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Abstract— The problem of the approximation of the opti-
mal filter for non-linear/non-Gaussian state-space models is
considered. This problem is studied for models with a multi-
dimensional (continuous) state space and one-dimensional
(continuous) observation space. An approximation of the opti-
mal filter based on quantization is proposed. We quantize both
the state and observation processes to obtain a hidden Markov
model with discrete state and observation spaces for which
the optimal filter can be computed exactly. The problem of
the optimal selection of the parameters of this approximating
model (quantization thresholds, states, transition probabilities,
likelihood probabilities) is considered. An algorithm based on
Monte Carlo gradient estimation and stochastic approximation
is proposed. The asymptotic properties of the proposed algo-
rithm are analyzed and sufficient conditions for its convergence
are obtained.

Index Terms— Quantization, hidden Markov models, op-
timal filtering, Monte Carlo gradient estimation, stochastic
approximation.

I. I NTRODUCTION

Non-linear/non-Gaussian state-space models (also known
as hidden Markov models with continuous state and ob-
servation spaces) are a broad class of stochastic processes
capable of modeling very complex real-world dynamic
systems. They have found a wide range of application
in the areas such as automatic control, signal processing,
machine learning, bioinformatics (just to name a few).
Related to non-linear/non-Gaussian state-space models, one
of the most important problems is the optimal filtering, i.e.,
the optimal estimation of their states in a situation when
only their imperfect and noisy observations are available.
Unfortunately, except in a few special cases, including
linear Gaussian state-space models and hidden finite state
space Markov chains, the optimal filters do not admit
a finitely dimensional representation. However, nowadays
the complexity of real-world systems coupled to the re-
quirement of high performance precludes these simplifying
assumptions. Moreover, in applications where bandwidth is
scarce, it is necessary to minimize the number of bits used in
representing the observation process and the optimal filter.

In this paper, the problem of the approximation of the
optimal filter for non-linear/non-Gaussian state-space mod-
els is considered. This problem is studied for the models
with a multi-dimensional (continuous) state space and one-
dimensional (continuous) observation space, and an approx-
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imation of the optimal filter based on optimal quantization
is proposed. We approximate the non-linear non-Gaussian
state-space model by a hidden Markov model with discrete
state and observation spaces. This approximating model
allows to compute the optimal filter exactly while allowing
to control the number of bits used in representing the ob-
servation process and the optimal filter. The problem of the
optimal selection of the parameters of this approximating
model (quantization thresholds, states, transition probabili-
ties, likelihood probabilities) is considered. The optimality
criterion is the mean square error between the true state
process and the conditional expectation computed through
the optimal filter associated to the approximating model.
Minimizing this cost function is however complex as it
involves the invariant distributions of both the original state-
space model and of the filter of the approximating model.
An algorithm based on Monte Carlo gradient estimation and
stochastic approximation is proposed. The asymptotic prop-
erties of the proposed algorithm are analyzed and sufficient
conditions for its convergence are obtained. (Simulation
results will be presented in the last version of the paper.)

To the best of our knowledge, the quantization of hidden
Markov models and the quantization based approximation
of their optimal filters have only been studied in [6], [7],
[9]. The approximation of the optimal filter presented in
[6] is only based on the quantization (i.e., discretization) of
the state space and is computationally more complex than
the one proposed in this paper. Moreover, this quantization
is not performed so as to optimize the performance of the
filter associated to the quantized model. In [7], [9], only
hidden Markov models with a discrete state-space have been
considered.

The paper is organized as follows. In Section II, the
signal model and the approximation of its optimal filter are
defined. A criterion function for the optimal selection of the
approximation parameters is also defined in Section II. In
Section III, Monte Carlo gradient estimates of the criterion
function are derived, while the algorithm for the criterion
function minimization is proposed in Section IV. Results
on the asymptotic behavior of the proposed algorithm are
presented in Section V.

II. SIGNAL MODEL AND APPROXIMATION OF THE

OPTIMAL FILTER

In this paper, the problems of the quantization of hid-
den Markov models with continuous state and observation
spaces (i.e, of non-linear/non-Gaussian state-space models)
and the approximation of their optimal filters is studied.



