

Abstract—A new hybrid optimization algorithm is proposed

for the problem of finding the minimum makespan in the
job-shop scheduling environment. The new algorithm is based
on the principle of particle swarm optimization (PSO). PSO
employs a collaborative population-based search, which
combines local search (by self experience) and global search
(by neighboring experience), possessing high search efficiency.
Simulated annealing (SA) employs certain probability to avoid
becoming trapped in a local optimum. By reasonably
combining these two different search algorithms, we develop a
general, fast and easily implemented hybrid optimization
algorithm, named HPSO. The effectiveness and efficiency of
the new algorithm are demonstrated by comparing results with
other algorithms on some benchmark problems. Comparing
results indicate that PSO-based algorithm is a viable and
effective approach for the job-shop scheduling problem.
Keywords:Particle swarm optimization, Simulated annealing,

Hybrid optimization, Job-shop scheduling.

0 INTRODUCTION
Scheduling is concerned with allocating limited resources

to tasks to optimize certain objective functions. One of the
most popular models in scheduling area is that of the
job-shop. The classic job-shop scheduling problem (JSP)
can be described as follows: Given n jobs, each must be
processed on m machines. Each job consists of a sequence of
operations, which must be executed in a specified order.
Each operation has to be performed on a given machine for a
given time. A schedule is an allocation of the operations to
time intervals on all machines. The problem is to find the
schedule that the makespan (the maximum of job

Manuscript received September 24, 2003. This work was supported by

the National Natural Science Foundation of China under Grant 70071017.
Xia Weijun is with the Department of Automation, Shanghai Jiao Tong

University, Shanghai 200030, P. R. China. Phone: 86-21-62933428-24,
86-21-62932070; E-mail: weijunxia@sjtu.edu.cn.

Wu Zhiming is a professor of Department of Automation, Shanghai Jiao
Tong University, Shanghai 200030, P. R. China. E-mail:
ziminwu@sjtu.edu.cn.

Zhang Wei is with the Department of Automation, Shanghai Jiao Tong
University, Shanghai 200030, P. R. China. E-mail: zhang_wi@sjtu.edu.cn.

Yang Genke is a professor of Department of Automation, Shanghai Jiao
Tong University, Shanghai 200030, P. R. China. E-mail:
gkyang@sjtu.edu.cn.

complete-time) is minimal subject to the following
constraints: (i) the operation precedence is respected for
every job, (ii) each machine can process at most one
operation at a time and (iii) an operation can not be
interrupted if it initiates processing on a given machine.

It is well-known that JSP is NP-hard and belongs to the
most intractable problems considered. Historically JSP was
treated via exact methods or approximation algorithms.
Exact methods are based chiefly on the Branch and Bound
(BB) method[1]. Because it is time-consuming and only can
solve small problems, such algorithm lost its attraction to
practitioners. On the other hand, approximation algorithms,
which are a quite good alternative, have been developed
largely during the past decade, such as the shifting
bottleneck approach (SB)[2], simulated annealing (SA)[3],
taboo search (TS)[4], and genetic algorithm (GA)[5]. In recent
years, Pezzella et al. (2000) described a hybrid optimization
strategy (TS-SB)[6] for JSP, and Aiex et al. (2003) proposed
a parallel greedy randomized adaptive search procedure
(GRASP)[7] to solve JSP.

In this paper, we introduce a very fast and easily
implemented hybrid algorithm based on particle swarm
optimization (PSO) and simulated annealing algorithm. The
remainder of this paper is organized as follows: Section 1
describes general PSO algorithm and how to apply it in JSP.
Section 2 focuses on basic ingredients of SA for the JSP,
describing some rules of parameters selection in SA. The
hybrid optimization algorithm is described in section 3. In
section 4, the new optimization algorithm is used to solve
some benchmark job-shop scheduling problems, presenting
results and analyzing difference among different algorithms.
Some concluding remarks are made in section 5.

1 PSO ALGORITHM
PSO is an evolutionary computation technique developed

by Kennedy and Eberhart in 1995[8]. The particle swarm
concept was motivated from the simulation of social
behavior. The original intent was to simulate the graceful but
unpredictable choreography of bird flock. PSO requires only
primitive mathematical operators, and is inexpensive in
terms of both memory requirements and time.

