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Abstract—This paper presents in a complete and de-
tailed manner the modeling of pH processes. The model is
strictly based in the physical balance equations of mass
and charge. The model exactly represents the balance
equation, it is proven that polyprotic substances can be
represented uniquely by a combination of monoprotic
substances equivalent to the real acids, bases and salts
that compose the solution. A general differential algebraic
equation model is derived for the CSTR arrangement. Ob-
servability conditions for the solution inside the CSTR are
derived using a reduced model and based on these observ-
ability conditions a minimal description for the chemical
solution is derived. The balance equation is shown to be
monotone, hence the solution of this equation is unique
and well dened for each value of pH. This establishes
the validity of nonlinear feedback linearization techniques
which require the inverse of the static nonlinearity. Two
identication methods are proposed: the nonnegative least
squares algorithm to nd the inuent concentrations when
the dissociation constants pK’s are known or to nd a set
of ctitious concentrations that best represent an unknown
model using a xed and ample set of ctitious pK’s.
The nonlinear optimization algorithm operating in cascade
with the nonnegative least squares algorithm determines
the set of pK’s and respective concentrations that best
approximate the inuent composition.

I. INTRODUCTION

Control of pH is a very difcult and complex task
because in many cases the slope of the process non-
linearity can be very steep around the setpoint and
small changes in the inuent concentration can result
in extreme changes in pH.
The preferred arrangements for pH control are the

Continuously Stirred Tank Reactor (CSTR), Batch and
In-Line.
This paper focuses on the modeling and identication

of pH processes in a CSTR conguration.
The main contribution of this work is the extension

of the model description to include multiple ctitious
monoprotic substances to exactly represent the entire
balance equation. This approach yields a balance equa-
tion that is a good approximation for any neighborhood
size around the setpoint. It is also shown that the states
(concentration) of weak components can be observed if

their dissociation constants are in the excitation region
and they are different. It is further shown that this
memoryless nonlinearity is strictly monotone around the
setpoint. Consequently, the inverse is well-dened and
is also an explicit function of the control action, making
its use in nonlinear feedback control the natural choice
for attacking this problem.
Chemical based models are available as a result of

the works of McAvoy [1]; P. Jutila et al [2], Gustafsson
and Waller [3] and [4], Gustafsson et al [5]; Wright and
Kravaris [6] and Levie [7], among many others.
This paper begins by deriving a model for a chemical

solution of any number of acids, bases or salts. The
monoprotic simplication of polyprotic substances is
discussed. A compact balance equation is proposed and
examples of the new notation are presented. A differen-
tial algebraic equation model describing the pH process
in a CSTR is proposed. Observability conditions for the
chemical solution states are developed. Implications on
monotonicity and uniqueness are discussed. A minimal
description based on the observability conditions and
the monoprotic simplication is proposed. A structure to
include multiple reagents is establish. An identication
approach for the inuent concentrations and components
is proposed. Finally, conclusions are presented.

II. PH CHEMISTRY
In this section a balance equation describing a chemi-

cal solution is obtained using the fundamental equations
of chemical equilibrium and conservation.

A.Notation

H(na¡Za)A
Za¡ : acid molecule (Za = 0):

B (OH)A
Zb+
(nb¡Zb) : base molecule (Zb = 0).

H2O : water molecule.
H+ : hydrogen ion (proton).
OH¡: hydroxyl ion.
Z : formal charge.
K : dissociation constant.
pK = ¡log(K)
na : number of dissociations for an acid.



nb : number of dissociations for a base.
Remark 1: If the formal charge: Za > 0 and Zb > 0,

the acid molecule becomes its conjugate base and the
basic molecule becomes its conjugate acid, respectively.

B.Conservation equations

A vessel containing water mixed with several chemi-
cal substances will be studied.
Assumptions: Constant temperature, ions involved are

completely soluble and salts do not precipitate.
Since all the ions involved are soluble (by assump-

tion), the study will focus on the individual dissociations
of each component, this approach is valid because prop-
erties such as total mass and total charge are invariant.
Given several polyprotic acids or its conjugate

bases,
PNa

k=1

£
H(na;k¡Za;k)A

Za;k¡¤
0;k

and
several polyprotic bases or its conjugate acidsPNb

k=1

h
B (OH)Zb+(nb;k¡Zb;k)

i
0;k
: Where the conjugate

acids or bases could come from the dissolution of salts.
Where:
[ ]0 : Nominal or market concentration.
Na : Number of acids present in solution.
Nb : Number of bases present in solution.
na;k : Number of dissociations of the kth acidic

component.
nb;k : Number of dissociations of the kth basic

component.
The equations of dissolution, dissociation reactions,

conservation of molecular mass and charge yield
NbX
k=1

Xb;k (Db;k ¡Zb;k)¡
NaX
k=1

Xa;k (Da;k ¡Za;k)+® = 0
(1)

