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A Delay-Dependent Stability Criterion of Neutral
Systems and its Application to a Partial Element
Equivalent Circuit Model

Dong Yue, and Qing-Long Han, Member, IEEE

Abstract- The real circuit model, such
as a partial element equivalent circuit
(PEEC), can be represented as a de-
lay differential equation (DDE) of neu-
tral type. The study of asymptotic sta-
bility of this kind of systems is of much
importance due to the fragility of DDE
solvers. Based on a descriptor system
approach, new delay-dependent stability
results are derived by introducing some
free-weighting matrices. As an applica-
tion of the results, the delay-dependent
stability problem of a PEEC model is in-
vestigated. The comparison of the results
with the existing ones is finally given by
using the PEEC model and another nu-
merical example.

I. INTRODUCTION

In the study of practical electrical circuit sys-
tems, a small test circuit which consists of a par-
tial element equivalent circuit (PEEC) shown in
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Figure 1 — The PEEC model

Fig 1 was considered in [1]. The time domain
formulation of the PEEC can be represented as
a differential equation with communication de-
lay. The general form of model of this circuit is
given by [1]

Coy(t) + Goy(t) + C1y(t — 7)
+Gry(t —7)
= Bu(t,t —7), t > to,

y(t) = ¢(t), t <to, (1)

where Cp is a diagonal matrix. ¢(t) € g is the
initial condition, where 0y denotes the set of all
continuously differential functions from [—7,0]
to R™.

To be consistent with the mathematical nota-
tion, (1) can be rewritten as the following neu-
tral system [1]

y(t) = Nyt —7) =
t

y(t)

Ly(t) + My(t — 1),
to
o(t), t € [to—7,t0](2)
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where y(t) € R". L, M and N are known con-
stant matrices of appropriate dimensions. In
what follows, without loss of generality, we set
to = 0.

As is well known, a stable numerical solution
should be based on a stable model. Therefore,
the study of asymptotic stability of a system is
an important issue before handling its numer-
ical solution. For system (2), the contractiv-
ity and the asymptotic stability have recently
been addressed in [1, 5, 6]. In [1], only delay in-
dependent stability problem was considered for
system (2), while the importance on the study
of its delay-dependent stability was emphasized.
Based on the results on stability of neutral sys-
tems, the delay-dependent stability of system
(2) was investigated in [5, 6].

If we take the parameter uncertainties com-
monly existing in the modeling of a real system
and the variation of time delay into account, a
more general form of (2) is given by

y(t) = Nyt —7(t)) = (L+AL(@))y()

+ (M + AM(t)) -
y(t —7(1)),
y(t) = ¢(t)7 le [_T7O] 7(3)

where AL(t) and AM (t) denote the parameter
uncertainties which satisfy

[ AL(t) AM() | =DF(t)[ H, H,], (4)

where D, H, and Hp are known matrices with
appropriate dimensions. F(t) is an unknown
matrix function satisfying [|F'(¢)|| < 1. 7(¢) > 0
denotes the time-varying delay satisfying 7(¢) <
7and 7(t) < d, < 1.

For system (3), we need the following assump-
tion [7]. Throughout this paper, the results will
be derived based on this assumption.

Assumption 1 All the eigenvalues of matrix
N are inside the unit circle.

In the past few decades, stability of a neutral
system has been the important research topic
of interest. Many results have been derived on
the delay -independent stability [3, 9] or delay-
dependent stability [2, 3, 4, 8, 9, 11]. More
recently, much attention has been paid to the

study of delay-dependent stability of the neu-
tral systems because the delay-dependent re-
sults are generally less conservative than the
delay-independent ones when the time delays
are small. Based on the first order transforma-
tion [3], relatively conservative delay-dependent
results were given in [10] because the first order
transformation often introduces the additional
dynamics to the transformed systems. When
the time delay is time-invariant, the delay-
dependent stability was studied in [3, 4, 11] by
introducing a neutral transformation or a para-
meterized neutral transformation. In terms of a
descriptor model transformation, Fridman and
Shaked [2] investigated the delay-dependent sta-
bility and stabilization of a more general form
of neutral systems.

In this paper, we continue the research work
on the delay-dependent stability of neutral sys-
tems. New stability criteria will be derived
for system (3) based on a descriptor system
approach. To do this, we first transform (3)
into a descriptor system by using the similar
way in [9]. Then, by introducing some free-
weighting matrices, we provide new criteria for
delay-dependent stability of system (3). The
criteria are derived in terms of a set of LMIs.
Then, using the developed method, the delay-
dependent stability will be investigated for the
PEEC model. Moreover, other comparison ex-
amples will also be given to show the less con-
servatism of the method.