A New Hybrid Optimization Algorithm for the
Job-shop Scheduling Problem

Xia Weijun, Wu Zhiming, Zhang Wei, and Yang Genke,
Department of Automation, Shanghai Jiao Tong University

Shanghai 200030, P. R. China

1.1 Standard PSO Algorithm
 PSO is initialized with a population (named swarm in

PSO) of random solutions. Each individual or potential
solution, named particle, flies in the D-dimensional problem
space with a velocity which is dynamically adjusted
according to the flying experiences of its own and its
colleagues. During the past years, researchers have explored
several models about PSO. In this paper, we use the global
model equations as follows[9]:

)(*)(*1* idididid XPRandCVWV −+=

)(*)(*2 idgd XPrandC −+

ididid VXX +=
Where Vid, called the velocity for particle i, represents the

distance to be traveled by this particle from its current
position, Xid represents the particle position, Pid, which is
also called pbest (local best solution), represents ith
particle’s best previous position, and Pgd, which is also
called gbest (global best solution), represents the best
position among all particles in the swarm. W is inertia weight.
It regulates the trade-off between the global exploration and
local exploitation abilities of the swarm. The acceleration
constants C1 and C2 represent the weight of the stochastic
acceleration terms that pull each particle toward pbest and
gbest positions. Rand() and rand() are two random
functions with range [0,1].

For equation (1a), the first part represents the inertia of
previous velocity. The second part is the “cognition” part,
which represents the private thinking by itself. The third part
is the “social” part, which represents the cooperation among
the particles[10]. The process for implementing the PSO
algorithm is as follows:

1) Initialize a swarm of particles with random positions
and velocities in the D-dimensional problem space.

2) For each particle, evaluate the desired optimization
fitness function.

3) Compare particle’s fitness value with particle’s pbest.
If current value is better than pbest, then set pbest value
equal to the current value, and the pbest position equal to the
current position in D-dimensional space.

4) Compare fitness evaluation value with the swarm’s
overall previous best. If current value is better than gbest,
then reset gbest to the current particle’s value.

5) Change the velocity and position of the particle
according to equations (1a) and (1b) respectively.

6) Loop to step 2) until termination criterion is met,
usually a sufficiently good fitness value or a specified
number of generations.

In PSO, each particle of the swarm shares mutual
information globally and benefits from the discoveries and
previous experiences of all other colleagues during the
search process. So the PSO should be effective in solving
practical optimization problems.

1.2 PSO for JSP

a) The Encoding Scheme and Initial Swarm
One of the key issues in applying PSO successfully to JSP

is how to encode a schedule to a search solution, i.e. finding
a suitable mapping between problem solution and PSO
particle. In this paper, we set up a search space of n× m
dimensions for a problem of n jobs on m machines. Each
dimension has discrete set of possible values limited to s =
{Pi: 1 ≤ i ≤ n}. A particle consists of m segments and every
segment has n different job numbers, representing the
processing orders of n jobs on m machines. For example, an
easy problem with 6 jobs and 6 machines (FT06[11]) is
considered. Fig. 1 shows an instance of a mapping from one
possible assignment (on machine 1) to a particle position
coordinates in the PSO domain, the first segment of a
particle.

J o b s a s s ignme nt o n ma c hi ne 1
(J o b , P ro c e s s)

(1, 2), (2, 5), (3, 4), (4, 2), (5, 5), (6, 4)

Ma p p i ng

The firs t segment of a PSO particle
D i me ns i o n : 1 2 3 4 5 6
Po s i t i o n : 4 3 1 6 2 5
P ro c e s s : 2 4 2 4 5 5

Fig. 1 Jobs ass ignment to PSO particle mapping

Generally, particles’ positions and velocities in initial
swarm are generated randomly. For reducing the iterative
generations of PSO, we introduce a new method to generate
initial swarm. Notice that most feasible solutions in JSP are
arranged according to the increment order of the process and
only a few processes are reversed. Then, we arrange job’s
order respectively according to the increment order of
process on the machine. If one job’s process order is the
same as the other, the two jobs’ orders are arranged
randomly. For example, consider the jobs and processes on
machine 1 in Fig. 1, Fig. 2 shows two possible expressions
of the first segment of initial particle that can be generated
according to the new way. If jobs on every machine are
arranged by this way, the probability that initial particle may
be a feasible solution, i.e. a feasible schedule, increases
greatly.

