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Abstract—Robust stability of time-delay systems are
discussed. A new stability condition is introduced. Influence
of uncertainty in time-delay is also investigated for the
performance and robustness of a two-degree-of-freedom
control system.

I. INTRODUCTION

An important area of research in control theory is the
design of feedback controllers for systems which have
significant uncertainties in the plant and the explicit
incorporation of model uncertainties in the design of high
performance control systems. This leads to methods for
designing robust stability and performance. Most of the
discrete-time identification, control even adaptive
algorithms assume the apriori knowledge of the process
time-delay. This apriori knowledge is sometimes very
uncertain and the uncertainty can result from a lack of
precision in mathematical modeling of the plant and/or
changes in the plant parameters with time. It would be
desirable to know how the time-delay mismatch influences
the basic robustness and performance behaviors of the
closed-loop control.

Some controller design methodology, mostly for
discrete-time systems, include the time-delay of the plant
also into the parameters. Unfortunately relatively few
papers (e.g., [1-4]) can be found dealing with the influence
of the accuracy of the apriori knowledge or estimate of the
time-delay, which is sometimes called the time-delay
mismatch problem. Our paper investigates the influence of
the time-delay uncertainty on the robust stability and
performance.

The framework how this issue will be discussed is the
generic two-degree of freedom (GTDOF) system topology
[5], which is based on the Youla-parametrization [9]
providing all realizable stabilizing regulators (ARS) for
open-loop stable plants and capable to handle the plant
time-delay. The advantage of this approach is that it is easy
to calculate the "best" reachable optimal regulator depending
on the applied H2 and/or H∞ norms as criteria. The
drawback is that this methodology can be applied only for
open-loop stable plants.

A GTDOF control system is shown in Fig. 1, where
y u yr , ,  and w  are the reference, process input, output and
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y u yr , ,  and w  are the reference, process input, output and
disturbance signals, respectively. The optimal A R S
regulator of the GTDOF scheme [6] is given by
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where

Q Q P K P G So w w w w w= = = +
−1 (2)

is the associated optimal Y-parameter [8] furthermore

Q P K P G Sr r r r r= = +
−1 ; K G Sw w= +

−1 ; K G Sr r= +
−1 (3)

assuming that the process is factorable as

S S S S S z d= =+ − + −
− (4)

where S+ means the inverse stable (IS) and S−  the inverse

unstable (IU) factors, respectively. z d−  corresponds to the
discrete time-delay, where d  is the integer multiple of the
sampling time. Here Pr  and Pw are assumed stable and
proper transfer functions (reference models). An interesting
result was [7] that the optimization of the GTDOF scheme
can be performed in H2 and H∞ norm spaces by the proper

selection of the serial Gr  and Gw  embedded filters.
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Fig. 1. The generic TDOF (GTDOF) control system

II. ROBUST STABILITY OF GTDOF SYSTEMS

Be M  the model of the process. Assume that the process
and its model are factorizable as

S S S S S z d= =+ − + −
−   ;  M M M M M z d= =+ − + −

− m (5)

where S+ and M +  mean the inverse stable (IS), S−  and M−

the inverse unstable (IU) factors, respectively. z d−  and

z d− m  correspond to discrete time delays, where d  and dm

are the integer multiple of the sampling time, usually
d d= m  is assumed. (To get a unique factorization it is



reasonable to ensure that S−  and M− are monic, i.e.,

S M− −( ) = ( ) =1 1 1, having unity gain.) It is important that

the inverse of the term z d−  is not realizable, because it

would mean an ideal predictor z d . These assumptions mean

that S S z d
− −

−=  and M M z d
− −

−= m  are uncancelable
invariant factors for any design procedure. Introduce the
additive

∆ = −S M    ;  ∆+ + += −S M   ;  ∆− − −= −S M (6)

and relative
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model errors. It is easy to show that the characteristic
equation using the ARS regulator is (for d d= =m 0)

M M+ − = 0 (8)

if a Q Q M M= ( )+ −
−˜ 1

 parameter is applied, i.e., if someone

tries to cancel both factors. This means that the zeros of the
IU factor will appear in the characteristic equation and cause
unstability. This is why these zeros (and the time delay
itself) are called invariant uncancelable factors.