Notation: R™ denotes the n-dimensional
Euclidean space, R™ ™ is the set of n X m real
matrices, [ is the identity matrix of appropriate
dimensions, ||-|| stands for the Euclidean vector
norm or the induced matrix 2-norm as appropri-
ate. The notation X > 0 (respectively, X > 0),
for X € R™™ means that the matrix X is a real
symmetric positive definite (respectively, posi-
tive semi-definite). A . (P) (Amin(P)) denotes
the maximum (minimum) of eigenvalue of the
matrix P. For an arbitrarily matrix B and two

A

symmetric matrices A and C, [ N g denotes

a symmetric matrix, where * denotes the entries
implied by symmetry.
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II. DESCRIPTOR MODEL TRANSFORMATION
Define
z1(t) = y(t), v2(t) = y(t) — Ly(t).  (5)

Then, (3) can be transformed as an equivalent
System

i1 (t) Ly (t) 4 2a(t) (6)
AL(t)x1(t) — z2(t)
+(M 4+ NL+ AM(t)) z1(t — 7(t))
+Naa(t —7(t)), (7)
z1(t) = o),
a(t) = o(t) = Lo(t), t € [-7,0]. 8)
Let B — [é 8],A— g _II],Al—

{MfNL ]%}’AA@):{AEG) g}and

AA(t) = [ 0 0 . (6)-(8) can be rewrit-

T AM(@t) 0
ten as the following time-delay descriptor sys-
tem of general form

Ei(t) = (A+AA(t)x(t)

+ (AL + AAL (1)) 2(t — 7(2),
r1(t) = o(t),
va(t) = o(t)— Lo(t), te [ —1 0],(9)

where z(t) = [ 2](t) 2I(t) ]T. From (4),
AA(t) and AA;(t) can be represented as

AA(t) = DF(t)H,, AA,(t) = DF(t)H,, (10)
where D = [g],f[a:[ﬂa O]andf[b:
[ H, 0 } .

III. STABILITY ANALYSIS

To study the stability of (9), we first introduce
two definitions.

Definition 1 The neutral system (3) is said
to be exponentially stable, if there exist con-
stants o« > 0 and § > 0 such that |y(t)| <

asup_r <oz {I66)1 [009)|| } e, for all ad-
missible uncertainties AL(t) and AM(t).

Definition 2 The descriptor system (9) is said
to be E— exponentially stable, if there exist con-
stants o > 0 and B > 0 such that |[Ez(t)]| <

asup_reeo {00, || 605)|| } e, for att ad-
missible uncertainties AA(t) and AA;(t).

Remark 1 It is obvious that the exponential
stability of (3) is equivalent to the E— exponen-
tial stability of (9).

Now we state and establish the following re-
sult for the E— exponential stability of (9).

Theorem 1 Consider the descriptor system
(9). For given scalars T > 0 and d; < 1, if there
exist matrices PL>0,P, P3,Q >0 R >0,
T; and S; of appropriate dimensions (i = 1,2,3)
such that

I'n+HI'H, 1?12 + EIZEIb
Iy + HI Hy,

* K X ¥
*

Doz 715 52D
Is3 713 S3D | <0, (11)
* —TR 0
* * -1
where
i = Q+NE+ETT! — 54— ATST,
flg = —TlE + ETTQT — glAl — Ang,
I3 = P+S +FE'TE - ATST,
Ty = —(1-d.)Q—ToFE —ETT]
—SoA; — ATST,
Lo = S — ETT] — AT ST,
1~ﬂ33 = TR+5'3+§:?7
- P P
P= ~
[ 0 P ] ’

then, the system (9) is E— exponentially stable
for any T(t) satisfying 7(t) < 7 and 7(t) < d; <
1.
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Proof. Proof is omitted B

Next, we will provide a result for the case
when the uncertainties in parameter matrices
are polytopic. Suppose that the parameter ma-
trices L and M in (2) can be expressed as

K
[L M]=) N[L M], (12)
i=1

Whereziil)\izl,og)\igl.

