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A Simulation Based Algorithm for Optimal Quantization in
Non-Linear/Non-Gaussian State-Space Models

Vladislav B. Tade and Arnaud Doucet

Abstract—The problem of the approximation of the opti- imation of the optimal filter based on optimal quantization
mal filter for npn-linear/nqn-Gau_ssian state-space models_is is proposed. We approximate the non-linear non-Gaussian
considered. This problem is studied for models with a multi- state-space model by a hidden Markov model with discrete

dimensional (continuous) state space and one-dimensional tat d ob fi Thi imati del
(continuous) observation space. An approximation of the opti- S'at€ and observalion spaces. This approximating mode

mal filter based on quantization is proposed. We quantize both ~ a@llows to compute the optimal filter exactly while allowing

the state and observation processes to obtain a hidden Markov to control the number of bits used in representing the ob-
model with discrete state and observation spaces for which servation process and the optimal filter. The problem of the
the optimal filter can be computed exactly. The problem of 4 iima| selection of the parameters of this approximating

the optimal selection of the parameters of this approximating o o =
model (quantization thresholds, states, transition probabilities, model (quantization thresholds, states, transition probabili-

likelihood probabilities) is considered. An algorithm based on ties, likelihood probabilities) is considered. The optimality
Monte Carlo gradient estimation and stochastic approximation  criterion is the mean square error between the true state
is proposed. The asymptotic properties of the proposed algo- process and the conditional expectation computed through
gﬁg%g{;ggglyzed and sufficient conditions for its convergence  he optimal filter associated to the approximating model.

Index Terr-ns—Quantization, hidden Markov models, op- Minimizing t.his (,:OSt f'un(.:tior? is however Comp!ex as it
timal filtering, Monte Carlo gradient estimation, stochastic involves the invariant distributions of both the original state-
approximation. space model and of the filter of the approximating model.
An algorithm based on Monte Carlo gradient estimation and

I. INTRODUCTION stochastic approximation is proposed. The asymptotic prop-

Non-linear/non-Gaussian state-space models (also kno&Hi€S f the proposed algorithm are analyzed and sufficient
as hidden Markov models with continuous state and offonditions for its convergence are obtained. (Simulation

servation spaces) are a broad class of stochastic proces&y!lts will be presented in the last version of the paper.)
capable of modeling very complex real-world dynamic TO the best of our knowledge, the quantization of hidden

systems. They have found a wide range of appIicatioMarkO_V mo_dels a_md the quantization baseq approximation
in the areas such as automatic control, signal processirfyf, their optimal filters have only been studied in [6], [7],
machine learning, bioinformatics (just to name a few)[?]- The approximation of the optimal filter presented in
Related to non-linear/non-Gaussian state-space models, dfkis only based on the quantization (i.e., discretization) of
of the most important problems is the optimal filtering, i.e.th® state space and is computationally more complex than
the optimal estimation of their states in a situation whe#'® one proposed in this paper. Moreover, this quantization
only their imperfect and noisy observations are availabldS Not performed so as to optimize the performance of the
Unfortunately, except in a few special cases, includingzter associated to the quantized model. In [7], [9], only
linear Gaussian state-space models and hidden finite stiidden Markov models with a discrete state-space have been
space Markov chains, the optimal filters do not admifonsidered. _ _ _
a finitely dimensional representation. However, nowadays T"€ Paper is organized as follows. In Section 1I, the
the complexity of real-world systems coupled to the re§|gr1al modell an_d the approximation of its opuma] filter are
quirement of high performance precludes these Simp”fyingeflneq. A criterion funct|on.for the opt!mal §elect|op of the
assumptions. Moreover, in applications where bandwidth &PProximation parameters is also defined in Section II. In
scarce, it is necessary to minimize the number of bits used pfction Ill, Monte Carlo gradient estimates of the criterion
representing the observation process and the optimal filtdknction are derived, while the algorithm for the criterion
In this paper, the problem of the approximation of thdunction minimization is proposed in Section IV. Results
optimal filter for non-linear/non-Gaussian state-space mo@! the asymptotic behavior of the proposed algorithm are
els is considered. This problem is studied for the modeRresented in Section V.
with a multi-dimensional (continuous) state space and one- I
dimensional (continuous) observation space, and an approx-

