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Abstract — A switched stiffness semi-active vibration
attenuation method implemented with a simple relay-type
control logic for flexible mechanical structures is presented.  A
single degree of freedom system is considered for validation of
the switched stiffness concept.  The method is then applied to a
flexible beam with moving base, representing the last link of a
Cartesian-type robot manipulator. A piezoelectric actuator,
attached on the top surface of the flexible beam, is switched
between open and short circuit configurations. This switching
introduces a change in stiffness, which, in turn, can remove
energy from the overall system by directly affecting the stored
potential energy in the flexible beam.  The control logic for
switching stiffness is based on the position and velocity
feedback of the tip of the flexible beam. Implementation of this
control logic is hindered by the lack of velocity sensors. A
numerical differentiator may be utilized, but may degrade the
vibration suppression performance due to the phase lag
introduced by filters utilized for conditioning the resultant
noisy signal. In order to remedy this, a novel output feedback
variable structure velocity observer scheme applicable for a
general nonlinear mechanical system with unknown system
dynamics is utilized. Simulation results show superior
vibration attenuation for both the single degree of freedom
oscillator and the cantilever flexible beam systems with
velocity observer. 

1. INTRODUCTION

Piezoelectric materials have been used in the past as
actuators and sensors in active and passive vibration control
of dynamic structures.  Active vibration control methods,
though effective in vibration attenuation, require large
amounts of input energy and may cause instability under
certain conditions [1].  Passive vibration control methods,
on the other hand, are less effective in vibration control but
are relatively simpler and have much improved stability
characteristics compared to active systems [1]. Passive
vibration control using piezoelectric materials also suffer
from many drawbacks such as detuning modes, large
inductance requirements for low excitation frequencies, and
limitations on electromechanical coupling potential of the
piezoelectric elements. There is always a trade-off between
active and passive vibration control methods, which has led
to the development of hybrid methods such as adaptive
passive and semi-active configurations [2, 3].
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A recent development in this area utilizes piezoelectric
actuators with switched stiffness [4, 5].  The switched
stiffness method is a semi-active vibration control method
in which a control law is designed to switch the equivalent
stiffness effect of the piezoelectric actuator.  This is
primarily based on the property of the piezoelectric
materials that results in a significant change in the
mechanical stiffness of the combined system between open
circuit and short circuit configurations [4].  In this method,
a piezoelectric actuator is switched between high stiffness
(in the form of an open circuit) and low stiffness (in the
form of a closed circuit), in order to increase the energy
dissipated from the system.

The high stiffness state is used when the system is moving
away from its equilibrium point such that potential energy is
stored in the bending or deflection of the system.  The
piezoelectric actuator is switched to low stiffness state when
the system has reached its maximum stored potential
energy, thus dissipating energy by lowering the stiffness.
This energy dissipating method can be used for vibration
suppression of transient and continuously excited systems.
However, a limitation for implementation of this type of
vibration attenuation is the velocity measurement
requirement of the system under study. Expensive velocity
sensors and noisy differentiators make this limitation more
noticeable. This problem can be overcome by implementing
an output feedback velocity observer [6].

Typically, embedded piezoelectric actuators serve as non-
collocated controllers for vibration suppression
requirements [7-12]. To predict the behavior of the flexible
beams incorporating PZT actuators and sensors, many exact
(analytical) and approximate (numerical) models have been
developed [13-16].  These mathematical models consider
the piezoelectric patches in the form of either bonded on the
transverse surface or embedded in the beam, and assume
linear strain in the actuator and a pure shear in the bond
film [14-16].

In this paper, a switched stiffness control strategy is
proposed for regulating a single link robot arm, which is
modeled as a flexible cantilever beam with a translational
base support. The base motion is excited by utilizing an
electrodynamic shaker, while a PZT patch actuator is
bonded on the surface of the flexible beam for suppressing
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residual arm vibrations. The control objective here is to
suppress the vibration transients in the beam in the presence
of base motion and disturbances. The controller developed
here is a semi-active controller using stiffness switching.
The velocity of the robot arm is estimated using an observer
using output feedback variable structure observer [6]. The
results obtained by varying the stiffness demonstrate that
the beam residual vibrations can be suppressed to achieve
stable performance of the robot arm.
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Figure 1: Schematic of a one-link flexible robot arm.