Where:
Xa , H(na¡Za)AZa¡
Xb , B (OH)AZb+(nb¡Zb)
® , 10¡pH ¡ 10pH¡pKw

III. MONOPROTIC SIMPLIFICATION
This section will show that the dissociation factor (D)

of a polyprotic substance can be represented uniquely
by the linear combination of several dissociation factors
(D) of ctitious monoprotic (equivalent) substances.
Most of the analysis will be focused on acids, but the

results can be easily extended to bases.
Monoprotic acids and bases
Fact:

Da , Da = 1

1 + 10pKa¡pH (2)

Db , Db = 1

1 + 10pH¡pKab
(3)

The dissociation factor of a base can be expressed
in terms of an acid by noticing that Db = 1 ¡Da if
pKab = pKa
Diprotic acids and bases:
In the case of diprotic acids and bases it is possi-

ble to show that under certain conditions they can be
represented exactly by two monoprotic acids or bases,
respectively. Consider

Da = 10pH¡pKa;1 + (2) 102pH¡pKa;1¡pKa;2

1 + 10pH¡pKa;1 + 102pH¡pKa;1¡pKa;2
(4)

Simplifying (4)

Da = 1

1 + 10pKa;1¡pH +
1

1 + 10pKa;2¡pH (5)

By adding the right hand side (rhs) of (5) and
matching term by term with the rhs of (4) a feasible
solution for monoprotic simplication can be obtained
when

Ka;1 ¸ 4Ka;2 (6)

The result in terms of pKa is:
pKa;2 ¡ pKa;1 ¸ 0:60206 (7)

Because the difference between the pKa’s in most
diprotic substances is greater than 3.0 (Rodriguez [8]),
then it is reasonable that this monoprotic simplication
is valid from a practical prospective.
A similar result is given by Gustafsson et al [5],

but there was no discussion about the validity of this
simplication from the physical constraints.
In conclusion Da = Da;1 +Da;2:
The dissociation factor of a base can be obtained by

Db = 2¡Da if pKa;1 = pKab;2 and pKa;2 = pKab;1:
Triprotic acids and bases
In the case of triprotic acids and bases, it is also

possible to show that under certain conditions they can
be represented exactly by three monoprotic acids or
bases, respectively. Consider

Da =
P3
j=1 j10

jpH¡P j
k=1 pKa;k

1 +
P3
j=1 10

jpH¡P j
k=1 pKa;k

(8)

Simplifying (8)

Da =
X 1

1 + 10pKa;j¡pH j = 1; 2; 3 (9)

By adding the right hand side (rhs) of (9) and
matching term by term with the rhs of (8) an explicit
solution for the minimal difference between two con-
secutive pKa’s in order that a meaningful monoprotic
substitution of a triprotic acid exists is not easy to obtain.
However, numerically solving the cubic equation gives a
minimal difference that depending on the distribution of



the pKa’s, varies between 0:47713 and 0:60206: From
a practical point of view this substitution is usually
valid because the minimal difference between pKa’s for
several common substances is greater or equal to 0:65
(Rodriguez [8]).
The dissociation factor of bases can be obtained by

Db = 3¡ Da if pKa;1 = pKab;3; pKa;2 = pKab;2 and
pKa;3 = pKab;1:
In summary, using the monoprotic simplication,

polyprotic substances can be represented as follows:
nb;k-protic base:

Db;k = nb;k ¡
nb;kX
j=1

1

1 + 10pKab;k;j¡pH (10)

na;k-protic acid:

Da;k =
na;kX
j=1

1

1 + 10pKa;k;j¡pH (11)

IV. BALANCE EQUATION
The balance equation for the acids and bases present

in the solution is given by

TB ¡ TA + ® = 0 (12)

where:

TB =

NbX
k=1

Xb;k
0@nb;k ¡ nb;kX

j=1

Db;j;k ¡Zb;k
1A (13)

