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Flathness-based Control of a Flexible Beam in a Gravitational Fald
A.F. Lynch and D. Wang

Abstract— This paper considers a flatness-based boundary The angular position of the non-drive-end of the shaft acts
control of a hub-beam system with tip payload moving in a as a flat output in that the torsion field can be expressed
vertical plane in the presence of gravity. The homogeneous 4q constant amplitude delays and predictions of this output

flexible beam is modelled using an Euler-Bernoulli hypothesis . L L7 .
which assumes no shear deformation or rotatory inertia. As trajectory and its time derivatives [5], [6]. Other hypelibo

well, small transverse deformations are assumed. A linearized €guations modelling heat exchangers, telegraph lines, and
system model involving a coupled PDE-ODE is derived and heavy chains lead to “distributed delay” operators reqgiri
a change of coordinates is introduced to simplify this model. the integration of the flat output over a finite time interval
The method of control relies on a flathess property of the [7], [8], [9]. Parabolic or biharmonic equations lead to
system; namely, that the system solution can be differentially : ;' -~ = L
parameterized in terms of a flat output. This parameterization infinite series paramgterlzathns 21, [jjO]' [11], [12]3]1
allows for straightforward motion planning and computation ~ [14]. Work on the biharmonic case includes the Euler-
of a control law. The approach is based on power series in Bernoulli beam moving in a horizontal plane [10], [15]
the spatial variab_le, and the convergence of thes_e series is or a cantilever piezoelectric beam [16], [17]. Other work
ensured by choosing the flat output to be a nonanalytic, smooth considers the generalization to Rayleigh and Timoshenko
function of appropriate Gevrey class. beams [3], [18]

. INTRODUCTION There is a vast body of work on the control of flexible

Many important control prob'ems involve motion p|an_beams which does not use a flatness-based approach. These

ning. For example, steering a car along a prescribed trgther methods are often based on linear ODE models
jectory or controlling a chemical reactor between operobtained by spatial discretization (e.g. modal decomjuosit
ating points. Methods for solving motion control prob-Or finite element analysis) and linearization [19], [20]h&xt
lems often rely on nonlinear models because of significafork treats the PDE-ODE system directly [21], [15], [10],
change in system behaviour for large motions. When &2]. The approach taken here is in the same spirit as
finite-dimensional nonlinear system is differentially fla,  the work in [10], [15] as a nondiscretized model and its
straightforward means for motion planning exist. In addisolutions are used directly to determine the control lave Th
tion, feedback tracking controllers can be readily designeMain contribution of this paper is to generalize the results
The flatness property means that trajectories of all systef [10], [15] to include the effects of a gravity. A more
variables (e.g. inputs or states) can be computed frogPmplete account of the some of the calculations given in
functions of a finite number of time derivatives of a sothis paper can be found in [23].
called flat output traje<_:tory. ThIS. relr_:\tlonsmp be_tweem f_Ia Il. SYSTEM MODELLING
output and system variables, which involves no integration
and only function evaluations, means motion planning ob- Consider a single-link flexible beam, shown in Fig. 1,
jectives such as actuator saturation can be accounted féflich is clamped to a motor and constrained to move in
Having designed a flat output, an expression for an Opeﬁ_vertical plane in a gravitational field. A motor with fixed
loop steering control follows readily. Applications of shi translational position exerts a torgifeon the beam and the
flatness-based method can be found in [1], [2], [3] and th&ertia of the motor-hub assembly is denotgd Let the un-
references therein. deformed length of the beam lig its constant mass density
Recent work on flatness has dealt with the generaliz&€ p. its constant cross-sectional area Beits constant
tion of motion planning to boundary controlled infinite- Cross-section area moment of inertia beand its Young
dimensional distributed parameter systems [4], [3]. Fomodulus beFE. A payload of massn and inertiaJ, is
infinite-dimensional systems, the type of PDE determinedttached to the non-drive-end of the beam. We assume the
how the solution is parameterized by the flat output. Fdruler-Bernoulli hypothesis is valid: that plane cross isest
example, the flatness-based approach was first applied¥@ich are normal to the beam axis before deformation
distributed parameter systems on a flexible shaft problef§main plane after deformation and normal to the deformed