. SIGNAL MODEL AND APPROXIMATION OF THE
OPTIMAL FILTER
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Hidden Markov models considered in this paper can bey, (6) = oo and
defined as a two component Markov chdiX,,, Y}, }.>o,

where {X,,},>0 and {Y,},>o are R%-valued and R- pij(0) = J\??{p(ui’j) , 1<i,j<N,,
valued (respectively) stochastic processes which are defined > he1 exp(uik)
on a probability spacéf2, 7,P) and satisfy the following exp(v; ;) ‘ _
relations: Gi;(0) = Ny—'j, 1<i<Ng 1<j< N,
>k exp(vik)
P(XnJrl eB‘Xnvyn) A(@) = [CLl'"CLN ]7

= P(X,,B) w.p.l, VBeB¥ n>0, ;
P(Yn+1 c B|Xn+1,yn) c]( ) ; J Y
:/ q¢(Xpt1,9)dy wpl, VBeB, n>0. while .
B P(0) = [pi;(0)]1<ij<n.

X" o= [Xg X7 Tand Y o= Yoo Ya]T n > 0, Q(6,1) = diag{d1.:(),...,4n,i(0)}, 1<i<N,.
while B, B are the families of Borel sets fromk%, R . v -
(respectively).P(z,-), z € R, is a transition probability .
kernel (i.e.,P(z, -) is a probability measure for all € R%=, QA,y) = Z ieia @0 ¥), Y € R

and P(-, B) is Borel-measurable for alB € B?), while =t

q: R% x R — [0,00) is a Borel-measurable function with For any real-valued sequen¢g, } >, lett™ = [to - - - t,,]”.

Ny

the following property: Forf € ©, v € [0,00)"= and any sequenck,, },>o from
{1,...,N,}, let (6, k% v) = v and
_ de .
[ a1, v e r i1 (0,87, 0) = PT (@) (6,5",0), 1> 0,
The process{X,}.>o is observable only through the Vo (6, K7 1) = Qgﬂ, kn+1)pint1(0, k", v) om0,
process{Y,, },>o, i.€., the only information o{ X, },>0 eTQ(O, kpy1)pins1(0, k™, v)
available to us is contained i, },>0. (0,5 1) = A (0, k", 1), n >0,

The problem we consider in this paper is the quantization
of the process(Y, },>0 and the complexity reduction of wheree = [1--- )T € RN=. Forf € ©, v € [0,00)M=, let
the optimal filterE(X,,|Y™), n > 0. We want to represent -
(i.e., to quantize)Y,},>o by a signal takingN, values ) Y (0) Q(HlYn), n >0,
(N, > 2), and then, using this representation (i.e., quantized Xn(0,v) =¢,(0,Y"(0),v), n>0,
signal), to estimate{ X,,},,>0 by the optimal filter for a . ~ ~

. L d > while {Xn(0)}n>0 and {Y.(0)} >0 are
hidden Markov model withV,, R%=-valued states/{, > 2) {01(0),....an.(0)}-valued and {1,....N,}-valued

and N, observations (i.e., to approximai& X,,|Y"), n > toch t :
0, W|th the optimal filter for the previously described hidden stochastic processes satisfying

Markov model). Moreover, givetv,,, N,,, we want to find P(Xn+1( ) = a;| X" (0),Y"(0))
the parameters of the quantizer (quantization thresholds)
and the approximating hidden Markov model (states, tran- Zp” (0) 10,000 (Xn(0) wpl, 1 <5< N,

sition probabilities and likelihood probabilities) which are
optimal in the mean-square sense, i.e., which minimize the S Sndtl o
mean-square error of the estimates{of,,},>o (obtained P(Y"“( ) = JIX"E0),Y7(6))
in the way described above). In order to achieve these

objectives, the quantization thresholds and the states of — qu
the approximating hidden Markov model are considered as ~
unknown parameters, while an additional parameterizatiobhen, it is straightforward to verify thap, (8,Y™(6),v),

is introduced to represent the transition and likelihood: > 0, is the optimal filter for the hidden Markov model
probabilities of the approximating hidden Markov model. {X,,(6),Y,,(0)}.>o0, i.€,

