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Eulerian Network Model of Air Traffic Flow
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Abstract—We derive an Eulerian network model applicable to air traffic flow  ldeally, one would like to automatically generate Air Traffic
in the National Airspace System. The model relies on a modified version of the Control - friendly procedures of the following kind: “aircraft
Lighthill-Whitham-Richards (LWR) partial differential equation (PDE), which on airway 148 at 33,000 ft, fly at 450 kts for the next
contains a velocity control term inside the divergence operator. We relate the hour and then accelerate by 25 kts for the next half hour”.
PDE to aircraft count, which is a key metric in Air Traffic Control. Using the This suggests following arkulerian approach advocated
method of characteristics, we construct an analytical solution to the LWR PDE by Menon et al. [10] and dividing the airspace into line
for the case in which the control depends only on space (and not time). We elements corresponding to portions of airways, on which we
validate our model against real Air Traffic Data (ETMS data), by first showing ~ can describe the density of aircraft as a function of time and
that the Eulerian description enables good aircraft count predictions, provided a  Of the coordinate along the line. Such an approach focuses on
good choice of numerical parameters is made. Finally, we show some predictive the conservation of aircraft on the line elements. A traditional
capabilities of the model. way to describe the evolution of the density along these
. ) g INTRODUCT'O_N ] ) portions of lines is to use partial differential equation
There is no single component which defines thational (PDE). This PDE appears naturally in highway traffic and
Airspgce S_yster(lNAS), but ra_\t_h_er a multitude of Systemsig called the Lighthill-Whitham-Richards (LWR) PDE [9],
including aircraft, control facilities, procedures, nawgatlortlz]. In this work, we will derive a modified version of the

and surveillance equipment, analysis equipment, as well ggyr PDE specifically applicable to thair Traffic Control
the humans (controllers, pilots) who operate the systems. U&TC) problem of interest.

this paper, we are interested in theaffic Flow Management

(TFM), which is a unit whose goal is to try to optimize the The primary goal of this paper is to show that despite the
flow. This entails preventing the density of aircraft from peinformation loss inherent in any Eulerian model, the aircraft
coming too large in certain regions of airspace, and operatif@unt (Which is a crucial ATC metric defined in this paper)

efficient reroutes when the weather does not allow traffic t§ Predicted accurately. In [2], our goal is to show that fast
cross a given region of airspace. These tasks are currenfiymerical analysis tools can be applied efficiently to this
not optimized with respect to throughput or maximal densitproblem for simulations purposes, and that adjoint based
tolerable for Air Traffic Controller efficiency. Rather, they Methods can be adapted for this real-time network control
are prescribed bplaybookswhich are procedures that haveProblem. The main difference between ours and previous

been established over time, based on Controller experiend¥oTk using LWR models of air traffic [10] or highway
traffic [7], [11], [13] is that we generate an optimization

The goal of this article and the companion paper [2] is @echnique (with throughput and maximal density as objective
derive a model for this system, and a mathematical methqgction) using the continuous PDE directly, instead of its
to create an optimization strategy capable of automaticallyscretization. This enables the use of fast numerical tech-
generating more efficient control strategies for these taskgigues specifically developed to treat first order hyperbolic
We are interested in deriving “flow patterns”, that is, comingpEgs with discontinuous solutions. Furthermore, the opti-
up with ways to route streams of aircraft by generatingization methodology enables the treatment of constraints
the corresponding aircraft velocities. The individual identity, ihe control and the state.
of the aircraft is thus not important, since the objective of
such tasks is to come up with a more efficient use of th&his paper is organized as follows. Since the air traffic
airspace, rather than optimizing local trajectories of aircrafflow problem is significantly different from the highway
problem, we will first rederive the LWR PDE for the case
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II. A NEW EULERIAN NETWORK MODEL OF AIRSPACE
A. A modified LWR model of air traffic

check that (2) satisfies (1) almost everywhere, and that it is continuous. This
solution has been constructed using a technique analogous to the algorithm
of Bayen and Tomlin [3] based on the method of characteristics.