which can be modelled using a hyperbolic wave equatio@Xis (no shear deformation) and rotatory inertia effeces ar
negligible. We introduce two coordinate systems shown in
_ This work was par_tially supported by the Natural SciencesEmgineer- Fig. 1 and which are related by a rotation of an@leThe
ing Research Council of Canada (NSERC), under grant numi®&82402. . . . . .
A.F. Lynch is with the Department of Electrical and Computer En inertial or fixed frame is denoted by OY" and the floating
gineering, University of Alberta, Edmonton AB, Canada T6G 42V frame is denoted by:Oy. The floating-frame is defined

al anl @eee. org . such that itsz-axis is aligned with the rigid motion of the
D. Wang is with the Department of Electrical and Computer En-

gineering, University of Alberta, Edmonton AB, Canada T6G 42v P€am (i-e_-v the shadow beam). Lete, t) be th_e transverse
dal ong@ial berta. ca deformation of any mass point located(at 0) in zOy. At
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x = 0 we have the boundary conditiong0,¢) = 0 and The variation of the potential energy is

v(0,t) = 0. In order to derive the dynamic model of the .

beam we make use of the Generalized Hamilton’s Principle 5V = BI(01000010 — VLusadVL +/ Vwradv )
[24] which states 0

to

t2 L
SLdt + / T80 dt = 0 (1) + pSg/ (xced + codv — vsgdh) dx
ty t1 0

where L = K — V is the Lagrangian,K the system +mg(Legdt + codvr, — vrsedd) (3)
kinetic energy,V the system potential energy, is the gypstituting (2) and (3) into (1) and equating coefficients
variational operator, and,,?; are any times such that of 59, §v, §v;, anddv., to zero gives

t; < to. In order to derive expressions fdf andV, we

L
introduce a vector which points to an element of mass( [ ;6.2 g 4 112 +Jp+Jh)é+/ pSaii dz + Jyi L
0

on the beam. Represented }OY, the vectorr pointing 0
to an element of mass located @t, v(z,t)) in 2Oy is LS p I Li =T
r(z,0,v) = [wcy —vsy xsg+uvcy] Wherecy = cosf 0 pSg(zco — vsg) dv+mg(Leg — vrse)+mLiL =
and sy = sin@. The kinetic energy of the system is (4a)
pS Y L. o M, g pS (0 + 20 + gcg) + Elvgppy =0 (4b)
+2Lop0 4+ 57) + o + L0+ 01.)° Viazs = m(bL 9¢0) (4d)

) Substituting (4b) into (4a) and applying boundary condi-
wherev(L,t) = vr(t),v.(L,t) = vr.(t), and in the last tgng (4c) and (4d) gives

term we have taken the angle of the payload relative to .

XOY asf+vr,. This is because for smaill the angle of T = J,i— Elv (0, 1) _/ pSgu dzsg — mgurse

the payload relative taOy is § ~ tan 3 = vy, (see Fig. 1 B 0

for a definition of 5). Potential energy is due to the energyThe system dynamics can be therefore described by the
coupled PDE-ODE system:

Jnb =T + Elv,(0,t) + ( / ’ pSvdx +mur)gse (5a)
0

pS(6 4 26 + geg) + Elvgppe =0 (5b)

v(0,t) =0 (5¢)

v:(0,8) =0 (5d)

Elvpes = —JpliLe + 0] (5e)

EIvpg0s = m[ig + L + gcg] (59

Linearizing this model about an equilibrium trajectary
andé, = const. we have

Fig. 1. Flexible beam system

L L
) ) ) JAG = AT + / SgAvdzsg, + / Sgvodzcg, Ab
stored internally in the beam and that due to gravity [25]: 0 0

EI (L + mgAvgse, +mguroce, A0 + EIAv,,(0,1) (6a)
V = 5 ; (U?m: + pSg(xsg + veg))dx + mg(Lse + vi,cp) pS(A + 2AG — 950, A0) + ETAvg 400 = 0 (6b)
In order to use (1) the variation ok is first computed.  Av(0,¢) =0 (6¢)
This result is integrated from, to ¢, and integration by  Av,(0,¢) =0 (6d)
parts is performed. Usingd(t1) = 60(t2) = 0, dv(z,t1) = EIA — _JIAG A 6e
Jv(z,ts) = 0, z € [0, L], anddv, (L, t1) = 6vy (L, t2) = 0 Vias = ~JplA¥Ls + AF] (6e)
we have for[* 6 K dt EIAvLgee = m[ATL + LAG — gsg, Ab)] (6f)

ta L. - where A = 0 — 6y, Av = v — vg.
58 b+ 9)6v + (220 + 26)56] d
/tl { P /0 {(x B)dv + (270 + at) } v IIl. FLATNESS-BASED CONTROL