I{a o} Xn+1(9)) w.p.l, 1 <5< Ny.
=1

Let © = RNatNeNytNedatl 0 [0 00)Nu=2, For N >
; E(X,(0)[Y"(8)) = 60 (6,Y™(0),v), n>0,
u = [Ui,l"'uz‘,N,]T c RN””, v; = [Ui,l"'vi,Ny]T c ~( ( )| ( )) ¢ ( ( ) I/) n
RNv, a; = [a;1---a;q,]" € R¥™, 1 < i < N, if P(Xo(0) = i) = v, 1 < i < N, wherey; is
b = [by---by,—1]7 € R x [0 )Nv*Q, and # = thei-th component of.. On the other hand{Y,,()},>0

H(0) ="uij, vi(0) = v, vig(0) ik al(e) = a;, takes values{l,...,N,}, while Q(6,-) is the quantizer
=a;, by(0) = b, 1 < 4,5 <k <N, for {Y,},>0. Moreover, ¢,(6,Y"(0),v), n > 0, can
< dz; 1 <m < Ny, b9) = —oo, be thought of as an approximation of the optimal filter
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E(X,|[Y™), n > 0, while {X,,(6,)},>0 are the esti- defined as
mates of{X,},>o produced by the approximating filter

bn (0, 1), 1> 0. q(z,¢i(0)) — q(z,¢i-1(0)), fi>j
For0eO,ve [07 oo)N'I, let [7;(079:72)]] = q(mvcz(e))7 if 4 =J ’
0, otherwise
Ja(0,v) = 27 B X, — Xa (0,07, n >0, z€R% 1<i<N,, 1<j<N,.
while  J(6) = lim,, . J,(0,v) (notice that Ford € ©, letp; ;(9), 4 x(6,1) € RN+, 1 <4,j < N,

lim, o0 J,(0,v) is well-defined, finite and does not1 <k, < N,, be the vectors defined as

depend onv if {X,},>0 iS geometrically ergodic and

the transition probability matrix of X,,(6)},> is strictly B (0] = Di;(0)(1—pi;(0), ifj=k
positive; for details see [5], [8]). Our objective is to AL —pi (0)pik(0), otherwise’
determined € © which provides the mean-square optimal

estimation of {X,},>0 by {X,(6,v)}n>0, i.e., which 1<14,j < Ny,
minimizes the asymptotic mean-square ertff). Once R R o .
the optimal# € © is determined, the corresponding G (0)(1 = 4i;(0)), iFi=1j=k
parameters of the quantize®(¢,-) (the threshold levels  [di.; (0, k)] =4 —dik(0)di.1(0), ifi=1j#k,
cx(8), 1 <k < N,) and the approximating hidden Markov 0, otherwise
ghain{)?n(?),}?n(e)}nzo (the transition probability matrix 1<il<N,, 1<jk<N,
P(0), the likelihood probabilities)(6,%), 1 < k < N,,
the statesa;(9),...,an,(0)) can easily be computed. while
We study the problem of the minimization of(-) for .
the case whereP(-,), q(-,-) are known and easy to be Pi(0) = [pin(0) - pin, (0)], 1<i<N,,
sampled from, and wherjéfOo q(z,y")dy’ can analytically .
be computed for alk: € R%, y € R. Qi(0,7) =[a,1(6,7) - d@i,n, (0,5)],

The rationale for quantizing the observatiofis, },,>o 1<i< N 1<j<N,

and approximating the optimal filteE'(X,,|Y™), n > 0,

with ¢, (6, Y"(8),v), n > 0, comes out from the following  For ¢ € ©, let 9/0u; ;(0), 0/0vix(0), 0/0ai.(0),
fact: For optimalé € ©, the mean-square error of thed/9bm(6), 1 <i,j < Nyy 1 <k < Ny, 1 <l <dy, 1<
approximate estimates,,(6,v), n > 0, is close to the ™ <Ny, be the derivatives with respect to the correspond-
mean-square error of the optimal estimatg¢X,,|y™), INg components of (i.e., with respect to theN,(j —1) +

n >0, if N,, N, are sufficiently large, i.emingee J(0) ~  F)-th, (2]V§+Ny(J—1)+l)'th: (N12+N1Ny+dz(]_l)+m)_
E||X, — E(X,|Y™)|? for N,,N, > 1 (for details see t, (N + NoNy + Nid, + j)-th components of), re-

[10]). spectively), whileV,,, ) = [0/0u;1(0) - - - 8/0u; n, (0)]7,
Vvi(g) = [8/81)171(9) e 8/8111‘71% ((9)]T, Vai(g) =
[8/8(17;,1(9) e ~8/8ai,dm(0)]T, 1 < 7 < Nﬁ, Vb(g) =

I1l. GRADIENT ESTIMQLERZEF THEMEAN-SQUARE [a/abl(e) L. 8/81)]\;”_1(0)?.