In describing the air traffic system, like the road systemniqueness:Let us calln, _anda%g two cog(ginuous weak solutions of (1).
one has to first look at aircraft (or cars) present in th&all é :=ni —n2. § satisfies:z +v(@) 5o = 0 a.e. in[0, L] x (0,77,

system and estimate a density of vehicles. Therefore, giverf,%’ti%)lym:g

no(z) in [0,L] x {0} and 8(0,£) = 0 in {0} x (0,7].
this PDE by § and integrating fromzg = 0 to the first

portion of airspace (airway or sector), one needs to introdu@continuityz; of v(-) gives:

the aircraft count [4] defined as the number of aircraft in

that region. Let us consider a portion airway of lendth
described by a coordinatec [0, L]. The number of aircraft
in the segmenf0, «| at timet is calledn(z,t). Thus,n(L,t)
represents the aircraft count on the portion of airf@yL].
Assuming a static mean velocity profiledefined on[0, L],

x1 1
/ 3 (u, t)@(u7 t)du + / v(u)d(u, t)@(u, t)du =0
o 8t z0 a:t

from which we deduce
1d [*1

Ld ™ s 0)2d +/x1 (@), )2 (u, t)du = 0
2t /., u, u e v(u)d(u, o u,t)du =

v(x) > 0 represents the mean velocity of aircraft at locatioftegrating by parts gives

x, and the motion of an aircraft is described by the dynamicall d

systemi = v(z).

Introducing K (z) = [ vd(lz)’ it is fairly easy to see that if
an aircraft were at locatiom, at time¢g, it would be atx
at timet = to + K(x) — K(x0). Because of the sign af,
K is invertible, and therefore, is related tox, t and#y by

o = K‘l(K(x) - (t - to)).

Consider a point: andxz + h > z. The number of aircraft

z1

2 dt /zjl S(u,t)du < /;:1 Cl(u)%&(u, t)du - {U(U)%(S(u’ t)Q}

zo

31 1
< / c’(u)§6(u,t)2du

o

sinced(xo,t) = 0 andv(xy) > 0. Using the fact that(-) € C1([zo, x1]),
M >0, |/ (z)] < M for all z € [z, z1], from which we deduce

/ ¢ (u)=8(u, t)?du < M/ —5(u,t)?du
zo 2 zo 2

betweenz andz + h at ¢t can be related to the number ofthen, using Gronwall's lemma,

aircraft att, at locationszy = K~1(K(z) — (t — to)) and
z, = K~} (K(z + h) — (t — to)) (conservation of aircraft):
n(z+h,t) —n(z,t) =n(KY(K(x+h)—(t—1t9)),to) —

n(K~Y(K(x)— (t—to)),t0). In other words, assuming that

there is no inflow at O,
n(a,t) =n(K (K (x) = (t — to))»toP
Some simple algebra (two successive "app

1d [*

1 z1 ]
—— 8(u, t)2du < M/ —5(u, t)?du
2dt /s, vo 2

which impliesé(z,t) = 0 almost everywhere iz, z1]. By continuity,
ni(z,t) = na(z,t) everywhere inzo, z1], and therefore at;. The same
proof applies tdz1, z2] sinceni (z1,t) = na(x1,t) for all t. By induction

ications of I8 T« they are equal everywhere jmg, x] and therefore irf0, L]. [

chain rule) shows that the space derivative and the tim@ equation (1)¢™ represents the inflow at the entrance of

derivative ofn are related by:
n(x,t)

on(x,t)

()2 —

the link (i.e. atz = 0). In highway traffic flow analysisy is
sometimes referred to as cumulative flow. It can be related

We recognize thidhs a first orde?finear hyperbolic PDE, an@ the vehicle density through the integral relation

can now enunciate the following proposition:

Proposition 1. Let w(-) 0,L] — Rt be a
at {z}reqo,..,x3 on [0, L] such thatIm > 0, m < v(x)
for all z € [0,1]. Let¢™ € Cy([0,T]) and ng € Co([0, L]).

Then the following PDE

Ined) | y(g)2me) — gin() in [0, L] x (0, 7]
n(x,0) = ng(z) in [0, L] x {0}
n(0,t) =0 in {0} x (0,7

admits a unique continuous (weak) solution, given by:

n(z,t) = no (K1 (K(x) — 1)) + [5 ¢"™(u)du

o<y

t ir
(@) = i k(o) ro) O (W)du

H T du
'”2]0@

@)

)

where K (z) = [ -2%, and K~ is its inverse.