b) Setting Parameters
In Equation (1a), inertia weight (W) is an important

parameter to search ability of PSO algorithm. A large inertia
weight facilitates searching new area while a small inertia
weight facilitates fine-searching in the current search area.
Suitable selection of the inertia weight provides a balance
between global exploration and local exploitation, and
results to less iterations on average to find a sufficiently

 (1a)

 (1b)

Ini t i a l p a r t i c l e 1 (t he f i r s t s e gme nt)

Ini t i a l p a r t i c l e 2 (t he f i r s t s e gme nt)

 D i me ns i o n : 1 2 3 4 5 6
 P o s i t i o n : 4 1 6 3 2 5
 P ro c e s s : 2 2 4 4 5 5

 D i me ns i o n : 1 2 3 4 5 6
 P o s i t i o n : 1 4 6 3 5 2
 P ro c e s s : 2 2 4 4 5 5

Fig. 2 Two poss ible express ions on machine 1

optimal solution. Therefore, consider by linearly decreasing
the inertia weight from a relatively large value to a relatively
small value through the course of PSO run, PSO tends to
have more global search ability at the beginning of the run
while having more local search ability near the end of the
run. For all computational instances in this paper, the inertia
weight is set to the following equation:

iter
iter

WW
WW *

max

minmax
max

−
−=

Where, Wmax: Initial value of weighting coefficient,
Wmin: Final value of weighting coefficient,
itermax: Maximum of iteration or generation,
iter: Current iteration or generation number.

In following computational instances, the inertia weight is
set starting with a value 1.2 and linearly decreasing to 0.4
according to equation (2) through the course of the run.

The acceleration constants C1 and C2 in equation (1a)
adjust the amount of “tension” in PSO system. Low values
allow particles to roam far from target regions before being
tugged back, while high values result in abrupt movement
toward, or past, target regions [12]. According to experiences
of other researchers, let us set the acceleration constants C1
and C2 each equal to 2.0 for all following instances.

By computation of equation (1a) and (1b), the absolute
value of Vid and Xid may be great. So the particle may
overshoot the problem space. Therefore, Vid and Xid should
be limited to maximum velocity Vmax and maximum position
Xmax, which are two parameters specified by the user. Vmax
serves as a constraint to control the global exploration ability
of a particle swarm. A larger Vmax facilitates global
exploration while a smaller Vmax encourages local
exploitation. In JSP, the maximum velocity Vmax is set to n
(number of jobs), i.e. Vid is a value in the range [-n, n]. The
maximum position Xmax is also set to n. Because Xid
represents job number in JSP, Xid must be a positive integer.
So Xid is an integer value in the range [1, n].

c) Fitness Function
Fitness is used as the performance evaluation of particles

in the swarm. Fitness is usually represented with a function f :
S →R+ (S is the set of candidate schedules, and R+ is the set
of positive real values). Mapping an original objective
function value to a fitness value that represents relative

superiority of particles is a feature of evaluation function. In
JSP, the objective function is to minimize the maximum of
complete-time on all machines. Therefore, in our algorithm,
we use the maximum complete-time among all machines as
the fitness function of a candidate. Particle with the lowest
fitness will be superior to other particles and should be
reserved in the search process.

d) Modifying Solutions
In encode scheme, only position vector is used to compute

in practical computational process. Position vector
represents jobs’ arrangement on all machines.
Computational result of a particle’s position coordinate may
be a real value such as 3.265. It is meaningless for job
number. Therefore, in the algorithm we usually round off the
real optimum values to its nearest integer number. By this
way, we convert a continuous optimization problem to a
discrete optimization problem.

The computation results of equation (1b) will generate
repetitive code (job number) in every segment, i.e. one job is
processed on the same machine repeatedly. It breaches the
constraint conditions in JSP. We call the computation results
that breach constraints illegal solutions. Illegal solutions can
be converted to legal solutions by modification. The process
of modifying solutions is as follows:

1) Check a particle according to machine order and record
repetitive job numbers on every machine.