Hidden Markov models considered in this paper can be
defined as a two component Markov chain{Xn, Yn}n≥0,
where {Xn}n≥0 and {Yn}n≥0 are Rdx-valued andR-
valued (respectively) stochastic processes which are defined
on a probability space(Ω,F ,P) and satisfy the following
relations:

P(Xn+1 ∈ B|Xn, Y n)

= P (Xn, B) w.p.1, ∀B ∈ Bdx , n ≥ 0,

P(Yn+1 ∈ B|Xn+1, Y n)

=
∫

B

q(Xn+1, y)dy w.p.1, ∀B ∈ B, n ≥ 0.

Xn = [XT
0 · · ·XT

n ]T and Y n = [Y0 · · ·Yn]T , n ≥ 0,
while Bdx , B are the families of Borel sets fromRdx , R
(respectively).P (x, ·), x ∈ Rdx , is a transition probability
kernel (i.e.,P (x, ·) is a probability measure for allx ∈ Rdx ,
and P (·, B) is Borel-measurable for allB ∈ Bdx), while
q : Rdx ×R→ [0,∞) is a Borel-measurable function with
the following property:∫

q(x, y)dy = 1, ∀x ∈ Rdx .

The process{Xn}n≥0 is observable only through the
process{Yn}n≥0, i.e., the only information on{Xn}n≥0

available to us is contained in{Yn}n≥0.
The problem we consider in this paper is the quantization

of the process{Yn}n≥0 and the complexity reduction of
the optimal filterE(Xn|Y n), n ≥ 0. We want to represent
(i.e., to quantize){Yn}n≥0 by a signal takingNy values
(Ny ≥ 2), and then, using this representation (i.e., quantized
signal), to estimate{Xn}n≥0 by the optimal filter for a
hidden Markov model withNx R

dx-valued states (Nx ≥ 2)
andNy observations (i.e., to approximateE(Xn|Y n), n ≥
0, with the optimal filter for the previously described hidden
Markov model). Moreover, givenNx, Ny, we want to find
the parameters of the quantizer (quantization thresholds)
and the approximating hidden Markov model (states, tran-
sition probabilities and likelihood probabilities) which are
optimal in the mean-square sense, i.e., which minimize the
mean-square error of the estimates of{Xn}n≥0 (obtained
in the way described above). In order to achieve these
objectives, the quantization thresholds and the states of
the approximating hidden Markov model are considered as
unknown parameters, while an additional parameterization
is introduced to represent the transition and likelihood
probabilities of the approximating hidden Markov model.

Let Θ = RN2
x+NxNy+Nxdx+1 × [0,∞)Ny−2. For

ui = [ui,1 · · ·ui,Nx
]T ∈ RNx , vi = [vi,1 · · · vi,Ny

]T ∈
RNy , ai = [ai,1 · · · ai,dx

]T ∈ Rdx , 1 ≤ i ≤ Nx,
b = [b1 · · · bNy−1]T ∈ R × [0,∞)Ny−2, and θ =
[uT

1 · · ·uT
Nx

vT
1 · · · vT

Nx
aT
1 · · · aT

Nx
bT ]T , let ui(θ) = ui,

ui,j(θ) = ui,j , vi(θ) = vi, vi,k(θ) = vi,k, ai(θ) = ai,
ai,l(θ) = ai,l, bm(θ) = bm, 1 ≤ i, j ≤ Nx, 1 ≤ k ≤ Ny,
1 ≤ l ≤ dx, 1 ≤ m < Ny, b(θ) = b, c0(θ) = −∞,

cNy
(θ) = ∞ and

p̂i,j(θ) =
exp(ui,j)∑Nx

k=1 exp(ui,k)
, 1 ≤ i, j ≤ Nx,

q̂i,j(θ) =
exp(vi,j)∑Ny

k=1 exp(vi,k)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

A(θ) = [a1 · · · aNx
],

cj(θ) =
j∑

i=1

bi, 1 ≤ j < Ny,

while
P̂ (θ) = [p̂i,j(θ)]1≤i,j≤Nx ,

Q̂(θ, i) = diag{q̂1,i(θ), . . . , q̂Nx,i(θ)}, 1 ≤ i ≤ Ny.