0 v(u)?’

Proof — Existence: K is well defined because(xz) > m for all

x € [0,1]. Its inverse exists becaud€ is (strictly) increasing. It is easy to

n(x,t) = /01 p(u, t)du 3

PCy([0, L]) function with a finite number of discontinuitiesvhere p(x,t) is the vehicle density. It can be checked that

the vehicle density satisfies the following PDE:
Belt) 1 2 (p(x,tyo(x)) =0
p(0,t)v(0) = ¢"(t)
p(x,0) = po(x)
Equation (4) can be related to equation (1) by a simple
integration of p along [0, z]. Equation (4) is a mass con-
servation equation, written in conservation law form. This
equation is very closely related to the original LWR PDE [9],
[12]. The LWR PDE, originally developed for highways,
in fact reads% + Z(q(p(z,t))) = 0, whereg(-) is
a flux function depending op, which relates the car density
on the highway to the flux. In practice(-) is empirically
determined, and several models ¢f) are currently used
[1], [7], [6]. Computation of the numerical value of the
parameters associated with these flux functions is a difficult
task, which can for example be achieved with Kalman
filtering techniques [13]. In the present case, the flux function
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q(+) is replaced by a mean velocity(-) multiplied by the case, the number of aircraft we consider will almost certainly
density. In [2],v(z) will also depend ont and will be the be below this number, meaning that the fluid approximation
control input of the system. It is also possible to rewrite thés questionable. This means that instead of using g—;‘,

first equation in (4) as we will use p ~ g—’; in the PDE: we will justify this
dp(z, t)v(z) approximation with apprppriate validatic_ms. In particular, we
o U(I)%(P(I,t)v(x)) =0 will have to make a choice of a numerical parameter called

Lyet := dz/2. This will be done in Section Ill. We then will
validate the model against real data to show its accuracy and
predictive capabilities (Section 1V).

which provides the following corollary:

Corollary 2. The corresponding solution fgr is given by:

,0(37, t) - -1 (g7} 20w 735w
p(K YK (x) — t),0)XE—EE@=0) it < K (x) o i
LK () otherwise e s e L

v(x)

The interpretatioh of the corollary is the following: the
guantity pv is conserved along the characteristic curve
t —ty = K(x) — K(x0). At this stage,p is defined by
p= % and satisfies (4). However, unlike for highway traffic,
the densityp might not be the best way to characterize the+np==-======-==--- "
flow situation at a given time: if the number of aircraft in :
the system is smallp will be a set of spikes, which is 5y
intractable numerically. Therefore, a more tractable quantit =
to work with would be%, wheredn represents the number

of aircraft contained in a finite interval of length:. This
guantity does not a priori satisfy the PDE (4). It is meaningfu orp
to introduce an additional “density-like” quantity called
which satisfies the PDE and for which we can suggest
physical interpretation. o

r(z,t) = ["(K_l(K(I)*(t*tregzrlgj?éff_l(K(w)*(Htref)))]

. . Fig. 1. Top: Tracks of flights incoming into Chicago (ORD). The upper
where ¢ iIs a reference timer(z,t)v(xz) represents the stream comes from Canada, the lower from New York and Boston (BOS).

number of aircraft included into a window @t time units Additional streams merge into the network (Detroit and Hartford Bradley).
£l . d b f d e d itv". Thi Bottom: Network model for the tracks shown above, with waypoints la-

of location = arj' can be r(_a erre as .t'me ens!ty : _'Sbeled. The model includes five links, merging into ORD. The corresponding

way of accounting for density is meaningful for Air Traffic inflow terms correspond to a single airport as in BOS or Detroit (DTW), or

Control, since it incorporates a time scalg into the density 10 & set of airports, as in New York (EWR, JFK, LGA).

computation and thus provides axess to the time separation

between aircraft. It is easy to show thattself satisfies the

same PDE ag for any value oft: B. Network model

or(z,t) N o(r(z,t)v(x)) 0 The model of the previous section describes traffic on a
ot Oz o single portion of airway or line element. As was done earlier

