilt +1) = foluilt), wilt) (1)) @ UAVs the same, and we can use global madg), K (t)

In our model, UAVs use theg-steps-ahead path planningang X(t).

method [7], that is, each UAV plans its paghsteps ahead  |n the certainty mapy'(¢), most cells typically begin with

of its current location, adding a new move at each timeg certainty of zero. Each time a UAV visits célt,y) and

step. For simplicity, in this paper we uge= 1, but the makes a scan, the certainty changes according to the rule
extension tog > 1 is straightforward. Thus, at time-step

t, the UAV i makes its path decision;(t + 1). At time ¢, x(z,y,t+1) = x(z,y,t) +0.5(1 — x(x,9,t)) (4)
the UAV executes aaction comprising the following three This is a simple way to track the number of useful “looks”
steps: each cell has had and captures the notion of diminishing
1) It makes decision;(t + 1) to choose a new orienta- returns with each look. For the threat map, we assume
tion, o;(t + 2). that the threats are all stationary and knowpriori. So
2) It then find its position\;(t + 2) as the neighbor of the threat probability map is time-invariant, thatAgt) =
\i(t + 1) facing orientationo; (¢ + 2). K(0).
3) Finally, it executes its decision;(t) and updates its ~ Next we discuss the update of the target probability map
statev; (t+1) = [N\;(t+1), 0;(t+1),5;(t+1)] by going  P(t). As UAV i visits a cell (x,y) at time ¢, it makes
to grid location);(t+1) with orientationo;(t+1) and a sensor scan to detect targets. The resulting observation
changings;(t + 1) according to threat actions(t).  is denoted byb;(z,y,t) € {0,1}, whereb;(z,y,t) = 1

5559



indicates a target detection abdx,y,¢) = 0 indicates no where v(t) = [vi(t),v2(t),...,on(t)] and u(t) =
target detected. The sensor’s detection accuracy is charéde:(t), us(t),...,un(t)]. Thus, for UAV i, its decision
terized by two parameters, the sensor detectiongaend w,(t + 1) is a function of the current environment state
the false alarm ratp; which are defined as:

ui(t + 1) = hl((E(tD (9)
pe = P(bi(z,y) =1| A) (5) . N _
pp = Pbi(z,y) =1 A) 6) As the UAVs execu.te their decisions(t), their sensors
return the scan readin@st) = [b1(¢), b2(t), ..., bn(t)] and
where A denotes the event that a target is actually locateithe threats take actions(t) = [wi(t),wa(t), ..., war(t)]-
in cell (z,y). Both b(¢) and w(t) are stochastic quantities and they,
The update rule for the target probability, which is derivedogether with the vehicles’ actions, determine the new
based on Bayesian inference, is given by: environment state through a stochastic transition function,
pa,y,t) = bz, A + (1= bi(z,y,t)he () I
ot +1) = fo(x(t), u(t), b(t), w(t)) (10)
where
I pep(z,y,t — 1) Equations_ (9) and (10) define _the dynamics 01_‘ _the system,
YT pep(m iyt — 1)+ pr(1— plz,y,t — 1)) with functionsh and f; depending on the specific cooper-
(1—p)p(z,y,t — 1) ative control strategy used. Note that the UAVS’ decisions
Az (1—p)(A—=p(z,y,t— 1))+ (1 — po)p(z,y,t — 1)  cause the environment state transitions which, in turn, affect

) the decisions of the UAVs. The dynamics are stochastic due
It can be shown that by using the above update equRs the stochasticity ob(t) andw(t)

tions, p(z,y,t + 1) > p(x,y,t) for b;(z,y,t) = 1 and
p(z,y,t+1) < p(z,y,t) for b;(z,y,t) = 0 whenp, > py.
Throughout this paper, we assume> 0.5 > py, i.e., the
sensors are informative.

Finally, we use a binary variablé(x,y,t) to indicate
whether a target has been confirmed or not in ¢elly).