For € ©, v € [0,00)"= and any sequencéky, },>o

. . . rom {1,...,N,}, let
In this section, we present unbiased (Monte Carlog { v
aMnJrl (87 knv V) 8/1'n+1 (95 kna V)

estimators for the gradients of(-) and J,(,v), v € , n

[0,00), n > 0 (for the derivation see [10]). The reason ne1i(0 K" v) = { Aui1(0) o ou; n. (6) } ’
for using Monte Carlo simulations for estimating the gra- 1<i < No n>0 o

dients of J(-) comes out from the following factJ(-) - o=
does not admit a closed form expression (as it depends

on invariant distribution of the augmented Markov chain N, ;(6,k",v) = {
{ X0, Y0 (0), (8, Y™(0), ) } >0, which itself does not

have a closed form solution), while Monte Carlo methods

provide a computationally inexpensive and efficient way to

6Vn(9,k",u)...8Vn(0,k”,u)
8’&1‘71(9) 87-Li,Nm (9) ’

estimate those derivatives. M,y 0.k v) = [a/‘"“(e’kn’y) . Ot (0, K7, V)} 7
For6 € O, let ’ dv;(0) v N, (0)
1<i< Ny, n2>0,
. ci(0) 4 _
i) = [ Ay, we R SIS N, P [ A L B A )
Ci—1 n;i( ) ,1/) - 81}2‘71(0) T avi,Ny (9) 9
while #(0,z,i) € RM»—1, 1 < i < N, are the vectors 1<i<N,, n>0.
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Forg € ©, v € [0,00)"=, 8 € [0,1] and any sequences V) Jn(0,v), Vi) Jn(8,v) (respectively) for allh € O,

{xn}nZOv {kn}nZ() from Rdm’ {17 sy

let

Iéj nopny _ - o nfzf(gﬂx“kl) >

Sn(97:17 ak ) ;(1 ﬂ) r(@,xi,ki)’ nz 0’ (1)
while

V(o) In(0,v) = —(N., (8,Y"(8),1))T AT (9)

(X — A0 (0,Y7(0), 1)),
1<i< N, n>0, 2
V(o) In(0,v) = —(NZ (6, Y™(8), )T AT (8)

: (Xn - A(Q)Vn(ev )}n(e)’ V))7 (3)
1<4i< N, n>0,
Vi (0)In(0,0) = —(X0 — A(O)1n(0,Y"™(0), 1))
Ui (0,Y™(), ),
1<i< N, n>0, (4)
Vi) J2(0,v) =271 X, — A(B), (0, Y™ (0),v)|?
sH(0, X", Y"(0)), ®)
1<i< N, n>0.

It is straightforward to verify that

N (0,k%v)=0€ RN=*Ne 1 <i<N,, (6)
N{(0,K,v)=0€e RN=>N  1<i<N,, (7)
M}, 0,k v) =PT(O)N], (0, k", v)

+15(0)u7, J(0,k™,v),

1<i<Ng n>0, 8

MU (0,k™,v) =PT(O)N) (0, k", v), ©
1<i<N,, n>0,
NL 10,1, ) = O e

e et Q(0, kn+1)un+1(‘9 km,v)
Q(e kn+1) n+1 1(97knay)a
1<i< N, n>0, (10)

I —v,1(0,k" T v)el
eTQ(G, K1) pn+1(0, k™, v)
: (Q(@, k7l+1)M’r/L/+1(0’ k", v)
+ Qi(0, kg1 )png1,:(0, K", v)),
1<i< N n=>0,

N;z/-‘rl,i(H: kn+17 V) =

(11)
for all € ©, v € [0,00)V= and any sequencék,, },>o
from {1,...,N,}, where p,11,(0,k",v), v,:(0,k",v)
are thei-th components ofu,+1(0,k™,v), v,(6,k™,v)
(respectively). R

It can be demonstrated thatvui(g)Jn(H, v),
V@) In(0,0), Vo) In(0,0), Vi Jo(0,v) are the
unbiased estimators oV, 0)In(0,v), Vo, 0)In(0,v),