One can also show that wheg; — 0, » andp are the same: for highways [8], this model can be generalized to airway
networks, i.e. sets of interconnected airways, as shown in

lim [n<K—1<K<m>7<t7tref>>>fn(x—1(K<z>7<t+tref>>>

tref—0 2trerv(@) Figure 1 for inbound traffic into Chicago (ORD). We now
— gy @ —trer) — (@ ter) | 1 (_M) derive a framework to describe unidirectional air traffic. We
fret =0 2Urefv(x) v(z) o describe the topology of the network by a unidirectional

= %v(w) 8"(,(;’ B _ p(z) graph(E, V), in which E is the set of edges or links, and

the set of vertices. For simplicity of notation, we will index

At this stage, we have three quantitigs: $* andr. The the links byic {1,--- , N}, rather than by the indices of the

meaning ofp as we know it in fluid mechanics assumes awo corresponding vertices. For alt {1,--- N}, we call

large number of particles (i.e. aircraft) per unit volume (the/(;) the set of upstream links merging into linkand M the

threshold is defined by the Kidsen number). In the presentset of links for which the upstream links are only merging.
1 _ _ _ _ The number of links merging into a single link is not limited;
Note that a more convenient way to write the solutionffet K (z)is ., . . . . .

p(2,1) = plao(z, 1), 0) vv((?; wherezo = K~ (K (x) — t) is the origin it is possible t.o hav¢u(z)\ > 2. If thgre is a divergence at

plane, going through the end of a linki, we assume for simplicity that there are

of the characteristic curve of the system in thgt) " ) :
x att. only two emanating links from the corresponding vertex. We
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index byi; andi, the two emanating links (left and right),

600

and call 3; the portion of the flow going fromi to i;, and N Link velodity profile from LGA to ORD
1 — 3; the proportion of the flow going from to i,.. We ks b Linka Lk
call D the set of links with a divergence at the end of it. 500 :
The §; are not known a priori and have to be determinec a0l E :
These coefficients might depend ormas well, and therefore ol Z \ |
a dependencg;(t) is included in the model. 3 \
350+
N number of links 300(- \ .
S set of source links \
M set of links into which other links merge 250, \
D set of links ending in a fork a0l
U(1) set of links merging into link: (if i € M) ‘ NF PMM COATE
i, i indices of the two links of a fork if € D 150 - /
L; |ength of link z ORD / / Distance from LGA (nm) \ LGA
T; arclength on linki: z; € [0, L;] %00 50 500 400 300 200 10 0
pi(zi,t) | aircraft density on linki
ps () initial aircraft density on linki Fig. 2. Example of velocity profile used for the junction LGA-ORD. The
v; (24) velocity profile on linki: v; () : [0, L;] — RT horizontal coordinate is the distance from ORD in nm. The corresponding
an(t) inflow at z; = 0 for link 4 (if applicable) links are shown as well as the location of the airspace fixes between the
Z.(t) portion of p; which flows into link, links. The curve is a piecewise affine fit obtained using least squares.
TABLE |
NOTATION FOR THE NETWORK PROBLEM

sink of the network, at which we might want to performln this section, we first explain how to identify the mean

optllmlzatlor_m We mdex_ all var_lapk-_:‘s of the previous Se(‘ft'or\}elocity profiles from real air traffic data. We then explain
by i: the aircraft density on link is p;, the coordinate is

. . o how to choose the numerical value of parameters of the
x;, the main velocity profile isv;, etc. Note that we are

. . . ; o . odel. In the next section, these choices will be validated
NOT using Einstein’s notation. The notation is summanzeg]

. ) ainst real data.
in Table I. The governing PDE system thus reads: g
A. System identification: main velocity profiles