TA =
NaX
k=1

Xa;k
0@na;kX
j=1

Da;k;j ¡Za;k
1A (14)

Dene:
Xb : vector derived from Xb where each entry in Xb

is an element of Xb replicated nb;k ¡ 1 times.
Zb : vector derived from Zb where each entry in Zb is

an element of Zb replicated nb;k ¡ 1 times and divided
by ¡nb;k.
Nb =

PNb

k=1 nb;k : the dimension of Xb:
Sb: : Nb £ 1 vector with all its entries equal to one,

that identies basic components.
Xa : vector derived from Xa where each entry in Xa

is an element of Xa replicated na;k ¡ 1 times.
Za : vector derived from Za where each entry in Za

is an element of Za replicated na;k¡1 times and divided
by na;k.
Na =

PNa

k=1 na;k : the dimension of Xa:
Sa : Na £ 1 vector with all its entries equal to zero,

that identies acidic components.
Using this new notation, (12) can be written as:

(¡Db + Sb + Zb)T Xb+(¡Da + Sa + Za)T Xa+® = 0
(15)

Dening the vectors:
X =

·
Xb
Xa

¸
Z =

·
Zb
Za

¸
pK =

·
pKab
pKa

¸
D =

·
Db
Da

¸
; where Dk =

1

1 + 10pKk¡pH

S =

·
Sb
Sa

¸
N = Nb +Na

Equation (15) is written as:

¡DTX + (S + Z)T X + ® = 0 (16)

Dene
° = (S + Z)T X (17)

Notice that X is a nonnegative vector of the nominal
concentrations and is invariant with respect to pH; then
° is a nonnegative constant as long as the nominal
concentrations of the basic components remain constant.
Equation (16) can be written as

¡DTX + ° + ® = 0 (18)

1) Notation Summary:
² X : vector of concentrations where each entry of X
is replicated n¡1 times in X; being n the number
of possible dissociations for each multiprotic com-
ponent. Besides, if a component has the structure
T (P )n with molar concentration ±M (where ± is
a constant and M stands by ”molar ”), the ion
concentration is ±M w.r.t. the T§n ion and n±M
w.r.t. the P§ ion ([9]; pp. 212)

² pK : vector with the dissociation constants of all
the substances in the solution.

² Z : formal charge vector, where each entry of Z is
replicated n¡ 1 times and divided by n for acids
and by ¡n for bases.

² S : vector with all entries equal to one for basic
components and to zero for acidic components.

Remark 2: This model that includes salts was vali-
dated solving the examples: 7.10, 7.11, 7.12, 7.14 and
the exercise 56 from [10].
Notational Example
A set of solutions is given in Table I, such set can be

written using the notation proposed in this work as is
shown in Table II.

V. CSTR MODELING
A.Description

The CSTR arrangement can be described as a tank
which receives inuent ow (process stream) and
reagent ow (control stream), which are mixed inside
the tank, and the resulting mixture is discharged into
the efuent stream.
The inuent ow can be the result of the mixing

of several streams, each one with known or unknown



TABLE I
NOMINAL SUBSTANCES

N± Substance p ¹Ka (o pKab) Condition
1 0:1 M NaOH 17:00 base

2 0:1 M Ca (OH)2
12:600
11:570

base

3 0:1 M HNO3 ¡1:444 acid

4 0:1 M H3PO4

2:125
7:208
12:000

acid

5 0:1 NH4H2PO4

9:255
2:125
7:208
12:000

salt

6 0:1 (NH4)3 PO4

9:255
2:125
7:208
12:000

salt

TABLE II
DESCRIPTION IN TERMS OF THE PROPOSED NOTATION

N± X pK S Z
1 0:1 17:00 1 0

2 0:2
0:2

12:60
11:57

1
1

0
0

3 0:1 ¡1:44 0 0

4
0:1
0:1
0:1

2:13
7:21
12:00

0
0
0

0
0
0

5

0:1
0:1
0:1
0:1

9:26
2:13
7:21
12:00

1
0
0
0

¡1
1=3
1=3
1=3

6

0:3
0:1
0:1
0:1

9:26
2:13
7:21
12:00

1
0
0
0

¡1
3=3
3=3
3=3

components, and even if the components are known it
is possible that the concentrations of the components are
unknown and time-variant.
The reagent ow can switch between acid and base

reagents, based upon the setpoint (desired pH of the
efuent) and the incoming pH.