2) Check absent job numbers on every machine of a
particle.

3) Sort absent job numbers on every machine (of a particle)
according to increment order of their processes.

4) Substitute absent job numbers for repetitive codes on
every machine of a particle from low dimension to high
dimension accordingly.

We get legal solutions by this process, but some solutions
may be infeasible. By computing start-time and end-time of
each job, the infeasible solutions can be checked out. For
each infeasible solution, we give it a large fitness value in
evaluation process. So infeasible solutions cannot be the
pbest or gbest in search process.

2 SIMULATED ANNEALING
Ever since its introduction, independently by Kirkpatrick,

Gelatt and Vecchi[13], simulated annealing algorithm has
been applied to many combinatorial optimization problems.
On the one hand, the algorithm can be considered as a
generalization of the well-known iterative improvement
approach to combinatorial optimization problems, on the
other hand, it can be viewed as an analogue of an algorithm
used in statistical physics for computer simulation of the
annealing of a solid to the state with minimal energy[3].

SA approach can be viewed as an enhanced version of
local search or iterative improvement, in which an initial

(2)

solution is repeatedly improved by making small local
alterations until no such alteration yields a better solution.
SA randomizes this procedure in a way that allows
occasional alterations that worsen the solution in an attempt
to increase the probability of leaving a local optimum. The
application of SA as a local search algorithm assumes a cost
function (fitness function in this paper) calculated for each
possible solution, a neighborhood comprising alternative
solutions to a given solution and a mechanism for generating
possible solutions.

2.1 SA Algorithm
Starting from an initial solution, SA generates a new

solution S’ in the neighborhood of the original solution S.
Then, the change of objective function value, ∆ = f(S’) - f(S),
is calculated. For a minimization problem, if ∆ <0, the
transition to the new solution is accepted. If ∆ ≥ 0, then the
transition to the new solution is accepted with probability,
usually denoted by the function, exp(- ∆ /T), where T is a
control parameter called the temperature. SA algorithm
generally starts from a high temperature and then the
temperature is gradually lowered. At each temperature, a
search is carried out for a certain number of iterations, called
the epoch length. When the termination condition is satisfied,
the algorithm will stop.

For some reasons, we may be dissatisfied at the solution
obtained from SA algorithm. The solution can be improved
by using SA algorithm several times. It is helpful for us to
find better solution, especially for complex problems.

2.2 Neighborhood Solutions
In SA search algorithm, the choice of neighborhood can

greatly influence algorithm performance. While choosing a
rich neighborhood containing a large number of candidate
solutions will increase the likelihood of finding good
solutions, the computation time required to search from the
available neighbors will also increase. As a simple method
for generating neighborhood solutions, the pair-exchange
method is used on each machine of a particle as follows:

(1 ↔ 2), (2 ↔ 3), (3 ↔ 4), … (n-1 ↔ n)
By exchanging jobs in pair on the same machine of a

particle and evaluating pair-exchange result every time, we
can get satisfactory search results in a short time.

2.3 Cooling Schedule
SA process can be controlled by the cooling schedule. In

general, the cooling schedule is specified by several
parameters and/or methods, namely the initial temperature
T0, the epoch length L, the rule designated how to lower the
temperature, and the termination condition.

A proper initial temperature should be high enough so that
all possible solutions have equal chance of being visited. In
this paper, the initial temperature is determined by
experiments and experiences. If problem dimensions
(n×m) ≤ 50, T0 = 100. If problem dimensions (n×m) >50,

T0 = 500. For the second and third time of SA, T0 is set to the
value 10 and 2 respectively.

The epoch length L denotes the number of moves made at
the same temperature. According to the method of
generating neighborhood solutions, L can be set as SN, where
SN is the number of neighborhood solutions for a given
solution. SN is set to be the number of (n –1)× m in our
algorithm.

In SA algorithm, the temperature should be lowered in
such a way that the cooling process would not take too long.
The method, which is often believed to be excellent in the
current literature, specifies the temperature with Tk=B*Tk-1,
during the kth epoch (k=1, 2, 3, …), where B is a parameter,
called the decreasing rate, with a value less than 1. Higher
decreasing rate corresponds to slower process, and therefore
more moves are required before the process is terminated.
We set B as value 0.97 or 0.98 by experiments. For the
second and third time of SA, we set the values of B as 0.995
and 0.997.