Define
o (L1 . 0 0
A[o —I]andAl[MﬁrNLi N]'

(13)
Then, the descriptor system version of system
(2) is given by

Ei(t) = Ax(t) + Ayz(t — (1)), (14)

where A = Zfil NiA? and A; = Zfil N\ AL
The following result can be easily obtained
by using the similar proof of Theorem 1.

Theorem 2 Consider the descriptor system
(14). For given scalars 7 > 0 and d. < 1, if

there exist matrices Pf > 0, P ) Pg , Q9 >0,
RI > 0, T? and S; of appropriate dimensions
(1=1,2,3;7=1,2,..., N) such that

I, I‘Jl2 1“]1'3 TT{
* I‘%2 I’323 TT% <0, (15)
* * F?B TT?{ .
* * x —TRI

where I‘gk (i,k = 1,2,3) are the same as Ty, in
Theorem 1 by replacing A, A1, P, P > 0, P,
P3, Q >0, R>0,T; and S; with AJ, A}, PJ,
P/ >0, P, P}, Q7 >0, R >0, T/ and S;,
Ut P2j~ } , then, the
0 P

system (14) is E— exponentially stable for any
7(t) satisfying 7(t) < 7 and 7(t) < d; < 1.

respectively, where PJ = [

IV. APPLICATION

To illustrate the effectiveness of the method in
this paper, we give two numerical examples for
comparison.

Example 1 Consider the PEEC model. In this
example, we take

3 1 2
L = 100x|3 -9 0 |,
1 2 —6
[ 1 0 -3
M = 100x | —05 —05 —1 |,
05 15 0
L1502
N = —| 4 0 3],
2 9 4 1

IAL@)] < 6, [[AM@)] <6,

where 3 < 0 and § > 0.

For 6 =0, when 8 = —7, the stability problem
of (16) was studied in [1, 6]. The result in [1] is
delay-independent and the result in [6] is delay-
dependent. Using our method, it can be shown
that the system (16) is exponentially stable in-
dependent of size of delay T for any 6 < —2.106.
Howewver, even for the case of B = —4, the crite-
ria in [1, 6] fail to determine the stability of the
system (16). In terms of a new result of neutral
systems, Han [5] studied the delay-dependent
stability problem of the PEEC model. The com-
parison of Theorem 1 with the method in [5] is
listed in Table 1.

(16)

Table 1: Bound Tmax calculated for various 8

3 —2.105] —2.103| —2.1
Han’s paper [5] | 1.0874 | 0.3709 | 0.2433
Theorem 1 1.1413 | 0.3892 | 0.2553

Obviously, for this example, our results are
less conservative than the ones obtained in [5].

For 6 = 2, the computational results of Tmax
for various (B are given in Table 2.

Table 2: Bound Tmax for various 8 and 6 = 2

0 —2.105
Theorem 1| 0.4064

—2.103
0.2783

-2.1
0.2079 |

Example 2 Consider the wuncertain neutral
system (8) with parameters

2 0 ~1 0
S
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No= [o J?AL(U:[O 62]’
s = [0 ], (1)

where 0 < |c| < 1 and 6; and ~y; (i = 1,2) denote
the parameters uncertainties satisfying

611 <16, 182 < 0.05, |yy| < 0.1, ] <03,
For ¢ = 0, system (17) reduces to the system
studied in [2]. For this example, the comparison

of Theorem 2 with the method in [2, 5] is listed
in Table 3.

Table 3: Bound Tmax calculated for various d

dr 0 0.5 0.9
Fridman’s paper [2] | 1 | <09|<0.8
Han’s paper [J] 1.03] 0.5 | 0.08
Theorem 2 1.61] 1.28 | 0.88

For ¢ = 0.1, the comparison of Theorem 2 with
the method in [5] is listed in Table 4.

Table 4: Bound Tmax calculated for various d

dr 0 0.5 | 0.9
Han’s paper [5] | 0.8 | 0.41]0.07
Theorem 2 1.5411.20| 0.72

From the above comparison, it has been found
that, for this example, our results are less con-
servative than the ones in [2, 5].

V. CONCLUSION

In this paper, the delay-dependent stability of
an PEEC model has been investigated. The
computational result was obtained based on a
new delay-dependent stability criterion of neu-
tral systems. Different from the existing meth-
ods, to derive the stability criterion, a descriptor
system approach was employed and some free-
weighting matrices were introduced, which can
be chosen properly to lead to a less conservative
result. The comparison examples have shown
that our method can lead to less conservative
results than those obtained by other methods.

1]
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