B.Assumptions

1) Constant temperature.
2) Water density is constant.
3) Level control is perfect or level is measurable.
4) Perfect mixing.
5) Ionic reactions are instantaneous in comparison to
other dynamic effects.

6) No precipitates are formed.

C.State/outputmap

The equation describing the system state/output map
is given by (18). Separating (18) in terms of the inuent

and reagent contributions, an equation more useful for
identication and control purposes is obtained.

Reagent: Xr =
·
Xb;r
Xa;r

¸
, pKr =

·
pKab;r
pKa;r

¸

Dr =

·
Db;r
Da;r

¸
, Zr =

·
Zb;r
Za;r

¸
, Sr =

·
Sb;r
Sa;r

¸

Inuent: Xi =
·
Xb;i
Xa;i

¸
, pKi =

·
pKab;i
pKa;i

¸

Di =

·
Db;i
Da;i

¸
, Zi =

·
Zb;i
Za;i

¸
, Si =

·
Sb;i
Sa;i

¸
Using this notation, (18) can be written as:

(¡Di + Si + Zi)T Xi+(¡Dr + Sr + Zr)T Xr+® = 0
(19)

D.Dynamics

dh

dt
=
Fr + Fi ¡ Fe

A
(20)

dXr
dt

=
FrCr ¡ (Fi + Fr)Xr

Ah
(21)

dXi
dt

=
FiCi ¡ (Fi + Fr)Xi

Ah
(22)

Where:
Fr : reagent ow (control action).
Fi : inuent ow.
Fe : efuent ow.
A: tank sectional area.
h: tank level.
Xr: concentration vector inside the tank caused by

the reagent stream.
Xi: concentration vector inside the tank caused by the

inuent stream.

VI. OBSERVABILITY
Model-based approaches have proven to be the best

way to control pH; however, in most of the pH
industrial applications there is incomplete knowledge
of the inuent composition or concentration, and the
observability property of the realization is important:
Some authors have concluded that the realization (19)-

(22) is not observable; however, in the following analysis
it will be shown that under certain assumptions the
realization is observable.
Assumptions:
1) The pH is measurable.



2) The reagent components and their concentrations
(Cr) are known.

3) The reagent ow (Fr) is known because is the
control signal.

4) The cross sectional area of the tank (A) is known.
5) The level (h) and inuent ow (Fi) are measur-
able.

The conclusion derived in Rodriguez and Loparo[11],
is that the vector X is observable provided that all the
dissociation factors Dj are linearly independent on a
time interval [t0; tf ].
Linear independence of the dissociation factors in a

physical sense means that each component must be weak
and with different pKj : The observability of X provides
a minimal description of the system.

VII. MONOTONICITY AND UNIQUENESS

Equation (19) reveals some interesting properties. Be-
cause the balance equation (19) is the linear combination
of several monotone decreasing functions plus a nonneg-
ative scalar; ° = (Si + Zi)T Xi+ (Sr + Zr)T Xr; then
is also a monotone function with a unique solution for
each concentration of reagent added. The implication of
this observation is that this equation is invertible and
could be used for feedback linearization control.

VIII. MINIMAL DESCRIPTION

Equation (19) shows that the balance equation is the
linear combination of the function ®; several dissocia-
tion factors, D and a scalar °: This description can be
reduced by eliminating all the elements that are linearly
dependent according to the following criteria:
1) Components with varying but equal Dk’s (pKk’s
are equal) can be reduced to a single component,
and the nominal concentrations, Xk’s, of the com-
ponents that are removed are added to the nominal
concentration, Xk; of the single component.

2) Components in which Dk is constant and equal to
zero (strong bases) can be removed from the set
of candidates (the nominal concentrations of these
components are included in the parameter °).

3) Components in which Dk is constant and equal
to one (strong acids) can be removed from the
set of candidates; however, their corresponding
concentrations must be subtracted from °.

Once all these elements have been removed the re-
maining system denes a ”minimal description” of the
process. Notice that this static minimal description is
dened by the reagent excitation, which means that for
a very small pH region the dimension of the description
will be the smallest, and in a certain sense incomplete.

This representation is called minimal because the num-
ber of elements in this representation are necessary and
sufcient to model the balance equation in the region of
excitation.