As a criterion to terminate the algorithm, we use a simple
and general way, in which a termination temperature Tend is
set. If current temperature Tk < Tend , the algorithm will be
terminated. Tend, with a value near zero, influences the
search “granularity” of algorithm directly. Smaller Tend
implies finer search in problem space when algorithm
termination is forthcoming. In our algorithm, we set Tend =
0.1 when SA algorithm is used for the first time and Tend =
0.01 in the second or third time of SA.

3 HYBRID PSO ALGORITHM
PSO algorithm is problem-independent, which means

little specific knowledge relevant to a given problem is
required. What we have to know is just the fitness evaluation
for each solution. This advantage makes PSO more robust
than many other search algorithms. However, PSO, as a
stochastic search algorithm, is prone to lack global search
ability at the end of a run. PSO may fail to find the required
optima in case when the problem to be solved is too
complicated and complex. SA employs certain probability to
avoid becoming trapped in a local optimum, and the search
process can be controlled by cooling schedule. We can
control the search process and avoid individuals being
trapped in local optimum more efficiently by designing the
neighborhood structure and cooling schedule. Thus, a new
hybrid algorithm of PSO and SA, named HPSO, is presented
in Fig. 3.

Begin

Step 1. Initialization
1) PSO

 * Initialize swarm size, each particle’s position and velocity;
 * Evaluate each particle’s fitness;
 * Initialize gbest position with the lowest fitness particle in the swarm;
 * Initialize pbest position with a copy of particle itself;
 * Initialize Wmax, Wmin, C1, C2, maximal generation, and generation = 0.

2) SA
* Determine T0, Tend, B.
Step 2. Computation
1) PSO

 While (the maximum of generation is not met)
 Do {

generation ++;
Generate next swarm by equation (1a) and (1b);

 Evaluate swarm {
Find new gbest and pbest;

 Update gbest of swarm and pbest of particle;
}

 }
2) SA

 For gbest particle S of swarm
 {

Tk = T0;
 While (Tk > Tend)
 Do {

Generate a neighbor solution S’ from S;
Compute fitness of S’;
Evaluate S’{

∆ = f(S’) - f(S);
if (min [1, exp(- ∆ /Tk)] > random[0, 1]) { Accept S’; }

 Update the best solution found so far if possible;
 }
 Tk=B*Tk-1;
 }
 }

Step 3. Output optimization results.
End

It can be seen that PSO provides initial solution for SA

during the hybrid search process. Such hybrid algorithm can
be converted to general PSO by omitting SA unit, and it can
be converted to traditional SA by setting swarm size to one
particle. HPSO reserves the generality of PSO and SA, and
can be implemented easily. Moreover, such HPSO can be
applied to many combinatorial or functional optimization
problems by simple modification.

4 COMPUTATIONAL RESULTS
To illustrate the performance of proposed algorithm in

this paper, various kinds of benchmark instances with
different sizes have been selected to compute. FT06, FT10
and FT20 are three problem instances cited from [11].
LA01~LA40 are forty instances of eight different sizes cited
from [14] authored by Lawrence.

The algorithms for JSP mentioned above can be easily
implemented on computer. We program the algorithms in
Borland C++ and run it on Intel Celeron 300 with 128M
RAM. Moreover, swarm size is set to 20 and maximum of
iterative generations is set to 300 when dimensions are less

than 100. Swarm size is set to 30 and maximal generation is
set to 500 for other instances. Each instance is randomly
performed 20 times for each algorithm. Table 1 shows the
computational results of different benchmark instances.

Table 1. Computational results by PSO/HPSO
for the problem instances of classes FT and LAa.