Q(θ, y) =
Ny∑
i=1

iI(ci−1(θ),ci(θ)](y), y ∈ R.

For any real-valued sequence{tn}n≥0, let tn = [t0 · · · tn]T .
For θ ∈ Θ, ν ∈ [0,∞)Nx and any sequence{kn}n≥0 from
{1, . . . , Ny}, let ν0(θ, k0, ν) = ν and

µn+1(θ, kn, ν) = P̂T (θ)νn(θ, kn, ν), n ≥ 0,

νn+1(θ, kn+1, ν) =
Q̂(θ, kn+1)µn+1(θ, kn, ν)
eT Q̂(θ, kn+1)µn+1(θ, kn, ν)

, n ≥ 0,

φn(θ, kn, ν) = A(θ)νn(θ, kn, ν), n ≥ 0,

wheree = [1 · · · 1]T ∈ RNx . For θ ∈ Θ, ν ∈ [0,∞)Nx , let

Ŷn(θ) = Q(θ, Yn), n ≥ 0,

X̂n(θ, ν) = φn(θ, Ŷ n(θ), ν), n ≥ 0,

while {X̃n(θ)}n≥0 and {Ỹn(θ)}n≥0 are
{a1(θ), . . . , aNx(θ)}-valued and {1, . . . , Ny}-valued
stochastic processes satisfying

P(X̃n+1(θ) = aj |X̃n(θ), Ỹ n(θ))

=
Nx∑
i=1

p̂i,j(θ)I{ai(θ)}(X̃n(θ)) w.p.1, 1 ≤ j ≤ Nx,

P(Ỹn+1(θ) = j|X̃n+1(θ), Ỹ n(θ))

=
Nx∑
i=1

q̂i,j(θ)I{ai(θ)}(X̃n+1(θ)) w.p.1, 1 ≤ j ≤ Ny.

Then, it is straightforward to verify thatφn(θ, Ỹ n(θ), ν),
n ≥ 0, is the optimal filter for the hidden Markov model
{X̃n(θ), Ỹn(θ)}n≥0, i.e,

E(X̃n(θ)|Ỹ n(θ)) = φn(θ, Ỹ n(θ), ν), n ≥ 0,

if P(X̃0(θ) = i) = νi, 1 ≤ i ≤ Nx, where νi is
the i-th component ofν. On the other hand,{Ŷn(θ)}n≥0

can be considered as the representation of{Yn}n≥0 which
takes values{1, . . . , Ny}, while Q(θ, ·) is the quantizer
for {Yn}n≥0. Moreover, φn(θ, Ŷ n(θ), ν), n ≥ 0, can
be thought of as an approximation of the optimal filter



E(Xn|Y n), n ≥ 0, while {X̂n(θ, ν)}n≥0 are the esti-
mates of{Xn}n≥0 produced by the approximating filter
φn(θ, ·, ν), n ≥ 0.

For θ ∈ Θ, ν ∈ [0,∞)Nx , let

Jn(θ, ν) = 2−1E‖Xn − X̂n(θ, ν)‖2, n ≥ 0,

while J(θ) = limn→∞ Jn(θ, ν) (notice that
limn→∞ Jn(θ, ν) is well-defined, finite and does not
depend onν if {Xn}n≥0 is geometrically ergodic and
the transition probability matrix of{X̃n(θ)}n≥0 is strictly
positive; for details see [5], [8]). Our objective is to
determineθ ∈ Θ which provides the mean-square optimal
estimation of {Xn}n≥0 by {X̂n(θ, ν)}n≥0, i.e., which
minimizes the asymptotic mean-square errorJ(·). Once
the optimal θ ∈ Θ is determined, the corresponding
parameters of the quantizerQ(θ, ·) (the threshold levels
ck(θ), 1 ≤ k < Ny) and the approximating hidden Markov
chain{X̃n(θ), Ỹn(θ)}n≥0 (the transition probability matrix
P̂ (θ), the likelihood probabilitiesQ̂(θ, k), 1 ≤ k ≤ Ny,
the statesa1(θ), . . . , aNx(θ)) can easily be computed.
We study the problem of the minimization ofJ(·) for
the case whereP (·, ·), q(·, ·) are known and easy to be
sampled from, and where

∫ y

−∞ q(x, y′)dy′ can analytically
be computed for allx ∈ Rdx , y ∈ R.