Ny} (respectively),

v € [0,00)Ne, 1 <i< N, n>0,ie.,

Vai0)In(0.v) = E(V.,6)Jn(0,v)), 1 <i < Npym > 0,

Vi) In(0,) = E(V o, (0)Jn(0,)), 1 <i < Nyyn >0,

Vai(0)In(0,1) = E(Va,(0)Jn(0,v)), 1 <i < Npym >0,
Vi) Jn (0, 1) = E(Vye)Ju(0,)), n > 0,

for all & € ©, v € [0,00)N=. Moreover, the results
of [5], [8] suggest that if {X,},>0 is geometrically
ergodic, Vo, ) Jn(0:1), Vo 0)Jn(0:1), Vay0)Jn(0,v),
@b(g)J (8,v) are the asymptotically unbiased estimators
of Vi, (0)J(0), V,(0)J(0), Va,(0)J(0), Vo) J (0) (respec-
tively) for all 6 € ©, v € [0,00)N, 1 < i < N,, as

n — oo, f — 0.

IV. SIMULATION BASED OPTIMIZATION OF THE
MEAN-SQUARE ERROR

In this section, we present an algorithm for finding the
minima of J(-). This algorithm is based on the Monte Carlo
estimators of the gradients of(-) (derived in the previous
section) and stochastic approximation (which uses those
gradient estimates to search for minima.&f)).

The gradient estimates (2) — (5) (together with the sup-
porting equations (6) — (11), (1)) and stochastic approxima-
tion suggest the following algorithm for minimizing(-):

Xn+1 ~ P(Xn7 ')7 n Z 07 (12)
Yn+1 ~ q(Xn—Q—la ')a n = 05 (13)
On = [UrTn o 'UrTL,NﬂgJ T UZ,Nx
A an N, bl 20, (14)
Zn+1 - Q(gna Yn+1)» n > 07 (15)
Hn+1 = pT(gn),U/n; n > 0; (16)
) 97’747ZTL n
Upt1l = Qg #1)fn+1 , n>0, a7
€TQ(9n,Zn+1)/,Ln+1
M7/1+1 i —PT(Qn)Nr/L,i + I:)i(‘gn)”n,iv
1<i<N, n>0, (18)
My =PT(0,)N];, 1<i<N,n>0, (19
I—v,qef A
N, =—0F Oy Zns1) M. 5,
n+1,i €TQ(9n, Zn+1),LLn+1 Q( v 1+1) n+1,i
1<i<N,, n>0, (20)
I—v, el
erz/+1,¢ = A +
€ Q(en;ZnJrl)ﬂnJrl
: ( (eny Zn+1) »rIL/Jrl 7 + Q2(9n7 Zn+1)un+1,i)7
1<i< N, n>0,
) (21)
& naXn 7ZTL
Syl = (1 _ /6’)3” i 7’( +1 +1) n 2 0, (22)

7"(971, Xn+17 Zn+1) ’
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Viidnar == (Nij1,)TAT(02) (X1 = ABu)vns), 76,2, )| < 64 (@)r(,0), 1<i<N
1<i<N,, n>0, #0,z,i) (0", 1) ‘

§¢/1)/4<x)||9/_9/l‘|a 1 SZSNy»

_ (23)
Vo, Jny1 = — (Ng+17i)TAT(9n)(Xn+1 — A0 )Vn+1)s
1<i< Nz n=>0,

r(¢,z,i) (0", x,1)

_ (24)  forall 6,6,0” € BY, x € R%.
Va, Jnp1 == (Xns1 = AOn)Vni1)Vnti A2: {X,}n>0 has a unique invariant probability mea-
1<i< N, n>0, (25) suren(-). For all p € [1,00), there exist constants, €
=~ _ 0,1), K, € [1,00) such that
Fodis = 2 X1 A v Psnsr, n >0, 26) OV Ko €[10)
unJrl,i - un,i - anJrl%uiJnJrh 1 S 1 S Nw7 n Z 07 ’/w(I/)Pn(QE,dII) - /¢($/)W(dx’)
(27)

~ n .
Un+4+1,i = Un,i — O‘n—i—lvvit]n—i-h 1<¢< Ng, n>0, < Kpr¢p(l), nz1,

(28)  for all 2 € R and any Borel-measurable function :