Pro. n m BKS (H)PSO RE(%) Tav TSA

FT06
FT10
FT20

LA01
LA02
LA03
LA04
LA05

LA06
LA07
LA08
LA09
LA10

LA11
LA12
LA13
LA14
LA15

LA16
LA17
LA18
LA19
LA20

LA21
LA22
LA23
LA24
LA25

LA26
LA27
LA28
LA29
LA30

LA31
LA32
LA33
LA34
LA35

LA36
LA37
LA38
LA39
LA40

 6 6
 10 10
 20 5

10 5
10 5
10 5
10 5
10 5

15 5
15 5
15 5
15 5
15 5

20 5
20 5
20 5
20 5
20 5

10 10
10 10
10 10
10 10
10 10

 15 10
15 10
15 10
15 10
15 10

 20 10
20 10
20 10
20 10
20 10

 30 10
30 10
30 10
30 10
30 10

 15 15
15 15
15 15
15 15
15 15

55
930
1165

666
655
597
590
593

926
890
863
951
958

1222
1039
1150
1292
1207

945
784
848
842
902

1046
927
1032
935
977

1218
1235
1216
1157
1355

1784
1850
1719
1721
1888

1268
1397
1196
1233
1222

55
930
1178

666
655
597
590
593 *

926 *
890
863
951
958 *

1222 *
1039 *
1150 *
1292 *
1207

945
784
848
842
907

1047
927
1032
938
977

1218
1236
1216
1164
1355

1784
1850
1719
1721
1888

1269
1401
1208
1240
1226

0.000
1.008
1.173

0.000
0.244
0.381
0.537
0.000

0.453
0.000
0.000
0.000
0.000

0.968
1.299
0.941
0.000
0.000

1.284
0.127
1.005
0.772
1.136

0.669
1.121
0.000
1.569
1.842

0.640
1.187
1.225
1.642
0.000

0.000
0.172
0.000
0.000
0.000

1.341
1.861
2.872
1.784
1.759

1
142
21

2
3
5
3
2

5
5
5
5
1

4
12
4
2
11

127
127
127
127
127

387
863
92
766
95

89
1415
476
1442
94

56
56
62
73
100

2473
2512
2586
2492
2534

1
3
1

1
1
1
1
0

0
1
1
1
0

0
0
0
0
1

3
3
3
3
3

3
1
1
1
2

1
1
1
1
1

1
1
1
1
1

3
3
3
3
3

a n: Number of jobs.
m: Number of machines.
BKS: Best known solution so far.
(H)PSO: The best objective value of only PSO(*) or HPSO algorithm found

over 20 runs.
RE(%): The percentage of average objective value of algorithm over BKS.
Tav: The average CPU time (second) on Intel Celeron 300 with 128M RAM.
TSA: The times of simulated annealing.

Fig. 3 The hybrid optimization algorithm HPSO

Among the 43 instances, PSO/HPSO finds the BKS in 32
cases (74%). It is within 0.5% of the percentage of average
objective value over BKS in 22 instances (51%). In 42 cases
(98%), the PSO/HPSO solution is within 2% of the
percentage of average objective value over BKS. And for all
cases the results are within 3% of the percentage of average
objective value over BKS. Moreover, LA05, LA06 and
LA10~LA14 instances (*) can be reached BKS only by
using general PSO, which demonstrates the powerful
explore ability of the PSO algorithm. What is more
important, the new algorithm is efficient in running time.
From LA01 instance to LA15 instance (except LA12 and
LA15), almost each instance can reach BKS less than 10
seconds in CPU running time. It is unimaginable for
researchers in the past.

Table 2 shows the comparison of HPSO with well-known
algorithms from the literature. The column labeled SB-GA
refers to the Dondorf and Pesch algorithm[15], next column
GA3 is Mattfeld algorithm[16] and the next three columns are
the algorithms SAGen by Kolonko[17], TS-SB method by
Pezzella and Merelli[6], and GRASP method by Aiex et al.[7].
For the selected problems set GA3, SAGen, TS-SB, HPSO
are almost equal in their solution quality. But HPSO has its
own evident advantages: easy understandable model, also
the simplicity and the ease of implementation, as well as
robustness to problem changes.

