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Abstract— We derive an Eulerian network model applicable to air traffic flow

in the National Airspace System. The model relies on a modified version of the

Lighthill-Whitham-Richards (LWR) partial differential equation (PDE), which

contains a velocity control term inside the divergence operator. We relate the

PDE to aircraft count, which is a key metric in Air Traffic Control. Using the

method of characteristics, we construct an analytical solution to the LWR PDE

for the case in which the control depends only on space (and not time). We

validate our model against real Air Traffic Data (ETMS data), by first showing

that the Eulerian description enables good aircraft count predictions, provided a

good choice of numerical parameters is made. Finally, we show some predictive

capabilities of the model.
I. I NTRODUCTION

There is no single component which defines theNational
Airspace System(NAS), but rather a multitude of systems
including aircraft, control facilities, procedures, navigation
and surveillance equipment, analysis equipment, as well as
the humans (controllers, pilots) who operate the systems. In
this paper, we are interested in theTraffic Flow Management
(TFM), which is a unit whose goal is to try to optimize the
flow. This entails preventing the density of aircraft from be-
coming too large in certain regions of airspace, and operating
efficient reroutes when the weather does not allow traffic to
cross a given region of airspace. These tasks are currently
not optimized with respect to throughput or maximal density
tolerable for Air Traffic Controller efficiency. Rather, they
are prescribed byplaybooks, which are procedures that have
been established over time, based on Controller experience.

The goal of this article and the companion paper [2] is to
derive a model for this system, and a mathematical method
to create an optimization strategy capable of automatically
generating more efficient control strategies for these tasks.
We are interested in deriving “flow patterns”, that is, coming
up with ways to route streams of aircraft by generating
the corresponding aircraft velocities. The individual identity
of the aircraft is thus not important, since the objective of
such tasks is to come up with a more efficient use of the
airspace, rather than optimizing local trajectories of aircraft.
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Ideally, one would like to automatically generate Air Traffic
Control - friendly procedures of the following kind: “aircraft
on airway 148 at 33,000 ft, fly at 450 kts for the next
hour and then accelerate by 25 kts for the next half hour”.
This suggests following anEulerian approach advocated
by Menon et al. [10] and dividing the airspace into line
elements corresponding to portions of airways, on which we
can describe the density of aircraft as a function of time and
of the coordinate along the line. Such an approach focuses on
the conservation of aircraft on the line elements. A traditional
way to describe the evolution of the density along these
portions of lines is to use apartial differential equation
(PDE). This PDE appears naturally in highway traffic and
is called the Lighthill-Whitham-Richards (LWR) PDE [9],
[12]. In this work, we will derive a modified version of the
LWR PDE specifically applicable to theAir Traffic Control
(ATC) problem of interest.

The primary goal of this paper is to show that despite the
information loss inherent in any Eulerian model, the aircraft
count (which is a crucial ATC metric defined in this paper)
is predicted accurately. In [2], our goal is to show that fast
numerical analysis tools can be applied efficiently to this
problem for simulations purposes, and that adjoint based
methods can be adapted for this real-time network control
problem. The main difference between ours and previous
work using LWR models of air traffic [10] or highway
traffic [7], [11], [13] is that we generate an optimization
technique (with throughput and maximal density as objective
function) using the continuous PDE directly, instead of its
discretization. This enables the use of fast numerical tech-
niques specifically developed to treat first order hyperbolic
PDEs with discontinuous solutions. Furthermore, the opti-
mization methodology enables the treatment of constraints
in the control and the state.

This paper is organized as follows. Since the air traffic
flow problem is significantly different from the highway
problem, we will first rederive the LWR PDE for the case
of interest in Section II, and generalize it to a network.
Then, we determine an analytical solution for the case of
time-invariant velocity control, which, in [2], will be used
for numerical validation purposes. In Section III, we explain
how to identify the numerical values of the parameters for
the airspace of interest, usingEnhanced Traffic Management
System(ETMS) data. Finally, in Section IV, we validate the
model against real data. In [2], we use this framework to
describe the NAS, and show how to control it.