2. GOVERNING EQUATIONS OF MOTION

As shown in Figure 1, one end of the beam is clamped into
a moving base with the mass of mb, while the other end is
free. The beam has total thickness tb, and length L, and the
piezoelectric film possesses thickness and length of tb and
(l2-l1), respectively. We assume that the PZT and the beam
have the same width, b. The PZT actuator is perfectly
bonded on the beam at distance l1, measured from the beam
support. The force f(t) acting on the base is the only
external effect.

Uniform cross-section with Euler-Bernoulli beam
assumptions is considered for the beam. It is assumed that
there is no axial deformation for the beam and the small
deflection assumption is satisfied.  If )(ts is the base
displacement, w(t), the beam tip displacement, bρ  and pρ ,

respective beam and PZT volumetric densities, bE  and
pE represent the young's modulus of the beam and the PZT,

neglecting the effect of gravity, the equations of motion can
be obtained as in [17],
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and H(x) is the Heaviside function. Considering the
system’s governing equations (1-3), the modulus of
elasticity of the PZT, pEI  given in equation (7), can be
varied by switching the circuit connection of the shunted
piezoelectric between open and short circuit configurations.
Notice the switched stiffness method is a semi-active
method and the piezoelectric actuator attached to the beam
acts as energy dissipating mechanism rather than an active
control system. When short-circuited, the modulus of
elasticity is pEI , while in open circuit, it is pEI / )1( 2

31k− ,
thereby introducing a change in stiffness (this will be
demonstrated later in the text), where 31k  is the
electromechanical coupling coefficient.  The benefit of
changing stiffness is shown in Section 3 followed by the
switched stiffness proposition using PZT actuators in
Section 5.

3. SWITCHED STIFFNESS VIBRATION CONTROL CONCEPT

To best explain the switched stiffness vibration control
method, we consider a single-degree-of-freedom (SDOF)
mass-spring system.  The spring is assumed to be a step-
variable stiffness spring in the sense that it can be switched
between two constant values, namely high and low stiffness
values. As the external force f(t) causes the mass to move
away from its equilibrium position, the stiffness of the
spring k(t) is kept at high value. The maximum potential
energy at maximum mass displacement will be given by

2
max2

1 ykhigh . At this point (ymax), the stiffness is switched to
low value and kept at this value until the mass reaches the
equilibrium point again. Therefore, the potential energy at
ymax becomes 2

max2
1 yklow . The difference in potential

energy can be given as 2
max2

1  yk∆ . The decrease in

potential energy given by 2
max2

1  yk∆  will consequently
result in decrease in converted kinetic energy, thereby
introducing energy dissipation in the system.  The stiffness
is then switched back to high when the system moves away
from its equilibrium, thus switching stiffness from low to
high in a periodic manner to gradually dissipate system
energy.

3.1 Control Law for Switching Stiffness
A heuristic control law was suggested in [4] to essentially
switch the stiffness values through a hard switching or on-
off (relay) control. For the case of the SDOF system
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discussed in Section 3, the governing equation of the system
is given by

    )()()()( tftytktym =+DD                        (9)
where y is the system output (i.e., the signal that is to be
attenuated). The control law can be simply stated as
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The control law can also be expressed in the following
more compact form,
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2
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        (11)

For numerical simulations, the spring stiffness value is
changed such that the potential energy is dissipated at
maximum deflection, resulting in the ‘step-down’ of total
system energy, and hence, suppressing the displacement as
shown in the bottom graph of Figure 2. The amount of
dissipated energy over a particular period is proportional to
the difference between high and low values ( k∆ as
explained earlier in this section). When the stiffness is
switched as per control law given in equation (10), it results
in significant vibration suppression [5]. Note that the
system is no more conservative, due to the dependence of
the stiffness with time, hence it is considered as a
parametric system.