Introducing the model based, nominal complementary
sensitivity function
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the well known robust stability condition 
  
Ẑ l

∞
<1 for the

ARS regulator gives 
  
Q̂ M l

∞
<1, i.e.,

  

Q̂ M < 1

l
     or     l < 1

Q̂ M
   ∀ω (10)

Thus the robust stability strongly depends on the model M

and how the model-based Y-parameter Q̂  is selected.
Consider the practical form of the optimal regulator

(using M  in (1)) of the GTDOF system based on the
available model M  of the process
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where

Q̂ P G M= +
−

w w
1 (12)

is the nominal Y-parameter depending on the model of the

plant, which gives back (2) as Q̂ Q P G S
M S= +

−= =o w w
1.

The dependence on the inverse stable part is direct and
visible, however, Gw  generally depends on the inverse

unstable part. We can now state that R̂o  is also an A R S
controller (but do not forget that only for the model M  and
not for the true process S ).

Analyze the basic robust stability condition (10) obtained
for ARS regulators in case of the generic scheme, where

the optimal regulator is given by (10) and Q̂ P G M= +
−

w w
1

from (11). We get
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where G Mw − =1, (because M− is monic by definition and

Gw  is monic by construction), furthermore z d− =1 (which

is well known) were used, thus finally

sup w
ω

l ≤ 1 P      or     
  
l ∞ ∞≤ 1 Pw (14)

Because the right hand side of this inequality depends only
on Pw, which is the reference model for the regulatory
property of the GTDOF system, this means that this is a
special controller structure, where the performance of the
closed-loop is directly influenced by the robustness limit
(via the selected Pw).

III. RELATIVE MODEL ERROR CAUSED BY TIME-
DELAY UNCERTAINTY

Let us compute the relative model error   l for an IS plant,
where the model uncertainty comes only from a time-delay
mismatch. The delay-free term is assumed to be known
exactly, so M− =1 and M S+ += . In this case
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Assume an equivalent continuous time plant with time-
delay τ  and a model with time-delay τ m. The analogous
equivalence means

  l l= = −−
τ

τe s∆ 1 (16)
where ∆τ τ τ= − m . The robust stability condition (14) for
the continuous time case is now

  
sup sup w

ω
τ

ω

τω ωl = − ≤ ( )−e P jj∆ 1 1 (17)

For the sake of simplicity assume a first order reference
model now
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which means an 1 Tw  bandwidth design goal for the
resulting closed-loop. Using the first order reference model
(18) the inequality to be solved for ∆τ  is

sup w
ω

τω ωe j Tj− − ≤ +∆ 1 1 (19)

which has the solution as a robust stability (RS) condition
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This inequality is one of our major result. The solution of
the inequality (19) can be easily followed on Fig. 2.
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Fig. 2. Simple graphics helping to understand the solution of
inequality (19)

It is interesting to mention that using the first order Taylor
expansion of the exponential term one can get a good
approximation of (19) and a sufficient but not necessary
condition for small deviations

  
l τ

τ
τ

τ
τ τ

= = − <∆
1 m wT

(21)

The interpretation of (20) and (21) is very simple: for small
Tw, which means high closed-loop performance, the model

time delay τ m must be close to the true delay τ . So it is
obtained that the admissible time-delay mismatch is limited
by the inverse of the performance. It could be furthermore
very interesting how this limit influences the robustness of
the loop, see the next section.

There is a simple, however, a somewhat virtual way to
increase the robust stability limit (20) by a higher order
cutting filter form of the reference model
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Following the same procedure how (20) was obtained from
(19), a more general RS form can be derived
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where the increasing coefficient a n( )  is plotted in Fig. 3.
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IV. ROBUSTNESS, PERFORMANCE AND
UNCERTAINTY IN TIME-DELAY

Detailed investigation of the above mentioned limiting
behavior needs further numerical computations. Simple
calculations give that the sensitivity function of the
GTDOF system with IS plant, having time-delay mismatch
for the discrete-time case is (assuming Gw =1)
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and the continuous time equivalent follows as
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For Pw given by (18) the sensitivity function (25) becomes
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The well-known Nyquist stability margin (the simplest
robustness measure) is defined by
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which is the distance between the point − +( )1 0 j  and the

closest point of the open-loop transfer function Y jω( ) . The

reciprocal value of the norm is E ∞ . Unfortunately there is

no simple analytical solution to obtain how the closed-loop
robustness depends on the time-delay mismatch and on the
performance. It is, however, possible to compute the
graphical plot of a complex functional relationship
ρ ρ τ τ τm min m w= ( ),T  with the help of MATLAB.
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As a result Fig. 4 shows the function ρ τmin wT( )  for

τ τ τ τm , ,2= 0 5. . For the ideal τ τm =  (no mismatch) case

ρmin  depends only on our design goal (Tw) and on the plant

time-delay ( τ ), more exactly on their relative value Tw τ .