II. A NEW EULERIAN NETWORK MODEL OF AIRSPACE

A. A modified LWR model of air traffic
In describing the air traffic system, like the road system,
one has to first look at aircraft (or cars) present in the
system and estimate a density of vehicles. Therefore, given a
portion of airspace (airway or sector), one needs to introduce
the aircraft count [4] defined as the number of aircraft in
that region. Let us consider a portion airway of lengthL,
described by a coordinatex ∈ [0, L]. The number of aircraft
in the segment[0, x] at timet is calledn(x, t). Thus,n(L, t)
represents the aircraft count on the portion of airway[0, L].
Assuming a static mean velocity profilev defined on[0, L],
v(x) > 0 represents the mean velocity of aircraft at location
x, and the motion of an aircraft is described by the dynamical
systemẋ = v(x).

IntroducingK(x) =
∫ x

0
ds

v(s) , it is fairly easy to see that if
an aircraft were at locationx0 at time t0, it would be atx
at time t = t0 + K(x) −K(x0). Because of the sign ofv,
K is invertible, and thereforex0 is related tox, t andt0 by
x0 = K−1(K(x)− (t− t0)).

Consider a pointx and x + h > x. The number of aircraft
betweenx and x + h at t can be related to the number of
aircraft att0 at locationsx0 = K−1(K(x) − (t − t0)) and
xh = K−1(K(x + h)− (t− t0)) (conservation of aircraft):
n(x + h, t)− n(x, t) = n(K−1(K(x + h)− (t− t0)), t0)−
n(K−1(K(x)− (t− t0)), t0). In other words, assuming that
there is no inflow at 0,

n(x, t) = n(K−1(K(x)− (t− t0)), t0)
Some simple algebra (two successive applications of the
chain rule) shows that the space derivative and the time
derivative ofn are related by:

∂n(x, t)
∂t

+ v(x)
∂n(x, t)

∂x
= 0

We recognize this as a first order linear hyperbolic PDE, and
can now enunciate the following proposition:

Proposition 1. Let v(·) : [0, L] → R+ be a
PC1([0, L]) function with a finite number of discontinuities
at {xk}k∈{0,··· ,K} on [0, L] such that∃m > 0, m ≤ v(x)
for all x ∈ [0, l]. Let qin ∈ C0([0, T ]) and n0 ∈ C0([0, L]).
Then the following PDE

∂n(x,t)
∂t + v(x)∂n(x,t)

∂x = qin(t) in [0, L]× (0, T ]
n(x, 0) = n0(x) in [0, L]× {0}
n(0, t) = 0 in {0} × (0, T ]

(1)

admits a unique continuous (weak) solution, given by:

n(x, t) = n0

(
K−1(K(x)− t

)
) +

∫ t

0
qin(u)du

if t ≤
∫ x

0
du

v(u)

n(x, t) =
∫ t

t−K(x)+K(0)
qin(u)du

if t ≥
∫ x

0
du

v(u)

(2)

whereK(x) =
∫ x

0
du

v(u) , and K−1 is its inverse.

Proof — Existence: K is well defined becausev(x) ≥ m for all
x ∈ [0, l]. Its inverse exists becauseK is (strictly) increasing. It is easy to

check that (2) satisfies (1) almost everywhere, and that it is continuous. This
solution has been constructed using a technique analogous to the algorithm
of Bayen and Tomlin [3] based on the method of characteristics.
Uniqueness:Let us calln1 andn2 two continuous weak solutions of (1).
Call δ := n1 − n2. δ satisfies:∂δ

∂t
+ v(x) ∂δ

∂x
= 0 a.e. in[0, L]× (0, T ],

δ(x, 0) = n0(x) in [0, L] × {0} and δ(0, t) = 0 in {0} × (0, T ].
Multiplying this PDE by δ and integrating fromx0 = 0 to the first
discontinuityx1 of v(·) gives:∫ x1

x0

δ(u, t)
∂δ

∂t
(u, t)du +

∫ x1

x0

v(u)δ(u, t)
∂δ

∂x
(u, t)du = 0

from which we deduce

1

2

d

dt

∫ x1

x0

δ(u, t)2du +

∫ x1

x0

v(u)δ(u, t)
∂δ

∂x
(u, t)du = 0

Integrating by parts gives

1

2

d

dt

∫ x1

x0

δ(u, t)2du ≤
∫ x1

x0

c′(u)
1

2
δ(u, t)2du−

[
v(u)

