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A new robust delay-dependent stability criterion for a class of
uncertain systems with delay
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Abstract— A new robust delay-dependent stability criterion ~ Furthermore, we will extend the result to the case of a
for a class of uncertain systems with delay is established mixed delay stability criterion for this class of uncertain
based-on Park inequality. The result for robust delay-  gystams with multi-delays. Finally, two numerical examples

dependent stability is presented in terms of linear matrix . _ L
inequalities (LMIs) by using Lyapunov-Krasovskii functional ~ &€ worked out to illustrate the efficiency and feasibility of

method. By this result, we give an estimate of the maximum the present result.
admissible delay, which can be transformed into a generalized
eigenvalue problem. Furthermore, a mixed delay stability

criterion for this class of uncertain systems with multi-delays Il. PRELIMINARIES

is obtained. Finally, two numerical examples are also worked T .

out to illustrate the efficiency and feasibility of the present In the sequel, denote by and A~ the transpose and
result. the inverse of matrixA (if it is invertible), and by! the

unit matrix of appropriate dimensions.(-) denotes the
Keywords:Delay systems; Robust stability; Uncertainty; Linear  maximum singular value of matrix.

matrix inequality (LMI).
|. INTRODUCTION Consider the following uncertain linear system with delay

described by:
In the mathematical description of a practical control

process, one generally assumes that the process depends a(t) :gx((t) + Ara(t —7) + Bp(t)
x

only on the present state. However, time-delay is ubig- q(t) = t) + Dp(t) 1)
itous i i (1) = Aq(t) Al <1, @(D) <1

uitous in the practical control systems and may lead to p\t) = 24it), =L 0

destabilization. Studies of stability and stabilization of time- z(to +s) = ¢(s), s € [-7, 0],

delay systems have become an important problem in contighere () : R — R is the state vectorp,q are

theory (see [1]). If an uncertain delay term is constant bihe uncertain input and output of the plant, respectively.
unlimited, i.e., the time-delay belongs |t c0), researchers to, ¥) € R x Cnr, WhereC,, = C([-7, 0, R") is
have provided some delay-independent stability criteriothe Banach space consisting of all continuous vector-valued
(see [2]-{6] and the references therein). It is necessary fGnctions from [—7, 0] to R". The coefficient matrices
study the delay-dependent stability if an unknown de|at'T,A,AT,B,C,D are real constant matrices of appropriate

term is bounded. There are many valuable results on delayimensions. A description of such type of uncertainties can
dependent stability (see [7]-{13] and the references thereiye found in [14], [15].

Generally speaking, delay-dependent results are less conser-

vative than delay-independent results authors. To the bestBy Newton-Leibnitz formula:
of the authors’ knowledge, very few results concerning the .
robust delay-dependent (or delay-independent, mixed delay) o d) = () — / i(5)d
stability for the following system model are available. The e ) ==(t) &(s)ds,
aim of this paper is to present a new result on robust dela

t—d

the above form can be rewritten as the following algebraic-

depend«_ant stability of delay systems. . differential equations including integration for descriptor
We will study robust delay-dependent stability of a mor%ystems with distributed delay in the variatyle

general case of linear delay systems subject to norm:
bounded uncertainties described by the section 2. By con- ( i(t) = (A+ A,)xz(t) + Bp(t) — A ft’; (€)d¢
structing an appropriate Lyapunov-Krasovskii functional, q(t) = Cx(t) + Dp(t)
we derive an linear matrix inequality result on robust delay- p(t) = Aq(t), A <1, &(D)<1
dependent stability of the systems based on Park inequality. | z(ty + s) = ¢(s), s € [-T, 0],
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conditions containing delay information). The following Moreover, by Lemma 1,
result will be useful in the sequel.