—m[L%0 + L)60 — m(LO + i1)0vy, We introduce the new dependent variable

- [Jp(é + Ura) + Jnb]00 — Jp(é + i)Lm)avLm} dt - (2) w(r, ) = Av(z, t)+xA9—/t /51 gSe, A0(&) d¢ d&y (7)
o Jo
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and new independent variables= Lr, andt = ar where

Q %L? In order to transform (6) into these new
coordinates we first compute

wy(r,7) = (Av + LrAf — / gS0, A0(E) dé)
Wrr (r,7) = (AD + LrAG — gsg, A0)a?
wp(r,7) = (Avy + AL,  wyp(r,7) = Avy, L2
Wrrr (xa t) = szzzL?)a Wrrrr (LC, t) = A'UzzxxL4
w'r‘rr(ra T) (A’Um + Ag)

Using the above relations the system (6) transforms to

Wrr (7, T) + W (1, T) (8a)
— 9% / / Aude de, (8b)

w,(0,7) = LAo = Au (8c)
wer(1,7) =~ (1,7) = “Nwere(17) - (80)
wrrr(1,7) = m%wwu,ﬂ = .. (1,7) (8e)

whereu = m/(pSL),\ = J,/(pSL3),Au = LAY = u —
ug andug = L#y. We now replace derivatives w.ritby the
operators, in the sense of Mikusiski's operational calculus
[26]:

$20(7) + Wyrrr (1) = 0 (9a)
(0) = %OA“ (9b)
w-(0) = Ad (9c)
'UA}rr(l) = _)‘52@7"(1) (9d)
(1) = ps®i(1) (%)

wherew denotes the operational function associated with

w. The general solution of (9a) can be expressed as

w(r) = aC +bC; + ¢S +dS; (10)
where

C,+C, 9S; C,—C, 9Sf

+ r o r - T T r

Cr 2 or’ O = 2 Or
S+_ZST+ST_ _locr _ i8S =8, 100y
" 2hy/s s Or 7 T 2hs s Or
i=+—1,h=¢e"4h= e_”/4 C, = coshlhy/s(1 —

7)), S, = sinh[hy/s(1 — 7)], S, = sinh[h/s(1 — 7)],
and C,. = cosh[h/s(1 — 7)]. The operators,/s, iy/s are
logarithmic [26]. Coefficients, b, ¢, d are determined from
the boundary relations:

angzeoAA—aC +bCy + ST +dSy, b= —Asd
At = s(—aS§ +bSy) + cCy +dCT, ¢ = usa

Solving this linear system gives

o= (n (G =255 )a’gse, | At
0 Ls? Q
As(usCy — sS7)a2gse, \ Al
b=— <>\swo + 132 : 0
c= | psmo — 1s(Cy — As*Sy )P gsa, At
Ls? Q
B (nsCy — sS)a2gse, \ Al
d= (WO + LS2 Q
where Q = wo(Cy — As?S5) + mos(uCy — Sy) and

wy = CF + usS;F,m. = AsC,- — S;~. Using (10) and the

expressions fot, b, ¢, andd, we havew(r) = (P(r)/Q)Ad
where
0[29890 o
P(r) = mow, — womr — — - wn(Cf = As®Sy)

+mes(uCy — S

We can introduce &-basic or flat outpufj, such that
w(r) =P(r)g, At=Qj
Splitting @ and P(r) into two parts gives

W(r) =1 (r) +d2(r) = Pi(r)g + Pa(r)y

Pl(’f') = oW,y — WOTy

a29590 2 a— + + _
Pa(r) = — 5 [(As"Sy = G )wrt (Sg” — nCy )smr]
(11)
According to [3], P;(r) can be expressed as
2 _ 1 2 1
Pi(r) :_A“SQ S=(r) + LS; (?R[S‘(l i)

-QS (1+i- r)]) —AsRICT (140 —r)]
+uS[CT (A +i—7)]

where i, & denote real and imaginary parts respectively.
The functionP; can also be expressed as a series

n 2n _ n82n 2
an @w&r)%@ (12)
where
77“4”“ + (1 —r + )] - R[(1 — 7 + i)+ H)
Palr) = 2(4n + 1)
+ uS[(1 = r +14)*"]
qn (1) :/\—M(ém +4)(4n + 3)(4n + 2)[S[(1 — 7 + i)"Y