1

2
δ(u, t)2

]x1

x0

≤
∫ x1

x0

c′(u)
1

2
δ(u, t)2du

sinceδ(x0, t) = 0 andv(x1) > 0. Using the fact thatv(·) ∈ C1([x0, x1]),
∃M > 0, |c′(x)| ≤ M for all x ∈ [x0, x1], from which we deduce∫ x1

x0

c′(u)
1

2
δ(u, t)2du ≤ M

∫ x1

x0

1

2
δ(u, t)2du

then, using Gronwall’s lemma,

1

2

d

dt

∫ x1

x0

δ(u, t)2du ≤ M

∫ x1

x0

1

2
δ(u, t)2du

which impliesδ(x, t) = 0 almost everywhere in[x0, x1]. By continuity,

n1(x, t) = n2(x, t) everywhere in[x0, x1], and therefore atx1. The same

proof applies to[x1, x2] sincen1(x1, t) = n2(x1, t) for all t. By induction

on xk, they are equal everywhere in[x0, xk] and therefore in[0, L]. �

In equation (1),qin represents the inflow at the entrance of
the link (i.e. atx = 0). In highway traffic flow analysis,n is
sometimes referred to as cumulative flow. It can be related
to the vehicle density through the integral relation

n(x, t) =
∫ x

0

ρ(u, t)du (3)

whereρ(x, t) is the vehicle density. It can be checked that
the vehicle density satisfies the following PDE:

∂ρ(x,t)
∂t + ∂

∂x (ρ(x, t)v(x)) = 0
ρ(0, t)v(0) = qin(t)
ρ(x, 0) = ρ0(x)

(4)

Equation (4) can be related to equation (1) by a simple
integration ofρ along [0, x]. Equation (4) is a mass con-
servation equation, written in conservation law form. This
equation is very closely related to the original LWR PDE [9],
[12]. The LWR PDE, originally developed for highways,
in fact reads∂ρ(x,t)

∂t + ∂
∂x (q(ρ(x, t))) = 0, where q(·) is

a flux function depending onρ, which relates the car density
on the highway to the flux. In practice,q(·) is empirically
determined, and several models ofq(·) are currently used
[1], [7], [6]. Computation of the numerical value of the
parameters associated with these flux functions is a difficult
task, which can for example be achieved with Kalman
filtering techniques [13]. In the present case, the flux function



q(·) is replaced by a mean velocityv(·) multiplied by the
density. In [2],v(x) will also depend ont and will be the
control input of the system. It is also possible to rewrite the
first equation in (4) as

∂ρ(x, t)v(x)
∂t

+ v(x)
∂

∂x
(ρ(x, t)v(x)) = 0

which provides the following corollary:

Corollary 2. The corresponding solution forρ is given by:
ρ(x, t) ={

ρ(K−1(K(x)− t), 0)v(K−1(K(x)−t))
v(x) if t ≤ K(x)

qin(t−K(x))
v(x) otherwise

The interpretation1 of the corollary is the following: the
quantity ρv is conserved along the characteristic curves
t − t0 = K(x) − K(x0). At this stage,ρ is defined by
ρ = ∂n

∂x and satisfies (4). However, unlike for highway traffic,
the densityρ might not be the best way to characterize the
flow situation at a given time: if the number of aircraft in
the system is small,ρ will be a set of spikes, which is
intractable numerically. Therefore, a more tractable quantity
to work with would beδn

δx , whereδn represents the number
of aircraft contained in a finite interval of lengthδx. This
quantity does not a priori satisfy the PDE (4). It is meaningful
to introduce an additional “density-like” quantity calledr,
which satisfies the PDE and for which we can suggest a
physical interpretation.

r(x, t) = [n(K−1(K(x)−(t−tref)))−n(K−1(K(x)−(t+tref)))]
2trefv(x)

where tref is a reference time.r(x, t)v(x) represents the
number of aircraft included into a window of2tref time units
of location x and can be referred as “time density”. This
way of accounting for density is meaningful for Air Traffic
Control, since it incorporates a time scaletref into the density
computation and thus provides axess to the time separation
between aircraft. It is easy to show thatr itself satisfies the
same PDE asρ for any value oftref:

∂r(x, t)
∂t

+
∂(r(x, t)v(x))

∂x
= 0

One can also show that whentref → 0, r andρ are the same:

lim
tref→0

[
n(K−1(K(x)−(t−tref)))−n(K−1(K(x)−(t+tref)))

2trefv(x)

]
= lim

tref→0

n(x,−tref)− n(x, tref)