Recall Schur complement formula (see [14], [15]), t )
namely —Q/t_thT(f)PTArx(f)dﬁ
R= [ o R } <0(<0) o [ TA©]T X XM T A ] g
12 22 - i Px MTX (2,2) Px
if and only if one of the following conditions holds: = TITP(MTX +DXYXM +1)Px
1) Ros <0 andR11 — R12R2_21R{2 <0 (S 0), T T /t .
2) Ri1 <0 and Ros — R{QRl_llng <0 (S 0) +227 PMT XA, + T x(f)ds{
t
.T T .
Lemma 1. (see [11]) For any positive definite matriX + /H 7 (§)A; X Ar£(§)de.
and any matrix) of appropriate dimensions, the following
inequality holds Thus, from (8)—(11) and the above inequality, we can
T obtain
2| G] i G ][]
Yy M*X (272) Y dv _dvi dVa
ar ) = #|(1>+ ) + dt|1)+ il
where (2,2) =1 (MTX + )X Y(XM + I) and z,y are < [P (A+A ) + (A+A )T P
arbitrary dimensional vectors. +TP(MTX + DX Y XM +1)Plz
+2xTPBp + 22T PMTX A, (2(t) — x(t — 7))
Ill. ROBUST DELAY-DEPENDENT STABILITY 47 ( )AZXA (t) + ( )Qx(t)
To analyze delay-dependent robust stability of the system —aT(t _TT)QCC(t - )
(1), the Lyapunov-Krasovskii functional for the system (1) R cr'c C'D x
can be chosen as follows: P DTC DTD-1I D
E11 Z12 E3
V(t) = m(t) + Vs (t) +V3 (t) + V4(t)' (3) = qT 5{2 Zog Zo3 | T
where =l 33 Ess
=27 Pz, P > 0; 4
) =" Pa, @ wherer = [z(t) #(t—7) P,
HATX A dédf, X >0; (5
/_T /f+9 AHQ)dedd, X >0 () i = P(A+ A+ (ALA)TP
0 +CTC+Q+T7ATATX A A
T —1
(0= [ aT9)0u(s)ds, @ (6) Nt

—
S
|

TATATX A A — PMTXA,

t = T T AT
Vt:/ TS S—TS SdS. 7 =13 = CD+PB+TA ATXA-,—B
4(t) Oq()q() P (s)p(s) ™) = Qi ATATXA AL
Notice thatV/(t) is radially unbounded with respect igt), 523 = TALATXAB

= DTD—T+7BTATXA,B.

w
w

and V4 (t) > 0 since||A]] < 1.
From (4)—(7), it follows that

Wy = 22TP(A+ ff)x + 22T PBp(t)—

227 PA, / #(€)de ® =, = PA+A)+(A+A)TP+CTCHQ
t—r +TATATX A, A+ T(WT + PYV YW + P)
+WTA, + ATW,

Taking W =: XM P, one has that

dVs

t
Tl =T OATX As(0- [T OATX A

9) Thus, it is guaranteed the negativenes$’¢f) wheneverr
dVg is nonzero if the following linear matrix inequality holds:

ol = et ()Qu(t) — ™ (t = 7)Qu(t —7),  (10)

and Iy Ihhe I3 0 ITys5
av T - H,{2 H22 Hgg 0 0
Gy = a (t)a(t) —p" (t)p(t) n%, nl, p™p-r1 BTATX 0 | <o,
_[z1"[cTc ™D x 0 0 7rXAB —1X 0
- [ p ] [ DTC DTD -1 } { P } '(11) n% o 0 0 X )
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I, = P(A+A)+(A+A)TP+CTC Corollary 1. If_ there exist positive definite matr_ices
+Q+TATATXA A+ WT A, + ATW, P, X,Q and matrice¥V € R™*" such that the following

My = 7ATATXA A—-WTA, LMI holds:

3= CTD+PB+7ATATXA B Y11 -WTA, ATATV +(WT +P)

H15 =: WT + P —AZW —Q AIAZV 0 <0

HQQ = 7Q + TAZA,,TXA.,—AT VATA VATA-,- -V 0 ’

My =2 TATATXA,B. T(W + P) 0 0 -V

- . (16)

.By Schur complement formula, the above matr.lx.mequa“%vhere Y11 is defined in (14), then the system is delay-
is equivalent to the negativeness of the coefficient mat”éepen dently stable 5

of V(t), this shows that the system (1) is robustly delay-
dependently stable.