2
— R —r+i)"F] —r
—Mdn +4)(4n + 3)R[(1 — r +14)" 2]

4n+1]

According to (8c),
At =

w

r(0) = 1,-(0) + W2, (0)
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and
A B e dpn (71)n52n . dQn (71)ns2n+2 .
wn(O)—;W(O) anyr VO @Y
N s _ d
e
_.dm
+ (Sg — pC; )Sd—ro] =0

HenceAuw expressed as a function ofis

(_1)71 d2n+2y
(4n + 4)! dr2n+2

_ - dpn (_1)n d2ny dQn
Au = Z dr ©0) (4n)! dr2n * dr ©)

n=0
From (12) we have the relation between andy:
S )" A"y (=D"
Z | 2n Han(7) | drentz
— dr (An+4)dr
Next, we obtain the series expression tos(r, 7). From
(11), we can rewriteP, as

d2n+2y

042 S N —
Po(r) = == s (Cy € — 87 Sy)

— A3 (CSF +CFSy) + us(CE S, —Cy Sy
+(Cy CF + 557 5,)]

In order to expressi, in a series we need the following

identities [23]:
CyCr —sStSy = i _(1 +i)CT(1—r—i)

+ (1 =90t —r+i)— 20+(r)}
CrSf+CrHSy ==|StT(1—r+i)—St1—r— i)}

CHSt—Cy S, ==|ST1—r+i)+StT1—r— i)}

CHor +sS5S =~ (1 +49)CT(1 —r—1)

Bl N = N =
r 11 11 |

+ (1 —=9)CT (1 —7r+1)+ 2C+(r)}

Usinge” =3, -,7"/(n!) we have

x© n82n
Cy Cy — 5SSy = % Z:O il (Z)n)! [%[(1 —r+i)*"]

+ S -7+ i)' - rﬂ

B i (_1)n$2nS
|
— (4n +1)!
oo (71)n+182n+1

Z (4n + 3)!

n=0

CoSy+CFsy = [(1—r44)*+

CiSt—Cy sy = RI(1 — 7+ 1)+

+ fo- 1 = (=1)"s™ N dn,
CoCf +sSSr =23 = R[(L—r+i)*"]+

2 (4n)!

n=

S[(1 =7 +i)*" + rﬂ

Thus
N a29300 — pn(T)S%l (jn(’l’)82n+2 n oA
ba(r) = =75 nzo[ @)l (an+4) }(_1) Y
with
1
alr) = 3 [RIL = 4 0 = 4]
(13)
A 4
:71_[ 4n + j) [ (1 —r+14)™"]
(1= i) s
—l—/\H 4n + §)S[(1 — 7 + )4
j=2
— p(dn + 4R[(1 — 7+ i)
Expressed as a function ef w- is given by
&1
w2(7‘7 7-) Oz g$90p0 / / d€ dé-l
a 959 n J2n— 2
; {an 4n ! dr2n- 2
_1 n d2n
+an 4 anididr Qn} (14)

Transforming back to the original dependent coordinate
using (7) we have

Av(r,7) = wi(r,7) — rAu(T)
d2n—2

a?gse, o~ (=1)" (dpn p
L Lz_:l ((473! (%(O)w”(r))ﬁ

e (_1)n dqn - d2"y
E — A — 1
+ v (dn+ 4\ dr (0) = n(r) dr2n (15)
IV. SERIESCONVERGENCE

The convergence ofv; (g = 0 case) is treated in [23]
and not repeated here. An outline of the convergence proof
for the series ofws is given here. We begin by choosing
y to be smooth and of Gevrey class less tRaThat is,y
satisfies

(n!)?
sup —
TERT drm ,yn
where M and~ are positive reals, and < 2 [27]. Defining
a’gso, (<1 Py
L(4n)! dr2n—2
a29590(_1)n q (T) dQny
L(4n +4)! ™" ' dr2n

SV <M

d2n72

D, (r,7) =
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Sincer € [0,1] we takez = (|r — 1| +1)*
z > 1 and (13) we have

a?gse, |[pn (r)] | 42" 2y

L(4n)! dr?n—2
_ 3Ma®|sg,lg (2n—2))°
- 2L (4n)ly2n—2

Ni(@n =29 . = .,

= — =3 ¢ =Cphz

(4n)ly2n—2

|Con(r, 7)]

IN

and
d2ny
dr2n

a’glsg, |an ()|
D, < oo
e

4
Oég|$00||:Tp’H4n+] 77,.)

4
A @n + )@ —ry*
=2

+/~L(4n+4)( )471+3:| M[(2n)']ﬁ

= (2—7r)* so

v (4n 4 4)!