2trefv(x)
=

1

v(x)

(
−

∂n(x, t)

∂t

)
=

1

v(x)
v(x)

∂n(x, t)

∂x
= ρ(x)

At this stage, we have three quantities:ρ, δn
δx and r. The

meaning ofρ as we know it in fluid mechanics assumes a
large number of particles (i.e. aircraft) per unit volume (the
threshold is defined by the Knüdsen number). In the present

1Note that a more convenient way to write the solution fort ≤ K(x) is
ρ(x, t) = ρ(x0(x, t), 0)

v(x0)
v(x)

wherex0 = K−1(K(x)− t) is the origin
of the characteristic curve of the system in the(x, t) plane, going through
x at t.

case, the number of aircraft we consider will almost certainly
be below this number, meaning that the fluid approximation
is questionable. This means that instead of usingρ = ∂n

∂x ,
we will use ρ ∼ δn

δx in the PDE: we will justify this
approximation with appropriate validations. In particular, we
will have to make a choice of a numerical parameter called
Lref := δx/2. This will be done in Section III. We then will
validate the model against real data to show its accuracy and
predictive capabilities (Section IV).

Fig. 1. Top: Tracks of flights incoming into Chicago (ORD). The upper
stream comes from Canada, the lower from New York and Boston (BOS).
Additional streams merge into the network (Detroit and Hartford Bradley).
Bottom: Network model for the tracks shown above, with waypoints la-
beled. The model includes five links, merging into ORD. The corresponding
inflow terms correspond to a single airport as in BOS or Detroit (DTW), or
to a set of airports, as in New York (EWR, JFK, LGA).

B. Network model

The model of the previous section describes traffic on a
single portion of airway or line element. As was done earlier
for highways [8], this model can be generalized to airway
networks, i.e. sets of interconnected airways, as shown in
Figure 1 for inbound traffic into Chicago (ORD). We now
derive a framework to describe unidirectional air traffic. We
describe the topology of the network by a unidirectional
graph(E, V ), in whichE is the set of edges or links, andV
the set of vertices. For simplicity of notation, we will index
the links byi∈ {1, · · · , N}, rather than by the indices of the
two corresponding vertices. For alli∈ {1, · · · , N}, we call
U(i) the set of upstream links merging into linki, andM the
set of links for which the upstream links are only merging.
The number of links merging into a single link is not limited;
it is possible to have|U(i)| > 2. If there is a divergence at
the end of a linki, we assume for simplicity that there are
only two emanating links from the corresponding vertex. We



index by il and ir the two emanating links (left and right),
and callβi the portion of the flow going fromi to il, and
1 − βi the proportion of the flow going fromi to ir. We
call D the set of links with a divergence at the end of it.
The βi are not known a priori and have to be determined.
These coefficients might depend ont as well, and therefore
a dependenceβi(t) is included in the model.

N number of links
S set of source links
M set of links into which other links merge
D set of links ending in a fork
U(i) set of links merging into linki (if i ∈ M)
il, ir indices of the two links of a fork ifi ∈ D
Li length of link i
xi arclength on linki: xi ∈ [0, Li]
ρi(xi, t) aircraft density on linki
ρ◦i (xi) initial aircraft density on linki
vi(xi) velocity profile on linki: vi(·) : [0, Li] → R+

qin
i (t) inflow at xi = 0 for link i (if applicable)

βi(t) portion of ρi which flows into link il
TABLE I

NOTATION FOR THE NETWORK PROBLEM.

We call S the set of sources in the network, andT a
sink of the network, at which we might want to perform
optimization. We index all variables of the previous section
by i: the aircraft density on linki is ρi, the coordinate is
xi, the main velocity profile isvi, etc. Note that we are
NOT using Einstein’s notation. The notation is summarized
in Table I. The governing PDE system thus reads:



∂ρi(xi,t)
∂t + ∂

∂xi
(ρi(xi, t)vi(xi)) = 0

∀i∈ {1, · · · , N}
ρi(x, 0) = ρ◦i (x) ∀i∈ {1, · · · , N}
ρi(0, t)vi(0, t) =

∑
j∈U(i)

ρj(Lj , t)vj(Lj , t) + qin
i (t)

∀i ∈M{
ρil

(0, t)vil
(0, t) = βi(t) ρi(Li, t)vi(Li, t)