The rationale for quantizing the observations{Yn}n≥0

and approximating the optimal filterE(Xn|Y n), n ≥ 0,
with φn(θ, Ŷ n(θ), ν), n ≥ 0, comes out from the following
fact: For optimalθ ∈ Θ, the mean-square error of the
approximate estimateŝXn(θ, ν), n ≥ 0, is close to the
mean-square error of the optimal estimatesE(Xn|Y n),
n ≥ 0, if Nx, Ny are sufficiently large, i.e.,minθ∈Θ J(θ) ≈
E‖Xn − E(Xn|Y n)‖2 for Nx, Ny � 1 (for details see
[10]).

III. G RADIENT ESTIMATES OF THEMEAN-SQUARE

ERROR

In this section, we present unbiased (Monte Carlo)
estimators for the gradients ofJ(·) and Jn(·, ν), ν ∈
[0,∞), n ≥ 0 (for the derivation see [10]). The reason
for using Monte Carlo simulations for estimating the gra-
dients of J(·) comes out from the following fact:J(·)
does not admit a closed form expression (as it depends
on invariant distribution of the augmented Markov chain
{Xn, Ŷn(θ), νn(θ, Ŷ n(θ), ν)}n≥0, which itself does not
have a closed form solution), while Monte Carlo methods
provide a computationally inexpensive and efficient way to
estimate those derivatives.

For θ ∈ Θ, let

r(θ, x, i) =
∫ ci(θ)

ci−1(θ)

q(x, y)dy, x ∈ Rdx , 1 ≤ i ≤ Ny,

while r̂(θ, x, i) ∈ RNy−1, 1 ≤ i ≤ Ny, are the vectors

defined as

[r̂(θ, x, i)]j =


q(x, ci(θ))− q(x, ci−1(θ)), if i > j

q(x, ci(θ)), if i = j

0, otherwise

,

x ∈ Rdx , 1 ≤ i ≤ Ny, 1 ≤ j < Ny.

For θ ∈ Θ, let p̃i,j(θ), q̃i,k(θ, l) ∈ RNx , 1 ≤ i, j ≤ Nx,
1 ≤ k, l ≤ Ny, be the vectors defined as

[p̃i,j(θ)]k =

{
p̂i,j(θ)(1− p̂i,j(θ)), if j = k

−p̂i,j(θ)p̂i,k(θ), otherwise
,

1 ≤ i, j ≤ Nx,

[q̃i,j(θ, k)]l =


q̂i,j(θ)(1− q̂i,j(θ)), if i = l, j = k

−q̂i,k(θ)q̂i,l(θ), if i = l, j 6= k

0, otherwise

,

1 ≤ i, l ≤ Nx, 1 ≤ j, k ≤ Ny,

while

P̃i(θ) = [p̃i,1(θ) · · · p̃i,Nx(θ)], 1 ≤ i ≤ Nx,

Q̃i(θ, j) =[q̃i,1(θ, j) · · · q̃i,Ny
(θ, j)],

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

For θ ∈ Θ, let ∂/∂ui,j(θ), ∂/∂vi,k(θ), ∂/∂ai,l(θ),
∂/∂bm(θ), 1 ≤ i, j ≤ Nx, 1 ≤ k ≤ Ny, 1 ≤ l ≤ dx, 1 ≤
m < Ny, be the derivatives with respect to the correspond-
ing components ofθ (i.e., with respect to the(Nx(j− 1)+
k)-th, (N2

x+Ny(j−1)+l)-th, (N2
x+NxNy+dx(j−1)+m)-

th, (N2
x + NxNy + Nxdx + j)-th components ofθ, re-

spectively), while∇ui(θ) = [∂/∂ui,1(θ) · · · ∂/∂ui,Nx(θ)]T ,
∇vi(θ) = [∂/∂vi,1(θ) · · · ∂/∂vi,Ny

(θ)]T , ∇ai(θ) =
[∂/∂ai,1(θ) · · · ∂/∂ai,dx

(θ)]T , 1 ≤ i ≤ Nx, ∇b(θ) =
[∂/∂b1(θ) · · · ∂/∂bNy−1(θ)]T .