We first explain how we identify the mean velocity profiles

Ooiil) 4 S0 (py (s, t)vs(ws) = O i i
ot dz; Pille; U)VilTy . v;(z;) on each link. We us&nhanced Traffic Management
vie {1,--- N} System(ETMS) data, which we can obtain at NASA Ames
pi(x,0) = p; (x) vie {1,---, N} (see [4] for a description of ETMS data). From ETMS data,
pi(0,8)vi(0,8) = 32 pi(Ly,t)vi(Ly,t) + ¢ (t) we can obtain useful flight information at a 1 minute rate:
jeuU® vie M position of each aircraft in the NAS, altitude, velocity, flight

plan (i.e. set of airways and wayoints). From this data, we
are able to identify the routes in which traffic is concentrated.
Note that in recent work, Menon et al. [10] focused on
creating a tool which performs similar tasks automatically
) at a NAS-wide level, uging FA_CET [4], a tool deyeloped by
In the previous system, the PDE (first equation) describd$ASA Ames. The details of this tool are not available to us,
the evolution ofp; on each link. The second equation is2nd we developed our own method to identify the main links
the initial condition (i.e. the initial density of aircraft on US€d by aircraft in the NAS. We analyze 24 hours of ETMS
each link). The third equation expresses the conservation @#t@ and select all aircraft using the links of the network
aircraft at the merging points. The fourth and fifth equatio§0Wn in Figure 1. We identify all aircraft which use each
express the conservation of aircraft at the divergence poinf¥. the links, and record all tracks and corresponding speeds
The last equation expresses the boundary conditions (infld#gtween takeoff and landing. For each of the links shown in
at the sources of the network). The sinks of the systefigure 1, we identify the mean velocity profiles as piecewise
are free boundary conditions, and therefore do not appe@ffine function, using a least squares fit. The total number
in the previous system. Assuming one can solve (5), Rf aircraft used is 220. The result for the flight New York
is possible to use the solution to compute (and optimize) Chicago is displayed in Figure 2. As can be seen, once
certain metrics useful for ATC. For example, one (:1uantit(§ﬁ?‘e En Route altitude is reached, the curve fits are almost
of interest is aircraft count, which is the number of aircrafflal, which means that the aircraft are En Route at a high
in a given sector. If all links of a given sector are indexedltitude cruise speed. It can also be seen from Figure 2 that
by i € Sec, the aircraft count of the sector is obtained b{’e data is relatively broadly spread (standard deviation 19.6
Zz‘eSecfoLi pi(xs, t)dz;. ts). This suggests deriving multilayer models: dividing the
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link in sublayers corresponding to altitudes (with differentWe first run the following set of experiments. For the link
speed profiles) has the benefit of being more precise, Bew York — Chicago, we run a set of simulations involving
aircraft tend to have a Mach number — and therefore spe@d,crare aircraft, whereNgiorat SUCCESSIVElY takes all values
which is a function of altitude. This will be considered inbetween 1 and 50. We vat,; between 0 and 120 nm. For
the future. each value ofVyjrcrart and Lyet, We run 400 experiments. Each
experiment corresponds to a uniformly distributed random
density of Nacrart aircraft along link 1 in[0,400] (see
Figure 1). The simulation starts at a timgwith the density

Once the mean velocity profiles are computed, we identify: computed as in the previous section, and computes the

the initial density of aircraft and the inflow (boundary olution of the LWR PDE until the time, + AT. For the

conditions) in the network. The initial position of the aircrafteXper_'mentsAT was c_hose_:n equal to one hour (note that the
giuratlon of the total flight is on the order of two and a half

is easy to extract from the ETMS data: at the prescribe . o ) . .

time, all airborne aircraft which are on the relevant links ar%ours). This .SOIUt'On IS compgred W.Ith th? solution obtained

selected. y propagating the Lagrangian trajectories of each of the
aircraft independently front, to ¢y + AT and computing

1) For any selected aircraft at locationz§ on link 4, the the resulting density. In mathematical terms, we compare

classical density;(x;,0) = pf(x;) is taken to be a “box” the two following quantities

around z¢, of length 2L+ Calling x; the characteristic

function of an intervall (i.e. equal to O outside of and 1) pi(-;to + AT) computed by the LWR PDE (5)

1 inside), p;(x;,0) is ﬁmX[mg,LrMHLref] (x;). Taking all  2) p;(-, to + AT) :=

aircraft initially airborne on linki, the density ispg (x;) =

D in link i 27 X2 — Lrotw?+ Liet) ()