ρir
(0, t)vir

(0, t) = (1− βi(t))ρi(Li, t)vi(Li, t)
∀i ∈ D

ρi(0, t)vi(0, t) = qin
i (t) ∀i ∈ S

(5)
In the previous system, the PDE (first equation) describes
the evolution ofρi on each link. The second equation is
the initial condition (i.e. the initial density of aircraft on
each link). The third equation expresses the conservation of
aircraft at the merging points. The fourth and fifth equation
express the conservation of aircraft at the divergence points.
The last equation expresses the boundary conditions (inflow
at the sources of the network). The sinks of the system
are free boundary conditions, and therefore do not appear
in the previous system. Assuming one can solve (5), it
is possible to use the solution to compute (and optimize)
certain metrics useful for ATC. For example, one quantity
of interest is aircraft count, which is the number of aircraft
in a given sector. If all links of a given sector are indexed
by i ∈ Sec, the aircraft count of the sector is obtained by∑

i∈Sec

∫ Li

0
ρi(xi, t)dxi.

Fig. 2. Example of velocity profile used for the junction LGA-ORD. The
horizontal coordinate is the distance from ORD in nm. The corresponding
links are shown as well as the location of the airspace fixes between the
links. The curve is a piecewise affine fit obtained using least squares.

III. A PPLICATION TO A IR TRAFFIC FLOW

In this section, we first explain how to identify the mean
velocity profiles from real air traffic data. We then explain
how to choose the numerical value of parameters of the
model. In the next section, these choices will be validated
against real data.

A. System identification: main velocity profiles

We first explain how we identify the mean velocity profiles
vi(xi) on each link. We useEnhanced Traffic Management
System(ETMS) data, which we can obtain at NASA Ames
(see [4] for a description of ETMS data). From ETMS data,
we can obtain useful flight information at a 1 minute rate:
position of each aircraft in the NAS, altitude, velocity, flight
plan (i.e. set of airways and wayoints). From this data, we
are able to identify the routes in which traffic is concentrated.
Note that in recent work, Menon et al. [10] focused on
creating a tool which performs similar tasks automatically
at a NAS-wide level, using FACET [4], a tool developed by
NASA Ames. The details of this tool are not available to us,
and we developed our own method to identify the main links
used by aircraft in the NAS. We analyze 24 hours of ETMS
data and select all aircraft using the links of the network
shown in Figure 1. We identify all aircraft which use each
of the links, and record all tracks and corresponding speeds
between takeoff and landing. For each of the links shown in
Figure 1, we identify the mean velocity profiles as piecewise
affine function, using a least squares fit. The total number
of aircraft used is 220. The result for the flight New York
– Chicago is displayed in Figure 2. As can be seen, once
the En Route altitude is reached, the curve fits are almost
flat, which means that the aircraft are En Route at a high
altitude cruise speed. It can also be seen from Figure 2 that
the data is relatively broadly spread (standard deviation 19.6
kts). This suggests deriving multilayer models: dividing the



link in sublayers corresponding to altitudes (with different
speed profiles) has the benefit of being more precise, as
aircraft tend to have a Mach number – and therefore speed
which is a function of altitude. This will be considered in
the future.

B. Initial and boundary conditions

Once the mean velocity profiles are computed, we identify
the initial density of aircraft and the inflow (boundary
conditions) in the network. The initial position of the aircraft
is easy to extract from the ETMS data: at the prescribed
time, all airborne aircraft which are on the relevant links are
selected.

1) For any selected aircrafta at locationxa
i on link i, the

classical densityρi(xi, 0) = ρ◦i (xi) is taken to be a “box”
around xa

i , of length 2Lref. Calling χI the characteristic
function of an intervalI (i.e. equal to 0 outside ofI and
1 inside), ρi(xi, 0) is 1

2Lref
χ[xa

i −Lref,xa
i +Lref](xi). Taking all

aircraft initially airborne on linki, the density is:ρ◦i (xi) =∑
a in link i

1
2Lref

χ[xa
i −Lref,xa

i +Lref](xi)

2) Similarly, the density-like functionr is computed using the
knowledge of the mean velocity profile along linki, called
vi(xi), and the parametertref: r◦i (xi) =∑

a in link i
1

2trefvi(xa
i )χ[xa

i −trefvi(xa
i ),xa

i +trefvi(xa
i )](xi)