For θ ∈ Θ, ν ∈ [0,∞)Nx and any sequence{kn}n≥0

from {1, . . . , Ny}, let

M ′
n+1,i(θ, k

n, ν) =
[
∂µn+1(θ, kn, ν)

∂ui,1(θ)
· · · ∂µn+1(θ, kn, ν)

∂ui,Nx(θ)

]
,

1 ≤ i ≤ Nx, n ≥ 0,

N ′
n,i(θ, k

n, ν) =
[
∂νn(θ, kn, ν)
∂ui,1(θ)

· · · ∂νn(θ, kn, ν)
∂ui,Nx

(θ)

]
,

1 ≤ i ≤ Nx, n ≥ 0,

M ′′
n+1,i(θ, k

n, ν) =
[
∂µn+1(θ, kn, ν)

∂vi,1(θ)
· · · ∂µn+1(θ, kn, ν)

∂vi,Ny
(θ)

]
,

1 ≤ i ≤ Nx, n ≥ 0,

N ′′
n,i(θ, k

n, ν) =
[
∂νn(θ, kn, ν)
∂vi,1(θ)

· · · ∂νn(θ, kn, ν)
∂vi,Ny (θ)

]
,

1 ≤ i ≤ Nx, n ≥ 0.



For θ ∈ Θ, ν ∈ [0,∞)Nx , β ∈ [0, 1] and any sequences
{xn}n≥0, {kn}n≥0 from Rdx , {1, . . . , Ny} (respectively),
let

sβ
n(θ, xn, kn) =

n∑
i=0

(1− β)n−i r̂(θ, xi, ki)
r(θ, xi, ki)

, n ≥ 0, (1)

while

∇̂ui(θ)Jn(θ, ν) = −(N ′
n,i(θ, Ŷ

n(θ), ν))TAT (θ)

· (Xn −A(θ)νn(θ, Ŷ n(θ), ν)),
1 ≤ i ≤ Nx, n ≥ 0, (2)

∇̂vi(θ)Jn(θ, ν) = −(N ′′
n,i(θ, Ŷ

n(θ), ν))TAT (θ)

· (Xn −A(θ)νn(θ, Ŷ n(θ), ν)),
1 ≤ i ≤ Nx, n ≥ 0,

(3)

∇̂ai(θ)Jn(θ, ν) = −(Xn −A(θ)νn(θ, Ŷ n(θ), ν))

· νn,i(θ, Ŷ n(θ), ν),
1 ≤ i ≤ Nx, n ≥ 0, (4)

∇̂b(θ)J
β
n (θ, ν) =2−1‖Xn −A(θ)νn(θ, Ŷ n(θ), ν)‖2

· sβ
n(θ,Xn, Ŷ n(θ)),

1 ≤ i ≤ Nx, n ≥ 0.

(5)

It is straightforward to verify that

N ′
0,i(θ, k

0, ν) = 0 ∈ RNx×Nx , 1 ≤ i ≤ Nx, (6)

N ′′
0,i(θ, k

0, ν) = 0 ∈ RNx×Ny , 1 ≤ i ≤ Nx, (7)

M ′
n+1,i(θ, k

n, ν) =P̂T (θ)N ′
n,i(θ, k

n, ν)

+ P̃i(θ)νn,i(θ, kn, ν),
1 ≤ i ≤ Nx, n ≥ 0, (8)

M ′′
n+1,i(θ, k

n, ν) =P̂T (θ)N ′′
n,i(θ, k

n, ν),
1 ≤ i ≤ Nx, n ≥ 0,

(9)

N ′
n+1,i(θ, k

n+1, ν) =
I − νn+1(θ, kn+1, ν)eT

eT Q̂(θ, kn+1)µn+1(θ, kn, ν)
· Q̂(θ, kn+1)M ′

n+1,i(θ, k
n, ν),

1 ≤ i ≤ Nx, n ≥ 0, (10)

N ′′
n+1,i(θ, k

n+1, ν) =
I − νn+1(θ, kn+1, ν)eT

eT Q̂(θ, kn+1)µn+1(θ, kn, ν)
· (Q̂(θ, kn+1)M ′′

n+1(θ, k
n, ν)

+ Q̃i(θ, kn+1)µn+1,i(θ, kn, ν)),
1 ≤ i ≤ Nx, n ≥ 0,

(11)
for all θ ∈ Θ, ν ∈ [0,∞)Nx and any sequence{kn}n≥0

from {1, . . . , Ny}, where µn+1,i(θ, kn, ν), νn,i(θ, kn, ν)
are the i-th components ofµn+1(θ, kn, ν), νn(θ, kn, ν)
(respectively).