The objective of the search mission, which will 185t
units of time, is to locate as many targets as possible
while minimizing UAV losses. This can be achieved by
cooperative path planning among the multiple UAVs such
that the following payoff function is maximized:

Initially, all cells except those with known targets have Ty—1

¢(z,y,0) = 0. The condition for updating is: E{G(x(Ty)) — Z J(x(t),u(t))} (11)
1 if pla,y,t) > 0 =0

C(w,y,t) = { 0 else (8) where the terminal payoff functiorG(-) and the cost
whered is a pre-defined threshold close to function J(-, -) are defined as
D. Optimal Control Problem Formulation G(2(Ty)) ::g: mo0;(T5) + Z mC(x,y, Ty)(12)
To accomplish the search task efficiently, each UAV needs i1 (z.9)€E

to find an optimal path to follow based on its knowledge of M

_the environr_nent: In our model, the UAVS’ decision Process j(x(t),u(t)):= ZC(Ui(t)) (13)

is decentralized in the sense that each UAV makes decisions o1

independently. This decentralized decision making problem

can be formulated as an optimal control problem as followd.he positive constantsr, and m; represent the weight
As defined, the-th UAV's decision at timet is to select @llocated to the importance of UAV safety versus target dis-

its move for timet + 1, u;(t + 1), leading to its position COVery, whilec is a positive-valued function that represents

at time ¢ + 2. The decision is based on the environmenthe cost of moving UAV; as designated by (t). Because

statex?(t), which is composed of the UAV’s cognitive mapsWe use.|dent|cal UAVsS and.we assume the same cost for

and its knowledge of all the vehicles’ states and decisiong10Vves in every direction¢ is a constant function. The

We definevi () = [v} (1), vj(t),. .., vy (¢)], wherevi (t) = first term in (12) represents the total number of surviving
[)\;(t),og»(t),(;;(t)] denotes vehicle’s knowledge on ve- _UAVs_,_ while the second term represents the number of
hicle j's state at timer; wi(t) = [ul(t), ub(t), ... ul(t)] identified targets. Thus, the objective of the search problem

whereui(t) € {I, f,r} denotes the vehiclés knowledge ¢&n be described as maximizing the terminal payoff function
¥l Y )

on vehicle;'s decision at time. Note that in practicey’ (t), G(m(Tf))-_ _ _ _

u(t) might not be the same ag'(t), u%() respectively ~ Dynamic programming [14] is one possible approach for

because of communication limits under some scenariodlis optimal path selection problem. However, it is com-

However, due to the perfect communication assumptio,ﬁ),utationally prohibitive because of the large dimensionality

they are the same in this paper, which means that all ti the state space in this problem. Instead, we develop an

UAVs share the same environment state represented by @Pproximate dynamic programming method using a multi-
objective cost function, where the cooperation among UAVsS

x(t) = {P(t), K(t), X (t),v(t),u(t)} is achieved using the “rivaling force” approach [7].
5560



I11. COOPERATIVEPATH PLANNING METHOD Therefore, we get:
In this section, we describe a path selection decision func- [(pe = pf)p(@,y,t) + py] - e
tion A(x(t)), which the UAVs can use for cooperative path #/ (¥t +1) = 0 Lgéx,y,t):o andp(z, y,t) >
planning based on their current information. The decision
function is based on the expected rewards associated withhe above equation indicates that each UAV shouid select
each of the three possible paths for the next time step. Thepath consisting of cells with high target probabilities.
reward definition takes into account the following four sub- 2) Environment Exploration RewardSince targets are

) i . . .usually relatively sparse in the practical situations, it is
goals: 1) Target Confirmation, 2) Environment EXpIorat'On'rmportant for the UAVs to explore the environment to

3) Threat Avoidance, 4) Cooperation. _ obtain new information on potential targets. As discussed
The reward obtainable at the next step is caifechediate before, the certainty valug(x,y,t) can be used to drive

reward However, a UAV should not select a path only withthe UAVs to explore un-searched regions. The environment
the best immediate reward but a path that will bring mor&Xploration rewardp,, is defined as the expected certainty
rewards over the long term. Therefore, UAVs use a Iimiteaﬂcrease(c;auieﬂ lb)y i%A[V(z ws;tﬁci)ciéﬂ:,(gi). 0]
look-ahead policy to select their paths in the proposed pelinth ;05>E1 _yx(x ” t))x e (18)
path planning method, that is, they also consider longer ’ e
term rewards in their path selections. Next, we discuss theMe can see that the environment exploration reward
heuristic estimation of the immediate reward and the long.(z,y,t) is a decreasing function of(x,y,t). Hence, for
term reward, respectively. exploration purposes, it is better for the UAVs to visit cells
A. Immediate Reward Estimation with lower certainty valueg(z, y, ?).