The inflows (boundary conditions) can also be extracted from
ETMS data: each time an aircraft takes off, it will appear in
the ETMS data as soon as it is airborne. The ETMS data
also shows the filed flight plan, which we select when it
intends to use the links of interest to us.qin(t) is computed
the following way. At any instant when the data shows a
new aircraft on one of the source linksS, the track is in
general passed the entrance point of that link (because of
the sampling rate of 3 minutes). Callingxa

i the position of
this aircraft on linki at the first time it appears, we compute
the time ta at which it crossed the locationxi = 0 (using
the knowledge of the mean velocity profile on the link). We
then use one of the two definitions above to computeqin(t)
corresponding to eitherρ or r.

C. Identifying the numerical parameters

As explained in Section III-B, we have two ways of de-
scribing the density of aircraft in the network, in terms of
a density functionρ and a “density-like” functionr, which
respectively account for spatial and temporal distribution of
aircraft. The functionρ depends on the numerical parameter
Lref, which we need to adjust. The value of this parameter
is crucial for predicting aircraft count: Figure 3 shows how
errors can occur in translating density functions into aircraft
count. We want to determine the choice of parameters leading
to the smallest error in aircraft count prediction.

We first run the following set of experiments. For the link
New York – Chicago, we run a set of simulations involving
Naircraft aircraft, whereNaircraft successively takes all values
between 1 and 50. We varyLref between 0 and 120 nm. For
each value ofNaircraft andLref, we run 400 experiments. Each
experiment corresponds to a uniformly distributed random
density of Naircraft aircraft along link 1 in [0, 400] (see
Figure 1). The simulation starts at a timet0 with the density
ρ◦i computed as in the previous section, and computes the
solution of the LWR PDE until the timet0 + ∆T . For the
experiments,∆T was chosen equal to one hour (note that the
duration of the total flight is on the order of two and a half
hours). This solution is compared with the solution obtained
by propagating the Lagrangian trajectories of each of the
aircraft independently fromt0 to t0 + ∆T and computing
the resulting density. In mathematical terms, we compare
the two following quantities

1) ρi(·, t0 + ∆T ) computed by the LWR PDE (5)

2) ρ̃i(·, t0 + ∆T ) :=∑
a in link i

1
2Lref

χ[xa
i (t0+∆T )−Lref,xa

i (t0+∆T )+Lref](·) where
xa

i (t0 + ∆T ) is the position of aircrafta at time t0 + ∆T .

In order to characterize the best choice of numerical param-
eters, we compute the following two quantities (notations
refer to Figure 1):

1) The relative density error, defined by∑
i=1,4,5

∫ Li
0 |ρi(xi, t0 + ∆T )− ρ̃i(xi, t0 + ∆T )| dxi∑

i=1,4,5

∫ Li
0 ρi(xi, t0 + ∆T )dxi

This quantity represents the error in density prediction due
to the propagation ofρ by the PDE.

2) The absolute aircraft count error, defined by∑
i=1,4,5

∑
sublinks ofi

∣∣∣∣∫ Li

0
ρi(xi, t0 + ∆T )dxi − ](a|a ∈ link i)

∣∣∣∣
where ] means number. This quantity is the sum of count
error for all sublinks of links 1,4, and 5. Typically, a link is
divided into sublinks which correspond to different airspace
sectors. For example, if link 1 goes through 8 sectors, we
divide it in 8 sublinks and are interested in the aircraft counts
on these sublinks. This error thus estimates the difference
between the number of aircraft predicted by the PDE and
the number obtained by a Lagrangian propagation of aircraft,
where the error is the sum of all errors on the sublinks.

The computation of both quantities is illustrated in Figure 4.
The relative density error and absolute aircraft count error are
averaged (over the 400 runs) and plotted for the range ofn
andLref considered. The result is shown in Figure 5. The left
plot shows the relative density error. As expected, the error
decreases when the number of aircraft increases andLref

increases (typically in fluid mechanics, the Knüdsen number
defines the number of particles per volume above which the
fluid approximation becomes valid). The right plot shows the



Fig. 3. Different predictions obtained by the use ofρ andr for aircraft density. Above: density propagation through the PDE system (5); below: position
update from ETMS data and from the PDE.