3.2 Lyapunov-based Stability Analysis of Switched Stiffness
Method

Theorem 1: The homogenous version (f(t) = 0) of the quasi
time-variant linear system (equation (9)) with the variable-
rate stiffness k(t) given by equation (11) is globally
asymptotically stable in the sense that .  as  0)( ∞→→ tty
Proof: We select a Lyapunov candidate function,
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We see that V is positive definite. Differentiating equation
(12), and using equation (9), it can be shown that,

yykkV lowhigh ��  )(
2
1 −−=                  (13)

Considering that V�  is negative semi-definite, V is radially
unbounded, i.e. ∞→∞→ yV   as  , , then, using the
Invariant Set Theorem [18], it can be proven that the system
(9) with variable spring (k(t)) is globally asymptotically
stable. The phase portrait shown in Figure 3 demonstrates
that the switched stiffness system results in a globally
asymptotically stable equilibrium point.

4. REAL TIME IMPLEMENTATION OF SWITCHED STIFFNESS
CONCEPT USING VELOCITY OBSERVER

The control law can be implemented by measuring the
position and the velocity of the spring-mass system, but due
to the unavailability (or complication of implementation) of
velocity sensors, velocity cannot be measured directly, thus
hindering the implementation of the control law. In order to

overcome this dilemma, a simple solution would be to
measure the position and numerically differentiate it to find
the required velocity signal. A classical problem is the
resulting noise accompanying the differentiated signal
leading to erroneous results. To prevent this, a recent robust
velocity observer scheme can be utilized to observe the
velocity and help implement the control law [6]. This
observer may also be considered as an inexpensive
replacement for the velocity sensors.

Velocity Observer Design Overview: This section briefly
explains the variable structure velocity observer introduced
in [6] for a class of unknown nonlinear systems of the form

uyyGyyhy ),(),( DDDD +=                          (14)

where nty ℜ∈  )( is the system output, ntu ℜ∈  )( is the

system input, nyyh ℜ∈  ),( D and nyyG ℜ∈  ),( D are system
nonlinear functions. The following assumptions are made in
order to design the observer [6]:
1. The system states are always bounded.
2. ),( yyh D and ),( yyG D are first order differentiable such

that their derivatives exist.
3. The control input )(tu  is first order differentiable.
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Figure 2: Illustration of the stiffness switching concept for a
SDOF system with m = 1 g,  klow = 16.7 kg/mm

and khigh = 19.9 kg/mm.
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Figure 3: Phase portrait of the variable spring-mass system
indicating asymptotic stability.
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If )(ˆ tyD is the observed velocity, then the error due to the
velocity observation can be given as,

yyy DDD ˆ~ −=                                 (15)
Therefore, to observe velocity accurately, the error should
go to zero, ∞→→ ty   as  ,0~� .  In order to achieve this, a
second-order filter, whose structure is motivated by the
Lyapunov-type stability analysis as in [6], is adopted as
follows to generate the needed velocity,

yKpy ~   ˆ 0+=D               (16)
yKyKp ~  )~sgn( 21 +=D                      (17)

where )(tp is an auxiliary variable, sgn(.) denotes the
standard signum function, 210  and   , KKK  are positive-
definite constant diagonal matrices. The stability analysis
has also been proven in [6], ensuring stability of the system
using this observer.

The switched stiffness control concept is implemented using
the position and the estimated velocity via the output
feedback observer explained earlier. The SDOF system in
section 3 is considered with the velocity observer presented
in the above section for the simulation. Appropriate gains

210  and   , KKK  were selected and the results are obtained
as shown in Figure 4. The velocity observation error goes to
zero as seen in the third graph of Figure 4, as a result of
which the observed velocity corresponds to the actual
velocity as shown in the last two graphs of Figure 4.
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Figure 4: Velocity observer performance for switched stiffness
SDOF system with gains K0 = 5, K1 = 5 and K2 = 5500.