The expected immediate reward for a UAV searching cell It is easy to notice that the target confirmation reward and
(z,y) attimet+1, denoted ag(z, y, t+1), is the payoff for environment exploration reward are not always mutually

target confirmation and UAV survival. It is represented as @ompatible These two imperatives can be viewed as the
multi-objective cost function which is a linear combination ’

: classic exploration vs. exploitation tradeoff in game theory.
Sggfslfr types of rewards corresponding to the four sub 3) Threat Avoidance Reward Due to the presence of

_ threats, UAVs can be destroyed, resulting in a reduction
Py, t+1) = wips(@,y,t +1) +wape(z,y,t + 1) in the terminal payoff functiorG(-). The threat avoidance
twspe(@,y,t + Dtwape(z,y,t +1) (14)  reward p, is defined as the avoided loss in the terminal

where ps(z,y,t + 1) is the target confirmation reward, ﬁﬁ])goiflulr!ctlon if a UAV'is not destroyed in ceflr, y) at

pe(z,y,t + 1) is the environment exploration reward, pe(x,y,t +1) = (1 — k(z,y,t +1))(m, + 0(t + 1)7m)  (19)

pi(z,y,t+1) is the threat avoidance reward gndz, y, ¢+ yhereq(¢ + 1) denotes the estimated average number of
1) is the cooperation reward. The definitions for thes?argets which could be identified by the UAV from time

rewards are given below. By changing, i € {1,2,3,4}, 4 "9 ynil time T}. Therefore,i(t + 1) should become
the relative importance of the four rewards can be scaled,\4jjer ast increases. Note that(z,y,t + 1) is known

1) Target Confirmation RewardTo achieve the search R . .
objective, the UAVs need to maximize the number oPecause the threat map is time-invariant. To gain threat
confirmed targets. A UAV will get a reward, in one cell avoidance rewards, a UAV needs to avoid cells with high

if it can confirm a new target there. So the expected targéireat probabilities.

confirmation reward in Cel(x,y) at timet + 1 is defined 4) Cooperation Reward Since UAVSs p|an their paths

as. independently, it is natural that two or more UAVs may

prlz,yt+1) o _ choose the same paths because they all want to obtain the
=P(new target confirmation in cellr,y) at timet +1) -m  geqciated high rewards. This will be more pronounced if

+P(non-target confirmation in cellz, y) attimet + 1) -0 the UAVs happen to be very close and have overlaps in their

=P(C(t)=0N¢(t+1)=1) m candidate positions for the next time step. These possible
=P(((t) =0Nbi(z,y,t +1) =1Np(z,y,t) > B) - m overlaps in the search paths will waste the team’s search
=P(¢(t)=0)-P(b;(z,y,t + 1)=1)-P(p(x,y,t)>B)-m (15) effort and cause a reduction in the global payoff function.

We include a cost function that penalizes vehicles being

thatp(z, y, ¢) can take such that thefz, y, ¢+ 1) (generated close to each other and heading in the same direction so as

: . . reduce the possible overlaps. In this paper, we utilize the
using update Equation (7)) will be greater than the threshofﬁ. ) N )
value . The value of@ can be obtained using (7) and the rivaling force” based method to generate the cooperation

" cost function. The cooperation reways], is defined as the
specific values op., py andé.