IX. MULTIPLE REAGENT
Consider that Cr in (21) has the form:

Cr = CrS (23)

where

Cr =

2666664
Cr;1 0 ¢ ¢ ¢ 0 0
0 Cr;2 ¢ ¢ ¢ 0 0
...

...
. . .

...
...

0 0 ¢ ¢ ¢ Cr;nr¡1 0
0 0 ¢ ¢ ¢ 0 Cr;nr

3777775 (24)

and
S =

£
0 ¢ ¢ ¢ 1 ¢ ¢ ¢ 0

¤T (25)

In this structure Cr is a matriz that includes nr
different reagents separated by columns. The reagent in
use is selected by the position of the one entry in vector
S: Any reagent Cr;j; j = 1; 2; :::; nr is a vector with
multiple components. Equation (21) can be written as:

dXr
dt

=
FrCrS ¡ (Fi + Fr)Xr

Ah
(26)

X. IDENTIFICATION
In order to identify the inuent concentrations, Xi0s;

and the inuent dissociation constants, pKi0s (if the
inuent is completely unknown) a standard performance
function is dened as J = 1

2

PN
k=1 e

2
k, where ek is the

error in the computation of the balance equation. From
(19) ek is computed as

ek = yk ¡ ŷk = ®k ¡DTr;kXr;k + °i ¡DTi;kXi (27)

where Dr;k , Dr;k¡Sr¡Zr is a known vector with
reagent data and °i , (Si + Zi)

T
Xi is an unknown

scalar and Xi is an unknown vector.
Equation (27) can be arranged as

ek = yk¡'Tk µ =
£
®k ¡DTr;kXr;k

¤¡· ¡1
Di;k

¸T ·
°i
Xi

¸
(28)

Function J can be optimized in terms of °i and Xi
using a nonnegative least square algorithm because these
parameters come into (28) in linear fashion.
If the inuent is completely unknown, the optimal

pKi
0s that dene the Di0s can also be found by

using a nonlinear optimization algorithm in cascade
with the nonnegative least square method. Functions
lsqnononeg.m and fmincon.m from MATLAB R° where
used for this purpose.



Discussion about this identication approach
1) If the dissociation constants of the inuent are
known, the lsqnononeg method should be used
for identifying the concentrations of the inuent.
Simulations shown that such an approach provides
excellent convergence with very few samples.

2) If the inuent is completely unknown and the
lsqnononeg method is used with an ample xed
ctitious dissociation constant description for the
inuent, the solution obtained is generally accept-
able if the separation of the xed dissociation
constants selected is small. The convergence to
the solution is fast and the matching with the real
titration curve is acceptable.

3) If the inuent is completely unknown and the
fmincon method is used even with a sparse dissoci-
ation constant description, the solution obtained is
good because in this case the lsqnononeg method
nds the best set of concentrations and at the
same time the fmincon method nds the best set
of dissociation constants that match the curve.

XI. CONCLUSIONS

This paper presents a derivation of the general nonlin-
ear differential algebraic equation model for the CSTR
conguration. Conditions for observability of the states
are obtained (i.e. all the components have to be weak
acids or bases with different dissociation constants). The
balance equation is shown to be monotone. Because of
the monotonicity of the balance equation, the solution of
this equation is unique and well dened for each value of
pH. This establishes the validity of nonlinear feedback
linearization techniques which require the inverse of
the static nonlinearity. Although these facts about pH
modeling have been assumed to be true for quite some
time, this paper has proved their validity in a rigorous
manner.
Using multiple components to represent the solution

allows the balance equation to be represented in the
complete region dened for the pH values that can be
obtained for a certain reagent excitation. This represen-
tation allows for the implementation of bi-directional
identication and control and for the use of multiple
components. In this case, the system can be controlled
aggressively, while at the same time buffering can be
introduced to reduce the sensitivity of the controlled
system around the pH setpoint.
Two identication methods were proposed: the non-

negative least squares (lsqnononeg) algorithm to nd
the actual concentrations when the dissociation con-
stants (pK’s) are known or to nd a set of ctitious
concentrations that best represent an unknown model

using a xed and ample set of ctitious pK’s. The
nonlinear optimization algorithm (fmincon) operating
in cascade with the lsqnononeg algorithm determines
the set of inuent pK’s and respective concentrations.
The identication procedure guarantees that the model
converges to an accurate description. The nonnegative
restriction allows to preserve properties such as mono-
tonicity, eliminating problems caused by noise in other
identication approaches.
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