: The condition in the corollary has also been obtained
We summarize the result as follows.

recently in [11] for delay-dependent stability, therefore, our

Theorem 1.For system (1), if there exist positive definitereSUIt is a direct extension of Theorem 1 in [11].

matrices P, X, Q and matrices¥ € R™*"™ such that the

following LM holds: Remark 3. To estimate the maximal admissible delayed-

time 7 such that the system is robustly delay-dependently

i -WTA, i3 S s stable, we first note that the problem can be formulated as
—ATwW -Q 0 Yo 0
a7, 0 B3 s 0 | <0, (13) iR
M Y04 T, —1X 0 s.t. there exist positive definite matricsX, Q and matri-
I 0 0 0 -7X cesW e R™*™ such that (13) holds. By Schur complement
where . formula, (13) is equivalent to
Y3 = C TD%,I_,PB’ Y11 —WTAT Y13 ATAZV Y5
214 =: TATA%X, 7ATW 7Q 0 ATATV 0
o= T X, 7, 0 S BTATV 0 | <o
33 = g VA;A VA,A, VAB -V 0
Y34 =: 7BTALX, o 0 0 0 _1x
Y5 = Ihis _ " :
Letting 6 = 72, we can transform the problem into the
and ; . .
- - following generalized eigenvalue problem (see [14]) for
1=t PA+A)+(A+A)'P+C'C (14) more details):
+Q+WTA, + ATW mind > 0
then the system is robustly delay-dependently stable W.r.st.t there exist positive definite matric8X, Q and matri-
A t. ,

. nxn i 1
Proof. By Schur complement formula, (12) is equivalentceSW €R satisfying

to (13). This completes the proof. & S —WTA, B3 ATATV %y
—ATW —Q 0 ATATy 0
Remark 1. TakingV =: 7X, Theorem 1 can be rewritten I 0 Y33 BTATV 0 <0.
as: VAA VA/A. VAB -V 0
Theorem 1'. For system (1), if there exist positive I 0 0 0 —0X
definite matricesP, X, and matricesiV € R™*" such  Thjs problem can be solved numerically by using LMI
that the following LMI holds: toolbox in [16]. o
211 —WTAT 213 ATA;IjV 7'215
T T AT
*ATTW —@Q T 0 ATTATTV 0 IV. ROBUST MIXED DELAY
it 0 D°D-I B'4,V 0 <0, (DELAY-DEPENDENTDELAY-INDEPENDENT) STABILITY
VAA VAA, VA.B -V 0

v In the sequel, we will give a direct extension of the
15) obtained result in the last section. Now we consider the

where ¥, is defined in (14), then the system is robustlyfollowing uncertain system with multi-delays:

=T 0 0 0

delay-dependently stable w.rA. & #(t) = Ax(t) + Agx(t — d) + A z(t — 7) + Bp(t)
| a(t) = Ce(t) + Dp(t)
Remark 2. From Theorem 1’, letting3 = C' = D =0, p(t) = Aq(t), Al <1, &(D)<1
we obtain the following result (see [11]) without uncer- z(to +5) = U(s), s € [-7, 0],

tainty. a7
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where 7 = max{r,d}. For system (17), we can take comparative result for the maximal delay bound according
candidate Lyapunov-Krasovskii functional; to different method in the references. In fact, the maximal

delay can be taken as larger than 4.3588. By Corollary 1,
V(t) = Vi(t) + Va(t) + Vs(t) + Vat) + V5(t).  (18) using the LMI-Matlab Toolbox in [16], we find that (16) is

whereV; (t) — Vi(t) are given by (4)—(7) and feasible forr = 15. We obtain a solution to (16) far = 15
. as follows:
V() = [ (O Ra©)ds, B >0. o[ 28130 0700
o —0.7091 3.9714 |’