The best robustness measure is ρmin 0 0 5( ) = .  for cases

when the reference model Pw requires a very fast transient
response from the time-delay process and the measure is
ρmin ∞( ) =1, if τ  is negligible comparing to the time lag

of Pw. It can be well seen that either under- or over-
estimation of the time-delay causes considerable decrease of
the robustness. Virtually ρmin  is more sensitive for over-
estimation. (The left ends of the plots correspond to the
robust stability limit.) While the no mismatch case
provides an all stabilizing property for any performance
requirement, in case of a non zero time-delay mismatch one
can always expect the violation of the robustness stability
limit for higher performance design.

It may be more reasonable to plot the function
ρ τ τmin m( )  parametrized by Tw τ  as Fig. 5 shows (our

second major result). One can see how the robustness is
extremely sensitive for high performance requirement, when

Tw τ  is small and how this sensitivity decreases when

Tw τ  is large for low performance design. It is also
interesting to observe, that for small mismatch the over-
estimation of the delay gives higher ρmin , however, for

large mismatch ρmin  is somewhat more sensitive, as it is
shown in Fig. 2.
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In a relatively wide range of Tw τ , the over-estimation of

the time-delay by τ τ∗  improves (i.e. increases) the ρmin

to ρmin
∗  according to the maxima of the curves observable

in Fig. 5. The over-estimation is less than 25% and the
improvement is marginal, less than 5% as Fig. 6 shows.

If we assume that the time-delay mismatch is less than
20% in a practical case, the robustness degradation is
always less than 10% for Tw τ ≥ 0 5. , which can be well
seen in Fig. 6. So if we want to speed up the open-loop
process to a time constant, which is considerable less than
the delay, then it can only be done using a quite accurate



knowledge of the time-delay. Contrary, if someone can
expect a considerable variation in the time delay then only a
less demanding (slower) design is more reliable and robust.

(The jags of both figures origin from the relative
accuracy of the numerical computations. Do not forget that
the Nyquist plot of a time-delay process has infinite number
of winds around the origin and sometimes even the radius of
the external wind is quite small. So it is not easy to find
such frequency scaling which allows to determine both
ρmin  (i.e. E ∞) and the robust stability limit at the same

time within a proper accuracy.)
The above results strengthen the conservative practical

design experience that the time-delay is practically
equivalent to an IU zero, i.e. invariant.
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It is interesting to summarize the complex relationship
between performance, robustness and time-delay uncertainty
and designate an acceptable area as Fig. 7 shows.

V. CONCLUSIONS

Most of the widely applied identification and adaptive
control methods assume an apriori known time-delay. It is
not easy (although possible) to incorporate the iterative or
adaptive estimation of the delay into the recursive methods.
Therefore one can always assume a time-delay uncertainty
or mismatch at all practical applications. It was discussed
here how this mismatch influences the robustness
degradation and the reachable closed-loop performance.
A new necessary and sufficient inequality for RS is derived
for the maximum allowable time-delay mismatch and a
simpler sufficient condition is also given.

The complex relationship of robustness, performance and
time-delay uncertainty is represented by a special new
graphical plot helping the understanding and selection of an
acceptable deal between these contradictory criteria.

The investigations show that bandwidth higher than the
bandwidth of the delay term (Tw < τ ) can be reached only

for a considerable lower robustness and at the same time a
much more accurate knowledge of the time-delay is
necessary. This corresponds to the practical design
experience that the corner frequency of a delay term
corresponds to an unstable zero, i.e., similarly invariant. So
the acceptable performance domain means Tw ≥ τ .

We found that a certain slight overestimation of the
time-delay improves the robustness, however, a higher
overestimation causes considerable robustness degradation
again. This observation can be used for model predictive
algorithms, too.
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