B. Initial and boundary conditions

Za in link 4 ﬁ,e_fX[z;f(t0+A_T_)7L,ef7;pg(_tO+AT)+L,eT] () where
x¢(to + AT) Is the position of aircraft, at time ¢y + AT

2) Similarly, the density-like functiom is computed using the In order to characterize the best choice of numerical param-
knowledge of the mean velocity profile along liikcalled eters, we compute the following two quantities (notations
v;(x;), and the parametéfes: ¢ (x;) = refer to Figure 1):

1) The relative density error, defined b
D in link  Tomgor ey Xlog —tervs (a9 5+t ()] (T1) ) y y

S5 pilwi to + AT) = pizi, to + AT)| da;
The inflows (boundary conditions) can also be extracted from =145 —

ETMS data: each time an aircraft takes off, it will appear in 2 Jo" e to + AT)dzs

the ETMS data as soon as it is airborne. The ETMS data . ) h ) i o

also shows the filed flight plan, which we select when i his quantity re_presents the error in density prediction due
intends to use the links of interest to w&(t) is computed © the propagation op by the PDE.

the following way. At any instant when the data shows &) The absolute aircraft count error, defined by

new aircraft on one of the source links the track is in

general passed the entrance point of that link (because of > >
the sampling rate of 3 minutes). Calling the position of i= 14,5 sublinks ofs
this aircraft on link: at the first time it appears, we computewhere means number. This quantity is the sum of count
the timet, at which it crossed the location; = 0 (using error for all sublinks of links 1,4, and 5. Typically, a link is
the knowledge of the mean velocity profile on the link). Wedivided into sublinks which correspond to different airspace
then use one of the two definitions above to compité)  sectors. For example, if link 1 goes through 8 sectors, we
corresponding to eithes or r. divide it in 8 sublinks and are interested in the aircraft counts
on these sublinks. This error thus estimates the difference
between the number of aircraft predicted by the PDE and
the number obtained by a Lagrangian propagation of aircratft,

As explained in Section III-B, we have two ways of de_Where the error is the sum of all errors on the sublinks.

scribing the density of aircraft in the network, in terms ofThe computation of both quantities is illustrated in Figure 4.
a density functionp and a “density-like” functiorr, which  The relative density error and absolute aircraft count error are
respectively account for spatial and temporal distribution odiveraged (over the 400 runs) and plotted for the range of
aircraft. The functiorp depends on the numerical parameteand L considered. The result is shown in Figure 5. The left
Ly, which we need to adjust. The value of this parametgulot shows the relative density error. As expected, the error
is crucial for predicting aircraft count: Figure 3 shows howdecreases when the number of aircraft increases lagd
errors can occur in translating density functions into aircrafhcreases (typically in fluid mechanics, the idsen number
count. We want to determine the choice of parameters leadidgfines the number of particles per volume above which the
to the smallest error in aircraft count prediction. fluid approximation becomes valid). The right plot shows the
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L;
/ pi(zi, to + AT)dz; — #(ala € link 7)
0

C. ldentifying the numerical parameters



density il o) update through 4 ensity pilzi, to + AT)

rilis, o) the PDE ri(zs, tg + AT) }T
T ﬂ% i & T % a5

1 airway adrway .
3 xh
P ‘ ; ‘ ; ‘ - ..’_/
\ update from positiom predicted by +” /
sl pédtarn. Bt ETMS data, # position from ETMS data at t + AT

ETMS data at time to position predicted by p

Fig. 3. Different predictions obtained by the usecofndr for aircraft density. Above: density propagation through the PDE system (5); below: position
update from ETMS data and from the PDE.

link ¢ link 1
. pilasto -+ AT)
Pi density error Seaioary 6 sublink Tsublink 2 | sublink 3} sublink 4
! ' i)___/;\
ocontinuous density gz 2

| | i extractior

Pa i | discpete ainciaft Iocations |
i THIRYY WRTTS b Y ik S Y

error | 4 error 2 3+(:rr0r35+(:rrcn’43 = error

Fig. 4. Left: lllustration of the computation of the relative density error depicted in Figure 5. The difference between the two density curves (shaded area)
is divided by the area below the curve.Right: lllustration of the computation of the error in aircraft count. The link is divided into sublinks (which can
correspond to sectors). For each of these sublinks, we compare the number of aircraft predicted by the method (depicted by arrows, which are computed
from the density) with the number of aircraft obtained by a Lagrangian propagation of the trajectories. The error is the sum of errors for all sublinks, i.e.