Similar to the proof of Theorem 1, we can obtain the

following result.
6.7799 0.7290}

Q = 10* [
Theorem 2. For system (17), if there exist positive 0.7290 6.7739

definite matricesP, V, @, R and matriced¥V € R™*™ such

that the following LMI holds: V — 104 { 22160 —1.1795 }
o —1.1795 1.2785 ’
Py, -WTA, 0 %3 @15 7355
—ATw -Q 0 0 P35 O
0 0 -R 0 ®35 0 0 W — 10° { —9.6070  2.1342 }
<0, - _ .
Z%} oT oT 2%3 By 0 2.1342 8.6951
‘1’21% %5 @5’5 (1)615 70V 70‘/ In fact, solving the optimization problem formulated in
T (19) Remark 3, we can obtaifi,.x = 1.2517e + 07 such that
where the system is stable for all : 0 < 7 < Tax. This greatly

enlarge the admissible delay bound.
Oy =1 PA+A)+(A+A)TP+CTC

+Q+R+WTA, + ATW,
(1)15 = ATAZV,
(I)25 = AZAZV,
Q5 =1 ATATV, 0.1 0
(1)15 = BTAI‘/, B = O 1 9

Example 2. Consider system (1) with the following
parametersA, A, are the same as Example 1 and

then the system is robustly (w.r.f\) delay-dependently

stable w.r.t. the delay and delay-independently stable w.r.t. C_ 0.1 0
the delayd. & 0 01|
Remark 4. Similar to Remark 3, we can estimate the 01 0
maximal delay for mixed delay stability. & D = [ 0 02 }
Remark 5. For the simple delay system (i.ed; = 0), By Theorem 1' and Remark 3, we obtain the maximal

we can establish the same result of the delay-dependefiayr, .. = 0.2559 and a solution to (15) for = 0.2559
stability as Theorem 1. I, = 0, then Theorem 2 gives a 35 follows:

criterion on delay-independent stability of system (17%).

p_ { 369.5786 0.1496 ]
o 0.1496  1.8021 |’
V. NUMERICAL EXAMPLES
Example 1.Consider the example from [11], that is, the - [ 2.4046 0.0059
system (1) with the following parameters: Q=10 0.0059 1.0139 |’
a2 0
| 0 —09 |’ v — 62.5000 —0.5920
- | —=0.5920 0.9563 |’
a [ -t ] 2.3987  —1.0080
_ 7 . —1.
and Ay = 0,B = 0,C = 0,D = 0. Since the matrix W =10 { ~1.0080  1.0139 }

A+ A, is stable andd — A, is not, the time-delay system

is stable dependent on the size of the defays noted Therefore, the uncertain system is robustly delay-
in [1]. Any delay-independent stability criterion fails to dependently stable for arbitrasy(A) < 1 by Theorem 1.
verify asymptotical stability. In [11], the author showed a
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VI. CONCLUSIONS [16] Gahinet G., A. Nemirovski, A. J. Laub, and M. ChilaliMI
Control Toolbox for use with MatlabThe Mathworks Inc,

We have addressed the stability problems for a class 1995.

of uncertain systems with delay. A sufficient condition of
robust delay-dependent stability for this class of systems
was established in terms of linear matrix inequalities. By
the result, an extended result on mixed delay stability for
systems with multi-delays was further obtained. We also
considered the issue of estimating the maximum admissible
delay for stability and formulated it as a generalized eigen-
value problem which can be solved numerically with the
efficient LMI Tool Box. Finally, two numerical examples
showed less conservatism and the feasibility of our results.
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