It can be demonstrated that ∇̂ui(θ)Jn(θ, ν),
∇̂vi(θ)Jn(θ, ν), ∇̂ai(θ)Jn(θ, ν), ∇̂b(θ)J

0
n(θ, ν) are the

unbiased estimators of∇ui(θ)Jn(θ, ν), ∇vi(θ)Jn(θ, ν),

∇ai(θ)Jn(θ, ν), ∇b(θ)Jn(θ, ν) (respectively) for allθ ∈ Θ,
ν ∈ [0,∞)Nx , 1 ≤ i ≤ Nx, n ≥ 0, i.e.,

∇ui(θ)Jn(θ, ν) = E(∇̂ui(θ)Jn(θ, ν)), 1 ≤ i ≤ Nx, n ≥ 0,

∇vi(θ)Jn(θ, ν) = E(∇̂vi(θ)Jn(θ, ν)), 1 ≤ i ≤ Nx, n ≥ 0,

∇ai(θ)Jn(θ, ν) = E(∇̂ai(θ)Jn(θ, ν)), 1 ≤ i ≤ Nx, n ≥ 0,

∇b(θ)Jn(θ, ν) = E(∇̂b(θ)Jn(θ, ν)), n ≥ 0,

for all θ ∈ Θ, ν ∈ [0,∞)Nx . Moreover, the results
of [5], [8] suggest that if {Xn}n≥0 is geometrically
ergodic, ∇̂ui(θ)Jn(θ, ν), ∇̂vi(θ)Jn(θ, ν), ∇̂ai(θ)Jn(θ, ν),
∇̂b(θ)J

β
n (θ, ν) are the asymptotically unbiased estimators

of ∇ui(θ)J(θ), ∇vi(θ)J(θ), ∇ai(θ)J(θ), ∇b(θ)J(θ) (respec-
tively) for all θ ∈ Θ, ν ∈ [0,∞)Nx , 1 ≤ i ≤ Nx, as
n→∞, β → 0.

IV. SIMULATION BASED OPTIMIZATION OF THE

MEAN-SQUARE ERROR

In this section, we present an algorithm for finding the
minima ofJ(·). This algorithm is based on the Monte Carlo
estimators of the gradients ofJ(·) (derived in the previous
section) and stochastic approximation (which uses those
gradient estimates to search for minima ofJ(·)).

The gradient estimates (2) – (5) (together with the sup-
porting equations (6) – (11), (1)) and stochastic approxima-
tion suggest the following algorithm for minimizingJ(·):

Xn+1 ∼ P (Xn, ·), n ≥ 0, (12)

Yn+1 ∼ q(Xn+1, ·), n ≥ 0, (13)

θn = [uT
n,1 · · ·uT

n,Nx
vT

n,1 · · · vT
n,Nx

aT
n,1 · · · aT

n,Nx
bTn ]T , n ≥ 0, (14)

Zn+1 = Q(θn, Yn+1), n ≥ 0, (15)

µn+1 = P̂T (θn)µn, n ≥ 0, (16)

νn+1 =
Q̂(θn, Zn+1)µn+1

eT Q̂(θn, Zn+1)µn+1

, n ≥ 0, (17)

M ′
n+1,i =P̂T (θn)N ′

n,i + P̃i(θn)νn,i,

1 ≤ i ≤ Nx, n ≥ 0, (18)

M ′′
n+1,i = P̂T (θn)N ′′

n,i, 1 ≤ i ≤ Nx, n ≥ 0, (19)