the sum of the errors in sector counts.
‘ " thatv;(x;,t) = v;(x;). As we know, this will not be the case
" in general. Therefore we run simulations and assess if the
" model is still in agreement with real data over two separate
" experiments.
j A. Static validation

o0 Lgdam) e In the first experiment, we use the static velocity profiles
) ) . . ) v;(+) determined in the previous sections for the validation
Fig. 5. Top: Relative density error between the density predicted by the]c h hod. Wi 6 h ETMS d = hi
Eulerian PDE propagation of the densiBottom: Absolute aircraft count O the method. We use a A _Our : ata set. rom _t_ IS
error for the junction New York — Chicago. data set, we extract the position of the aircraft, at the initial
time, construct the corresponding initial aircraft density, and
propagate it through the PDE system. At any given time,

absolute aircraft count error, averaged over 400 simulation e compare the aircraft count predicted by our method and

For this plot, each of the links 1, 4 and 5 have been divideﬁe aircraft count provided by the ETMS data (which is

in sublinks (20 total), of about 50 nm length. This is a wors?xaCt’ ;slrltr:]e I proylde_s thfet posﬁ;ofn of ea::hfiurcraftg).l_Vﬁe
case scneario, i.e. the number of relevant sectors for a flig pmpute the error in aircraft count for a Set ot tén Sublinks

of this length is never higher. One can see thatlfgr < 60 qu the ge‘:wfct)rk_rshhown :jn Flgu.;ethé. The risﬁlt IS ShO\IN? n
and Naircrat > 25, the average aircraft count error is always igure 6 (left). The window wi ref Was taken equal to
15 nm. One can see on the left plot that the total error (for
extremely small. . : . . . :
all airborne aircraft in this airspace) is relatively low (the
The best choice folr is thus obtained at the intersectionmaximal error is 7 aircraft). In fact, the results are much

of the lowest level sets of both plots of Figure 5, i.e. for @etter than they seem: most of the errors come from the fact

20 40 60 80 100

range of Lrer € [20, 60] and Naircratt > 20. that the aircraft distribution is such that there is always at
least one or two aircraft close to a sublink boundary, which
IV. VALIDATION OF THE MODEL will thus be counted in the wrong sublink. In fact, this is not

really a problem, as it is more an artifact of the computation
In the previous section, we have shown that the use of thiather than a true error (Figure 7 shows that the density
modified LWR PDE either with- (with any ) or p ~ ‘g—’; unambiguously shows where the aircraft is). Furthermore,
(with an appropriate choice dfi,e) enables accurate aircraft some of the errors in aircraft count are due to errors present
count predictions. In this section, we validate the modeéh the ETMS data (some have clearly erroneous data; this
against real data: in particular, we had made the assumptitact has also been reported in [5]).
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Fig. 6. Left: Error in aircraft count for the static validation over a five

hour period.Right: Error in aircraft count for the dynamic validation over
a five hour period.

B. Dynamic validation

We extend the validation to a case in which the velocit i

¥ g. 7. Display of the traffic situation for the static validation. The density

profiles are time dependent, i.e;(z;,t). The details Of of the links is depicted by the color. The colored rectangles shown in this
the identification of these profiles are technical and argot represent the density. The colorscale is: white for zero density; black for

not explained here. The comparison is the same as in tﬁi

hest density. The actual aircraft positions are superimposed (triangles).
. . . ffic is shown atg (top left), o +8 min (top right), o 416 min (middle
static case. Note that our analytical solution does not handtgy),

etc. As can be seen, the peaks of density corresponds to the actual

dynamic velocities. This difficulty is alleviated by using apositions of the aircraft.

numerical scheme presented in the companion paper [2]. The
results are shown in Figure 6 and are more accurate than the
static results, as expected. The same remarks apply, and thd
results are again affected by the quality of ETMS data and the
inclusion of the computation artifact. The only weakness of
this validation is that the simulation is run using data from!!
the same day as the data used in identification. A way to
improve this would be to perform the velocity identification
with data of a given day over a 24 hour period, and validatd*!
it over the next 24 hour period, using the fact that there is
periodicity in the traffic for normal days. This was not done
here due to lack of available data. An animation (.avi moviel®l
file) corresponding to the snapshots of Figure 6 is available
at [14].