Fig. 4. Left: Illustration of the computation of the relative density error depicted in Figure 5. The difference between the two density curves (shaded area)
is divided by the area below theρi curve.Right: Illustration of the computation of the error in aircraft count. The link is divided into sublinks (which can
correspond to sectors). For each of these sublinks, we compare the number of aircraft predicted by the method (depicted by arrows, which are computed
from the density) with the number of aircraft obtained by a Lagrangian propagation of the trajectories. The error is the sum of errors for all sublinks, i.e.
the sum of the errors in sector counts.

Fig. 5. Top: Relative density error between the density predicted by the
Eulerian PDE propagation of the density.Bottom: Absolute aircraft count
error for the junction New York – Chicago.

absolute aircraft count error, averaged over 400 simulations.
For this plot, each of the links 1, 4 and 5 have been divided
in sublinks (20 total), of about 50 nm length. This is a worst
case scneario, i.e. the number of relevant sectors for a flight
of this length is never higher. One can see that forLref ≤ 60
andNaircraft ≥ 25, the average aircraft count error is always
extremely small.

The best choice forLref is thus obtained at the intersection
of the lowest level sets of both plots of Figure 5, i.e. for a
range ofLref ∈ [20, 60] andNaircraft≥ 20.

IV. VALIDATION OF THE MODEL

In the previous section, we have shown that the use of the
modified LWR PDE either withr (with any tref) or ρ ∼ δn

δx
(with an appropriate choice ofLref) enables accurate aircraft
count predictions. In this section, we validate the model
against real data: in particular, we had made the assumption

thatvi(xi, t) = vi(xi). As we know, this will not be the case
in general. Therefore we run simulations and assess if the
model is still in agreement with real data over two separate
experiments.

A. Static validation

In the first experiment, we use the static velocity profiles
vi(·) determined in the previous sections for the validation
of the method. We use a 6 hour ETMS data set. From this
data set, we extract the position of the aircraft, at the initial
time, construct the corresponding initial aircraft density, and
propagate it through the PDE system. At any given time,
we compare the aircraft count predicted by our method and
the aircraft count provided by the ETMS data (which is
exact, since it provides the position of each aircraft). We
compute the error in aircraft count for a set of ten sublinks
for the network shown in Figure 1. The result is shown in
Figure 6 (left). The window widthLref was taken equal to
15 nm. One can see on the left plot that the total error (for
all airborne aircraft in this airspace) is relatively low (the
maximal error is 7 aircraft). In fact, the results are much
better than they seem: most of the errors come from the fact
that the aircraft distribution is such that there is always at
least one or two aircraft close to a sublink boundary, which
will thus be counted in the wrong sublink. In fact, this is not
really a problem, as it is more an artifact of the computation
rather than a true error (Figure 7 shows that the density
unambiguously shows where the aircraft is). Furthermore,
some of the errors in aircraft count are due to errors present
in the ETMS data (some have clearly erroneous data; this
fact has also been reported in [5]).



Fig. 6. Left: Error in aircraft count for the static validation over a five
hour period.Right: Error in aircraft count for the dynamic validation over
a five hour period.

B. Dynamic validation

We extend the validation to a case in which the velocity
profiles are time dependent, i.e.vi(xi, t). The details of
the identification of these profiles are technical and are
not explained here. The comparison is the same as in the
static case. Note that our analytical solution does not handle
dynamic velocities. This difficulty is alleviated by using a
numerical scheme presented in the companion paper [2]. The
results are shown in Figure 6 and are more accurate than the
static results, as expected. The same remarks apply, and the
results are again affected by the quality of ETMS data and the
inclusion of the computation artifact. The only weakness of
this validation is that the simulation is run using data from
the same day as the data used in identification. A way to
improve this would be to perform the velocity identification
with data of a given day over a 24 hour period, and validate
it over the next 24 hour period, using the fact that there is
periodicity in the traffic for normal days. This was not done
here due to lack of available data. An animation (.avi movie
file) corresponding to the snapshots of Figure 6 is available
at [14].

In both cases, the validation is very encouraging and shows
strong predictive capability for our model. The model was
also tested successfully using data from the western states
(Oakland Center with traffic incoming into Bay Area air-
ports), though for brevity these results are not included here.
Finally, in [2], we will use the model for control: in that case,
one of the control variables is speed, which means that we
will have direct access tovi(xi, t) (since we compute it). This
alleviates difficulties of mean velocity profile identification
shown before.
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