Let A denote the event that a target is actually locatefedative of the “rivaling force”f;:
in cell (z,y). Using the total probability theorem and pe(zyy,t+1) = —Fi(z,y,t + 1) (20)
p(x,y,t) = P(A)! Pe = P(Ql($7y7t+ 1) =1 | A) and
];be__ P(bl(x’y’i+ 1)=114), we obtain: positions A;(t + 1) and orientationso;(t + 1),j €
(bi(w, gt +1) =1) __{1,2,...,N}, j # i. Detailed information regarding the
= Pbi(z,y,t+1) =1[A)P(A)+ P(bi(z,y, t+1)=1|A)P(A) ganeration of the rivaling force functiol defined by (27)
= (pe — pr)p(,y,t) + ps (16) s given in Section IV.

where is a constant indicating the minimum probability

where F;(z,y,t + 1) is a function of other vehicles’
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B. Long-Term Reward Estimation IV. COORDINATION METHOD

The long-term expected reward function is used to steer a5 dgiscussed before, cooperation between vehicles does
UAVs away from decisions that may yield good immediatg,ot arise naturally in the proposed decentralized scheme
payoffs but reduced benefits in the long-run. The long-tergince every vehicle tries to optimize its own behavior.
expected reward, denoted Byz,y,¢+1), is defined as the Therefore, we develop a real-time approach to realize coop-
maximum reward accumulated by following a path startingative search using the concept of rivaling force developed
at cell (z,y) over stept +1to ¢ + 7, T > 1. Since each i [7]. The main idea is to avoid simultaneously searching
UAV has three candidate positions to go in the next timg cg|| by more than one UAVs. This is accomplished by
step, it hass” " possible paths over timet-1tot+7. The  treating the areas around a UAV as “soft obstacles” to be
expected reward for pathe [1,2,...,37 '] is denoted as ayoided in other vehicles’ path selections. The rivaling force
¢’ (z,y,t + 1) and is the sum of the accumulated rewardgyerted by a UAV on a neighboring UAV is obtained by a
in the path and the expected future reward afterl’. Let  type ofartificial potential fieldmethod [15]. At each step, a
(,,: y7,) denote a cell in pathi which the UAV will visit  yav considers in its path decision the overall rivaling force
at timet +m, wherel < m <T. The reward obtained by \hich it is exerted upon it by other vehicles.
the UAV in that cell at timet + m is given by: If UAV i plans to visit cell(z, y) at timet, it will receive

ol oyl t+m) a rivaling force exerted by other vehicles. The magnitude

I\ Ly ym? m . . . .

—1 of the rivaling force coming from vehiclg depends on the
- H [1— k2l gl t+ )] | [wips(@d,, i, t +m) vehiclgj’s position and orientation at tirr_Ve We can obtain
=1 the minimum number of steps that vehiglevould need to
Fwape (@ yl t+m)twspe(ad  yl t+m)] (21) reach cell(z,y), denoted ag;(z,y, ), using vehicle;'s
o i i ) position A;(¢) and orientatioro;(t). This variable reflects
wherepy(w;,, yp,, t +m) is the target confirmation reward the cost for vehiclej to search(z,y) in the near future.
in cell (a7, yp,) at imet + m, pe(th,, Y, t +m) iS e gacace the UAVS cooperate to achieve a group objective,

: : me ;
environment exploration reward and(z,,, yy,, ¢ +m) is a higher cost for vehiclg searching(z,y) makes it more

the cooperation reward. The prodddt’ " [1—k(zZ, y?, t+ . - .
5)] gives the probability that the UAV %Ni” still be alive to appropnate for vehicle to search the cell. In this case, the

reach that cell and obtain the reward. Due to the fact théivaling force exerted by vehiclg upon vehicle: will be
pi(xd  yl t + m) depends om(x? vyl .t +m — 1) and small. Using an approach similar to the artificial potential
the positions and orientations of UAVs at time- m, the  field method, we define the force exerted by vehitlen
expected reward cannot be known at decision time stepyenicle; in cell (z,y) at timet as:

whenm > 1. Hence, we need to find a way to estimate ’ '
these values. Here we simply use the corresponding known Fii(z,y,t) = (26)
values at time to substitute the unknown values over time N Li(z,y,t)

t+1tot+T—11in (21). Thus we get the heuristic estimateThe total rivaling force received by UAY for moving to a

of py as: o cell (z,y) at timet¢ can be given as
ﬁl(ﬂfimyfmt+m) N
m—t . o Fi(z,y,t) = Y Fij(z,y,1) (27)
= [0 = k@ vl + 8)]lwrps (@, g t +1) =T
s=1 Note that different UAVS may receive different rivaling