(6]

In both cases, the validation is very encouraging and shows
strong predictive capability for our model. The model was[’!
also tested successfully using data from the western states
(Oakland Center with traffic incoming into Bay Area air- [8]
ports), though for brevity these results are not included here[.g]
Finally, in [2], we will use the model for control: in that case,

one of the control variables is speed, which means that we
will have direct access to;(z;, t) (since we compute it). This [10]
alleviates difficulties of mean velocity profile identification

shown before.

[11]

Acknowledgments

We are grateful to Dr. P.K. Menon for conversations which inspired this work, Dr.
Gano Chatterji for his ongoing support and suggestions which went into modeling thid2]
work, and to Dr. George Meyer for his support in this project. We are thankful to Pr.
Tom Bewley for useful conversations regarding the application of the adjoint method 3]
to flow control, and his help in the original formulation of the control problem. Pr.
Tai-Pin Liu helped define the PDE used for this model.

REFERENCES (14]

[1] R. ANSORGE What does the entropy condition mean in traffic flow
theory? Transportation Researct24B(2):133-143, 1990.

A. M. BAYEN, R. RAFFARD, and C. J. DMLIN. Adjoint-based
constrained control of Eulerian transportation networks: application
to Air Traffic Control. In Proceedings of the American Control
ConferenceBoston, June 2004.

A. M. BAYEN and C. J. DMLIN. A construction procedure using
characteristics for viscosity solutions of the Hamilton-Jacobi equation.
In Proceedings of theé0!" IEEE Conference on Decision and Control
pages 1657-1662, Orlando, Dec. 2001.

K. BILIMORIA, B. SRIDHAR, G. CHATTERJI, K. SETH, and
S.GRAABE. FACET: Future ATM Concepts Evaluation Tool. In
Proceedings of the 3rd USA/Europe Air Traffic Management R&D
Seminar Naples, Italy, June 2001.

G. CHATTERJI, B. SRIDHAR, and D. KiM. Analysis of ETMS data
qualiy for traffic flow management decisions. Proceedings of the
AIAA Conference on Guidance, Navigation and ContAalstin, TX,
Aug. 2003. Paper 2003-5626.

C. CHEN, Z. JA, and P. MRAIYA. Causes and cures of highway
congestion.|[EEE Control Systems Magazin21(4):26—-33, 2001.

C. DaGANZzoO. The cell transmission model: a dynamic representation
of highway traffic consistent with the hydrodynamic theofjrans-
portation Research28B(4):269-287, 1994.

C. DAGANZO. The cell transmission model, part II: network traffic.
Transportation Resear¢t?29B(2):79-93, 1995.

M. J. LIGHTHILL and G. B. WHITHAM. On kinematic waves. Il. A
theory of traffic flow on long crowded roadBroceedings of the Royal
Society of Londgn229(1178):317-345, 1956.

P. K. MENON, G. D. SVERIDUK, and K. BLIMORIA . A new approach
for modeling, analysis and control of air traffic flow. Froceedings of
the AIAA Conference on Guidance, Navigation and Conhanterey,
CA, Aug. 2002. Paper 2002-5012.

L. MuNoz, X. SUN, R. HorowITZ, and L. ALvAREZ. Traffic density
estimation with the cell transmission model. Rioceedings of the
American Control Conferenc®enver, CO, June 2003.

P. I. RICHARDS. Shock waves on the highwa@perations Research
4(1):42-51, 1956.

Y. WANG, M. PAPAGEORGIOY and A. MESSMER Motorway traffic
state estimation based on extended Kalman filterPioceedings of
the European Control Conferenc€ambridge, U.K., Sep. 2003.
http://cherokee.stanford.edu /"~ bayen/ACCO04.html

5526



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP11.1
	Page0: 5520
	Page1: 5521
	Page2: 5522
	Page3: 5523
	Page4: 5524
	Page5: 5525
	Page6: 5526