N ′
n+1,i =

I − νn+1e
T

eT Q̂(θn, Zn+1)µn+1

Q̂(θn, Zn+1)M ′
n+1,i,

1 ≤ i ≤ Nx, n ≥ 0, (20)

N ′′
n+1,i =

I − νn+1e
T

eT Q̂(θn, Zn+1)µn+1

· (Q̂(θn, Zn+1)M ′′
n+1,i + Q̃i(θn, Zn+1)µn+1,i),

1 ≤ i ≤ Nx, n ≥ 0,
(21)

sn+1 = (1− β)sn +
r̂(θn, Xn+1, Zn+1)
r(θn, Xn+1, Zn+1)

, n ≥ 0, (22)



∇̂uiJn+1 =− (N ′
n+1,i)

TAT (θn)(Xn+1 −A(θn)νn+1),
1 ≤ i ≤ Nx, n ≥ 0,

(23)
∇̂vi

Jn+1 =− (N ′′
n+1,i)

TAT (θn)(Xn+1 −A(θn)νn+1),
1 ≤ i ≤ Nx, n ≥ 0,

(24)
∇̂ai

Jn+1 =− (Xn+1 −A(θn)νn+1)νn+1,i

1 ≤ i ≤ Nx, n ≥ 0, (25)

∇̂bJn+1 = 2−1‖Xn+1−A(θn)νn+1‖2sn+1, n ≥ 0, (26)

un+1,i = un,i − αn+1∇̂ui
Jn+1, 1 ≤ i ≤ Nx, n ≥ 0,

(27)
vn+1,i = vn,i − αn+1∇̂vi

Jn+1, 1 ≤ i ≤ Nx, n ≥ 0,
(28)

an+1,i = an,i − αn+1∇̂aiJn+1, 1 ≤ i ≤ Nx, n ≥ 0,
(29)

bn+1 = PΘb
(bn − αn+1∇̂bJn+1), n ≥ 0. (30)

{αn}n≥1 is a sequence of positive reals and represents the
algorithm step-sizes.β ∈ (0, 1) is a constant and can be
considered as an error-forgetting and stabilizing factor in
the recursion (22).PΘb

(·) is the projection onΘb = R ×
[0,∞)Ny−2, i.e.,

PΘb
(b) = arg min

b′∈Θb

‖b− b′‖, b ∈ RNy−1.

N ′
0,i = 0 ∈ RNx×Nx , N ′′

0,i = 0 ∈ RNx×Ny , 1 ≤ i ≤ Nx,
s0 = 0 ∈ RNy−1, while u0,i ∈ RNx , v0,i ∈ RNy , a0,i ∈
Rdx , 1 ≤ i ≤ Nx, b0 ∈ B, ν0 ∈ [0,∞)Nx are deterministic
variables and represent the algorithm initial values.µn+1,i,
νn,i are thei-th components ofµn+1, νn (respectively),
1 ≤ i ≤ Nx, n ≥ 0, while Xn+1 ∼ P (Xn, ·), Yn+1 ∼
q(Xn+1, ·) denote sampling fromP (Xn, ·), q(Xn+1, ·) (re-
spectively),n ≥ 0.

Remark: It can easily be deduced that the algorithm (12)
– (30) falls into the category of stochastic approximation
algorithms. Moreover, the algorithm (12) – (30) is of the
same form as the algorithms analyzed in [1].

V. A SYMPTOTIC ANALYSIS

In this section, we present results on the asymptotic
behavior of the algorithm (12) – (30). The obtained results
confirm that the algorithm (12) – (30) minimizesJ(·) over
Θ.

The asymptotic analysis of the algorithm (12) – (30) is
carried out for the case where the algorithm step-sizes are
constantαn = α, n ≥ 1, and where the step-sizeα and the
forgetting factorβ tend to zero. In order to emphasize the
fact that the asymptotic behavior of the iterates{θn}n≥0

depends onα, β, we use the notationθα,β
n in what follows.

For ρ ∈ (0,∞), let Bρ
Θ = {θ ∈ Θ : ‖θ‖ ≤ ρ}.