w2 pe (T, Y, t+1) + wspe(zim, ym, t+1)]  (22)  forces when located in the same cell because of differences
in the positions/orientations of neighboring UAVs. This
path j can be denoted as: for.ce is a pen_alty for UAViI for.entering a cell that is a
T suitable selection for other vehicles.
ol = H[l —k(xd, gl t + 8)](m, +0(t+T)m)  (23) V. SIMULATION RESULTS
s=1 To assess the performance of the approach described
So, the total expected reward for patitan be denoted as above, we simulated a team of five UAVs searchirag 820
T VR . cellular environment with 20 targets and 5 threats. There is
¢j(z,y,t+1) = Z (@, Yo tH 1) Fwapy (24)  pg 5 priori topographical information and no other sources
m=1 f information on target distribution. Thug(z,y,0) = 0
ndp(z,y,0) = 0.5 for each cell(z, y) in the environment.
For all the simulation runs in this paper, the homogeneous
oz, y,t+1) = e, ¢j(z,y,t+1) (25 targets and threats are randomly assigned to the environment
S while the UAVS' initial locations and orientations are held

It is obvious that, wherll’ = 1, the expected long-term .
P N onstant. The threats’ attack regions are sep te 2, the

reward at cell(z, y) is the same as the immediate expecte . B ) .
reward given by (14). This definition of long-term rewardireat probabilitypiin = 0.2, th’e UAVS' sensor detection
te p. = 0.8 and the sensors’ false alarm raig = 0.1.

. . . ral
der]ves a way to allow the UAVs to look ahead in makmgAII simulations were run for 250 time steps.
their decisions.

Meanwhile, the future reward after timet+ T following

wherew, is the same weight as in (14). And the expecteni
long-term reward(z, y, ¢t + 1) at cell (x,y) is
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indication of the coverage of the search region. It is obvious
that the cooperative search method provides a significant
improvement on both performance measurements.
VI. CONCLUSION

In this paper, we have presented a formulation for the
cooperative search problem. The objective of the search
mission is to find and confirm as many targets as pos-
sible while minimizing UAV losses. A key issue for this
cooperative control problem is the design of a cooperative
scheme such that the team of vehicles perform path planning
cooperatively based on the information they get. We develop

Fig. 2. Number of targets found as a function of time: Comparison witt® Cooperative path planning algorithm based on a heuristic
greedy and random search algorithms. All data is averaged over 50 rumsulti-objective cost function method, which can overcome

the computational complexity of looking for an optimal

Comparion of Different Search Algorithms

[1]
[2]
Time steps [3]

Fig. 3. Residual uncertainty as a function of time: Comparison with
greedy and random search algorithms. [4]
We used two measures of performance: [5]

« Number of targets found up to the current time-step
i,e., the number of cells witg(z,y,t) = 1.

o The residual uncertainty left in the environment. ”

N Z(:c,y)eE(l - X(xvyat))

Z(z,y)eE(l - x(z,y,0)) 7
The performance of the proposed cooperative search a‘—
gorithm was compared to that of a random search and a
greedy search algorithm. In the random search strategy, tHél
vehicles do not use any available information about the
target and threat distributions but simply move in a random
direction within the search region. In the greedy searcH®
strategy, the vehicles move at each step to the candidate
cells with highest reward for target confirmation and tq10]
avoid damage to the UAV. The reward can be obtained
by using the immediate reward definition (14) in section
M-A with ws = 0. In this strategy, the UAVs can share[11]
information about where other UAVs have searched so
that all the UAVs share the same maps but they perforigy
little distributed path selection in order to coordinate their
actions. In the proposed cooperative search method, ;E%]
vehicles will move to the cells with the highest rewar
defined as (25), where we sét= 3.

Figure 2 shows the number of targets found by each4l
algorithm as a function of time. Figure 3 shows how thgs
mean residual uncertainty in the environment declines with
time for different search algorithms. This value gives a good

U(t) (28)

dynamic programming solution. The cooperation among
UAVs is achieved using a rivaling force approach. The
simulation results demonstrate that the heuristic approach is
an intuitive and computationally efficient method to tackle
the cooperative search problem.
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