_ a2g|sg, | M[(2n)1)? {3&12‘1 LA

L(4n)!y? 4 dn+1
—1/4
+ ﬂi] o
[Tj— (4n + )
~ (@nh . =
(dmyzn ™~ 7

with C, = N {22200 D, = N, N,

(4n)!

3Ma2g|se,|/(2L), No = (Ma’g|sg,|/L)(3An/4 + A +
u1/6), andn > 1. Using Cauchy-Hadamard’s Theorem

for radius of convergence [28] anq/(2nm)(n/e)"

the interval = € [0,10]. Equilibrium solutions for (5)
are given byuv(z,0) = cos(d)P(x) where P(z) =
(4(pSL +m)z — pSa? — 6L(pSL + 2m)) ga? /(24ET).

This equilibrium solution corresponds to an equilibrium
torque To(0) = gLco(((pSL + 2m)/2) + [3(pSL)?
15pSLm + 20m2]L2%gsy/(60EI)). The linearized
system (6) has equilibrium solutiongd\vy given by
Avy(z, AF) = —AfsinbyP(x) where we takedy = 7/8

as the point of linearization. To ensure initial and final
deformationsv = Awv + vg(7/8) correspond tavy(0) and
vo(m/4) we set

Av(z,0) = v(x,0) — vo(m/8) = vo(0) — vo(m/8)
= (1 — cos(n/8))P(x) = — sin(7/8)P(x)A6(0)

Hence,

AB(0) = (cos(m/8) —1)/sin(n/8) = y(0)/L  (16)

where the last equality follows from the relation between
Ay andy = const. Similarly att = t* we have

AG(t") = (cos(m/8) — cos(mw/4))/ sin(n/8) = y(t*)/L

17
To ensure the rest to rest motion we incorporate conditions
(16) and (17) intoy. As well, we choose; so that all its
derivatives are zero a@t= 0 andt = t*. Finally we take
y to be of Gevrey class less tha@nfor series convergence.
We remark thaty cannot be analytic as this would prevent
the beam from leaving its equilibrium position. We make
use of the nonanalytic € function ®, : Rt — R defined
as

L' 00T for <t <y
O, (t) =< Joo(r)ar R ¢ £2))
1 for t > t.,

n! < /(2nm)(n/e)"e'/??", the radius of convergence for where¢, : R* — R is defined as

>, Cnz™and)’ D,z" are

> lim

HJ 0(4n ])(4n—4) y2n=2

1
lim, oo V/C,, 7T \/

N1((2n — 2)1)8

= lim (y?4* PP~ (n — 1)) = 0

n—oo

1 1 Iy2n
——— 2> lim {=——"—"7—
lim, o /D, "~ \| Na((2n)!)?

(4n)
2((2n)
d (VBur)(4n/e)tny2n

> lim =
T n—oo [ No(vdnm)B(2n/e)2nB
= lim (7244_6626_4714_26) =00

n—oo

Thus, the radius of convergence for °  C,(r,¢) and
>0 o Dn(r,t) are both infinite. Hence, the series for both

w2 andw have an infinite radius of convergence.

V. SIMULATION

fexp(—1/(t(1 — 1)) foro<t<1
bo(t) = {0 for ¢ > 1. (19)

The flat output is taken ag(t) = C; + (Cy — C1) D, ()
with Cy = L(cos(mw/8) — cos(mw/4))/sin(n/8), C1 =
L(cos(n/8) — 1)/sin(w/8), and ¢ = 10/9. A plot of
this function is shown in Fig. 2. We consider the same
parameters as in [15n = 5.9 kg, L = 1.005 m, EI =
47.25 N m?, pS = 2.04 kg/m, J, = 0.047 kg m?, and

g = 9.81 m/s. Fig. 3 shows the resulting field =
Av + vy(m/8) where Av is computed using (15) truncated
to 4 terms. The open-loop torqué = AT + Ty(7/8) is
shown in Fig. 4. The functiol\T" is computed using (6a).
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