5. SWITCHED STIFFNESS USING PZT ACTUATORS

The switched-stiffness method utilizing a variable stiffness
spring was explained earlier.  This section presents the
practical implementation of such concept through utilization
of piezoelectric patch actuators.  The piezoelectric materials
possess the ability to change the effective stiffness

according to the type of circuit connection [4]. More
specifically, when connected in an open circuit, the material
exhibits a particular stiffness and when short-circuited, it
exhibits different, typically lower stiffness.  This ability of
the piezoelectric actuators to change their stiffness is due to
their ability to change their mechanical compliance, caused
by changes in their electrical impedance when connected in
open or short circuit.

During open circuit, the piezoelectric actuator is able to
store more potential energy due to its higher stiffness and
inherent capacitance, when switched to low stiffness (i.e.
short circuit), the piezoelectric is able to dissipate the
energy effectively as the capacitor is shunted to short and
the stiffness becomes low.  If the piezoelectric actuator is
shunted to a resistive (R) or resistive-inductive (R-L)
circuit, the resistor dissipates electrical energy in the form
of heat energy [1]. Passively shunted systems provide better
performance than the simple open-closed type systems;
however, they tend to show inconsistency and poor
performance if not optimally tuned.

There are two basic theories on the utilization of
piezoelectric patch actuators as vibration controller. The
first theory regards the actuator as an added viscous spring
damper where the piezoelectric has a particular value of
stiffness. The second theory concentrates on energy
conversion approach, where mechanical energy is converted
into electrical energy, through the inherent
electromechanical coupling of the piezoelectric actuator,
which in turn is dissipated.  The piezoelectric actuator acts
like a voltage source with a capacitor in the circuit.  To use
the basic concepts of admittance and impedance, we can
write voltage and current across the piezoelectric actuator
as in [1],

)( )( sLsv E=                                (18)
)(  )( sAssI D=                             (19)

where E  is the electrical field of the PZT and D  is the
dielectric displacement of the PZT. v  is the voltage of the
piezoelectric actuator, I  is the current flowing through the
actuator, A  is the cross sectional area of the actuator and
L  is the length of the piezoelectric actuator.  Now the
stress and strain can be written with respect to voltage and
current as [1],
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where 66×ℜ∈Es  refers to the compliance of material when
the electric field is constant, 33×ℜ∈Tε  is the permittivity
matrix under constant stress and  d relates the electric
charge per unit area 3ℜ∈D  (the dielectric displacement) to
the stress T under a zero electric field. On the other hand,
we can write

pztCLA =−1
33ε                            (21)

where pztC   is the capacitance of the piezoelectric actuator.
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Replacing the inherent capacitance of the piezoelectric
actuator with open circuit admittance )(sY D  of the
piezoelectric actuator in equation (20) we get,
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Expressing equation (22) in terms of electrical impedance
ELZ , which is the reciprocal of electrical admittance, DY ,

we arrive at the voltage appearing across the piezoelectric
actuator electrodes,

                TsADZIZv ELEL )(−=                        (23)
The ability of the piezoelectric actuator to change the
stiffness according to its circuit connection is noted by the
fact that the mechanical compliance, the reciprocal of
stiffness changes accordingly for different circuit
connections. The shunted piezoelectric compliance can be
defined [1] by

][ 12
31

ELESU ZLsAdss −−=                       (24)
For open circuit, we have

                   ELZ = 1)( −sC pzt                         (25)
while for  short circuit, we get

ELZ = 0                                      (26)
If a shunt circuit is used, then DY  is replaced by ELY , and if

shZ  is the shunt circuit impedance, then:
SDEL YYY +=                                 (27)

sh
pzt

EL ZsCZ += −1)(                           (28)

By using different values for ELZ , the piezoelectric
compliance changes, thus implying change in stiffness.  It is
evident that the open circuit compliance is less than that of
short circuit, implying that the open circuit stiffness is
higher than short circuit.  In case of shunted piezoelectric,
greater the impedance of the shunt circuit greater will be the
stiffness of the piezoelectric actuator.