Table 2. Comparison with other algorithms
Pro. BKS HPSO SB-GA GA3 SAGen TS-SB GRASP

 Best Best Best Best Best Best

FT10
LA19
LA21
LA22
LA24
LA25
LA27
LA29
LA38
LA40

930
842
1046
927
935
977
1235
1157
1196
1222

930
842
1047
927
938
977
1236
1164
1208
1226

938
848
1074
936
957
1007
1269
1210
1241
1252

930
842
1047
927
938
977
1236
1180
1201
1228

842
1047
931
938
977
1236
1167
1201
1226

930
842
1046
927
938
979
1235
1168
1201
1233

930
842
1057
927
954
984
1269
1203
1218
1244

5 CONCLUSIONS
We have discussed a new approach to job-shop

scheduling problems based on PSO. The performance of
HPSO algorithm is evaluated in comparison with the results
obtained from other authors’ algorithms for a number of
benchmark instances. The new algorithm is very effective
and efficient. It can find optima for most test instances, and
running time is less than almost all other algorithms.
Because of the generality of HPSO, it can be applied to
many optimization problems. These results indicate that the
proposed algorithm is an attractive alternative for solving
the job-shop scheduling problem and other optimization
problems. Because PSO algorithm was originally proposed
for continuous optimization problems, new attempt has been

made by us recently to extend it to discrete optimization
problems. Furthermore, applying PSO to other
combinatorial optimization problems is also possible in
further research.

ACKNOWLEDGMENT
The authors acknowledge the financial support of

National Natural Science Foundation of China (No:
70071017).

REFERENCES
[1] Lageweg BJ, Lenstra JK, Rinnooy Kan AHG. Job-shop scheduling by

implicit enumeration. Management Science, 1977, 24: 441~450.
[2] Adams J., E. Balas, D. Zawack. The shifting bottleneck procedure for

job shop scheduling. Management Science, 1988, 34: 391~401.
[3] Van Laarhoven PJM, Aarts EHL, Lenstra JK. Job shop scheduling by

simulated annealing. Operations Research, 1992, 40: 113~125.
[4] Dell’Amico M, Trubian M. Applying tabu search to the job shop

scheduling problem. Annals of Operations Research, 1993, 40:
231~252.

[5] T. Yamada, R. Nakano. A genetic algorithm applicable to large-scale
job-shop problems. In 2nd PPSN, Proceedings of the 2nd International
Workshop on Parallel Problem Solving from Nature, 1992: 281~290.

[6] Pezzella F., Merelli E.. A tabu search method guided by shifting
bottleneck for the job shop scheduling problem. European Journal of
Operational Research, 2000, 120: 297~310.

[7] Aiex R.M., Binato S., Resende M.G.C.. Parallel GRASP with
path-relinking for job shop scheduling. Parallel Computing, 2003, 29:
393~430.

[8] Kennedy J., Eberhart R.. Particle swarm optimization. Proceeding of
IEEE international conference on Neural Network, 1995, IV:
1942~1948.

[9] Y. Shi, Eberhart R.. Empirical study of particle swarm optimization.
Proceeding of Congress on Evolutionary Computation, 1999:
1945~1950.

[10] Kennedy J.. The particle swarm: social adaptation of knowledge.
IEEE International Conference on Evolutionary Computation, 1997:
303~308.

[11] Muth JF, Thompson GL. Industrial scheduling. Englewood Cliffs, NJ:
Prentice Hall, 1963.

[12] Eberhart R., Y. Shi. Particle swarm optimization: developments,
applications and resources. IEEE International Conference on
Evolutionary Computation, 2001: 81~86.

[13] Kirkpatrick S., Gelatt C.D., Vecchi M.P.. Optimization by simulated
annealing. Science, 1983, 220, 671~680.

[14] Lawrance S. Resource constrained project scheduling: an
experimental investigation of heuristic scheduling techniques.
Graduate school of industrial administration, Carnegie Mellon
University: Pittsburgh, 1984.

[15] Dorndorf U., Pesch E.. Evolution based learning in a job shop
environment. Computers & Operations Research, 1995, 22: 25~40.

[16] Mattfeld D.. Evolutionary search and the job shop ---- Investigations
on genetic algorithms for production scheduling. Springer-Verlag,
1995.

[17] Kolonko M.. Some new results on simulated annealing applied to the
job shop scheduling problem. European Journal of Operational
Research, 1999, 113: 123~136.

[18] Salman A., Ahamd I., AI-Madani S. Particle swarm optimization for
task assignment problem. Microprocessors and Microsystems, 2002,
26: 363~371.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP11.6
	Page0: 5552
	Page1: 5553
	Page2: 5554
	Page3: 5555
	Page4: 5556
	Page5: 5557