The algorithm (12) – (30) is analyzed under the following
assumptions:

A1: For all ρ ∈ [1,∞), there exists a Borel-measurable
function φρ : Rdx → [1,∞) such that

φρ(x) ≥ ‖x‖8,

‖r̂(θ, x, i)‖ ≤ φ1/4
ρ (x)r(θ, x, i), 1 ≤ i ≤ Ny,∥∥∥∥ r̂(θ′, x, i)r(θ′, x, i)
− r̂(θ′′, x, i)
r(θ′′, x, i)

∥∥∥∥
≤ φ1/4

ρ (x)‖θ′ − θ′′‖, 1 ≤ i ≤ Ny,

for all θ, θ′, θ′′ ∈ Bρ
Θ, x ∈ Rdx .

A2: {Xn}n≥0 has a unique invariant probability mea-
sureπ(·). For all ρ ∈ [1,∞), there exist constantsrρ ∈
(0, 1), Kρ ∈ [1,∞) such that∣∣∣∣∫ ψ(x′)Pn(x, dx′)−

∫
ψ(x′)π(dx′)

∣∣∣∣
≤ Kρr

n
ρφρ(x), n ≥ 1,

for all x ∈ Rdx and any Borel-measurable functionψ :
Rdx → R satisfying0 ≤ ψ(x) ≤ φρ(x) for all x ∈ Rdx .

A1 corresponds to the growth rate and smoothness of
the functionsr(·, ·, i), r̂(·, ·, i), 1 ≤ i ≤ Ny. It holds if
q(·, ·) is locally Lipschitz continuous. A2 is related to the
stability properties of{Xn}n≥0. It requires{Xn}n≥0 to be
φρ-geometrically ergodic for allρ ∈ [1,∞).

Let PΘ(·) be the projection onΘ, i.e.,

PΘ(θ) = arg min
θ′∈Θ

‖θ − θ′‖, θ ∈ RN2
x+NxNy+Nxdx+Ny−1.

The main result on the asymptotic behavior of the algorithm
(12) – (30) is contained in the next theorem:

Theorem 1:Let θα,β
0 = θ0 for all α, β ∈ (0,∞), where

θ0 ∈ Θ is a deterministic variable not depending onα, β.
Moreover, letθ̄α

0 = θ0 and

θ̄α
n+1 = PΘ(θ̄α

n − α∇J(θ̄α
n)), n ≥ 0. (31)

Then,

lim
α,β→0

P

(
sup

0≤n≤t/α

‖θα,β
n − θ̄α

n‖ ≥ δ

)
= 0

for all δ, t ∈ (0,∞).
The proof is essentially based on the results of [1, Part

II], [5], [8]. For details see [10].
Remark: Theorem 1 basically claims that the iterates

{θα,β
n }n≥0 of the algorithm (12) – (30) asymptotically

behave forα, β → 0 as the gradient search (31). Then, the
further asymptotic properties of{θα,β

n }n≥0 can be inferred
from the existing results on the (deterministic) projected
gradient algorithms (see e.g., [2, Chapter 2] and references
cited therein). The results of this type are typical for the
asymptotic analysis of stochastic approximation algorithms
(for details see [1], [4] and references cited therein).

VI. A PPLICATION

We demonstrate our methodology on a non-linear state-
space model. Let us consider the following stochastic
volatility model arising in econometrics

Xn+1 = φXn + σVn+1,

Yn = β exp (Xn/2)Wn,



where Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1) are two
mutually independent sequences of independent identically
distributed (i.i.d.) Gaussian random variables, independent
of the initial stateX0. The parameters are given by
(β, φ, σ) = (1, 0.8, 1).

For this non-linear state space model, it is impossible
to compute the filter in closed form and our quantization
algorithm was compared to a particle approximation of the
optimal filter (usingN = 10000 particles).

We limit ourselves here to the quantization of the hidden
state space. We use respectivelyM = 10, 50 and 100
quantization levels. We simulateP = 10 realizations of
T = 200 observations. Our performance measure is the
average mean square error (AMSE) between the true state
and the approximation of its conditional expectation.

The results are given in the table below.

M = 10 M = 50 M = 100 Particle filter
AMSE 0.321 0.218 0.183 0.142

Remark: Notice that the computational complexity of
the used particle filter is equivant to computational com-
plexity corresponding to10000 quantization levels.
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