The electromechanical coupling coefficient is defined as the
ratio of the peak energy stored in the capacitor to the peak
energy stored in the material strain (under uniaxial loading
and sinusoidal motion) with the piezoelectric electrodes
open.  Physically, its square represents the percentage of
mechanical strain energy, which is converted into electrical
energy and vice-versa. The electromechanical coupling
coefficient is defined as [19]

33

2
312

31 ε
dEk

P
=                                   (29)

where PE  is the equivalent stiffness of the PZT. This
implies from equations (24), (25), (26) and (29) that the
change in stiffness will be from a low stiffness value

1)( −== EP
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P sEE  to a high equivalent stiffness value

of )1/( 2
31kEE P
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6. SWITCHED STIFFNESS METHOD FOR TRANSLATIONAL
FLEXIBLE BEAMS

A flexible translational Cartesian robot can be modeled as a
flexible cantilever beam with a translational base support
(Figure 1).   The effectiveness of the switched stiffness
method is demonstrated here by implementing it on the
flexible cantilever beam arm with a translational base
support shown in Figure 1.

6.1 Assumed Mode Model Expansion
For the numerical simulations, an assumed mode model
(AMM) expansion is used to truncate the original partial
differential equations.  Specifically, the beam deflection
w(x,t) is expressed as the following Galerkin approximate:
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where φi(x)’s are the mode shapes of the flexible cantilever
beam,  qi(t)’s are the generalized coordinates and n is the
number of modes to be considered.  Using Lagrangian
approach and utilizing standard orthogonality conditions for
the mode shapes, the equations of motion can be obtained
as [17, 20- 21]
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and ωi’s are natural frequencies of the beam.

6.2 Switched Stiffness Control Implementation
As stated earlier, the objective here is to suppress the
vibrations of the robot arm through the switched-stiffness
method while the arm base undergoes external motion.
Similar to the control law in Section 3 for the SDOF system
(see equation (10)), the beam tip deflection, ),( tLw is used
as the system output. Consequently, the control law is stated

as,
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where ),( tLw  and ),( tLwD  correspond to respective y  and
yD  as in SDOF setting.  The change in low stiffness and

high stiffness can be performed by changing the value of
pE  in equation (5); that is, for low stiffness p

lowE = pE  and

for high stiffness )1/( 2
31kEE pp

high −= .
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For numerical simulations, three modes of the flexible beam
are considered (n = 3).  Viscous and structural damping of
the beam are both neglected for simulations.  The condition
for switching is checked and the control law is implemented
as mentioned above (equation (34)), thus switching the
piezoelectric actuator from low to high stiffness.  The
parameters used are listed in [17].  The results are shown in
Figure 5, where considerable vibration suppression is noted.
Modal velocities obtained by solving the differential
equations for the system were used to implement the control
law in this simulation, but this is not possible in real time.
Many strain sensors are needed to determine the modal
velocity and then calculate the beam tip velocity. Hence
other means for velocity measurement are required, which
are discussed next.

6.3 Switched Stiffness Implementation via Velocity
Observer

The flexible beam with moving base is considered here
again and the velocity observer developed in Section 4 is
used for simulation. Appropriate gains 210  and  , KKK  are
selected and the following results are obtained as shown in
Figure 6. The results are similar to that obtained in Figure
5, justifying the use of the observer.

C o n tro l le d   S y s te m   u s in g   S w i tc h e d   S t i f f n e s s   P Z T

Figure 5: Response of the beam tip deflection for switched
stiffness using modal velocities.

C o n t r o l l e d    S y s t e m   u s i n g   O b s e r v e r

Figure 6: Response of the beam tip deflection for switched
stiffness system using velocity observer.

7. CONCLUSIONS

A flexible translational cantilever beam equipped with a
piezoelectric actuator attachment that could change its
stiffness was considered here.  By switching the stiffness,
(i.e., PZT configuration) depending on the position of the
beam tip with respect to the equilibrium, energy dissipation
was maximized and considerable vibration suppression was
achieved.  Real-time implementation difficulty with regard
to velocity measurement was overcome using an output
feedback variable structure observer. Experimental
validation of the vibration attenuation for flexible beams

using switched stiffness technique with the proposed
velocity observer is under investigation.
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