Unt1,i = Ani = Q1 VaJntr, 1 <0< Nyy n >0, R — R satisfying0 < ¢(z) < ¢,(z) for all z € R%.
~ (29) Al corresponds to the growth rate and smoothness of
b1 = Po,(bn — ant1ViJni1), n > 0. B0 the functionsr(-,-,4), #(-,+,i), 1 < i < N,. It holds if

{am }n>1 is @ sequence of positive reals and represents tié:, -) is locally Lipschitz continuous. A2 is related to the
algorithm step-sizes3 € (0,1) is a constant and can be stability properties of Xy, },,>o. It requires{X,, },,>¢ to be
considered as an error-forgetting and stabilizing factor ift,-geometrically ergodic for alp € [1, cc).

the recursion (22)Pe, (-) is the projection o, = R x Let Po(-) be the projection om®, i.e.,

[0,00)Mv =2, ie.,

Po,(b) = argmin |[b—b'||, be RN

Po(f) = argmin||0 — ¢'||, 60 ¢€ RNe+NaNy+Noda+N,y =1
6'eO

b’edy The main result on the asymptotic behavior of the algorithm
Nj,=0¢ RNoxNe NV =0 € RN+*Nu, 1 <i<N,, (12)-(30)is contained in the next theorem:
so =0 € RVv=1 while ug; € RN, vo; € RMv, ag; € Theorem 1:Let 90""5 =6, for all o, 5 € (0,00), where

R, 1<i< N, by € B, vye[0,00)V= are deterministic 0o € © is a deterministic variable not depending ang.
variables and represent the algorithm initial valyes,, ;,, Moreover, letfg = 6, and
v, are thei-th components ofu,.1, v, (respectively), go Ao Jo

’ . ’ = Po(02 — aVJ(6 > 0. 31
1<i<N,n2>0, while Xn+1 ~ P(Xn,), Yn+1 ~ n+1 @( n « ( n))a n = ( )
q(X,+1,-) denote sampling fronP(X,, ), ¢(X,+1,-) (re-  Then,

spectively),n > 0.
Remark: It can easily be deduced that the algorithm (12) lim P sup [|62F -0 >6) =0
— (30) falls into the category of stochastic approximation ,8—0 0<n<t/a

algorithms. Moreover, the algorithm (12) — (30) is of thef

same form as the algorithms analyzed in [1]. or all 6, € (0, 00).

The proof is essentially based on the results of [1, Part
V. ASYMPTOTIC ANALYSIS 1], [5], [8]. For details see [10].

In this section, we present results on the asymptotic Rémark: Theorem 1 basically claims that the iterates
behavior of the algorithm (12) — (30). The obtained result?n }n>0 Of the algorithm (12) - (30) asymptotically
confirm that the algorithm (12) — (30) minimize-) over behave fora, 5 — 0 as the_gradient search (31). _Then, the
o. further asymptotic properties gb<°},,>o can be inferred

The asymptotic analysis of the algorithm (12) — (30) irom the existing results on the (deterministic) projected

carried out for the case where the algorithm step-sizes agéadient algorithms (see e.g., [2, Chapter 2] and references
constanty,, = o, n > 1, and where the step-sizeand the cited therein). The results of this type are typical for the

forgetting factorj tend to zero. In order to emphasize theASymptotic analysis of stochastic approximation algorithms
fact that the asymptotic behavior of the iteratg,},», (for details see [1], [4] and references cited therein).
depends ony, 3, we use the notatioﬁg*ﬁ in what follows. VI. APPLICATION

For p € (0,00), let B = {6 € © : || < p}.

The algorithm (12) — (30) is analyzed under the following W& demonstrate our methodology on a non-linear state-
space model. Let us consider the following stochastic

assumptions: e S X
Al: For all p € [1,00), there exists a Borel-measurableVOlatility model arising in econometrics
i . d
function ¢, : R% — [1,00) such that Xpi1 = 6Xn+ Vi,

bp(x) > ||7|%, Y, Bexp (Xn/2) W,
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where V,, " A7(0,1) and W,, "¢ A(0,1) are two

mutually independent sequences of independent identically
distributed (i.i.d.) Gaussian random variables, independent
of the initial state X,. The parameters are given by
(8,¢,0) =(1,0.8,1).

For this non-linear state space model, it is impossible
to compute the filter in closed form and our quantization
algorithm was compared to a particle approximation of the
optimal filter (usingNV = 10000 patrticles).

We limit ourselves here to the quantization of the hidden
state space. We use respectivély = 10, 50 and 100
guantization levels. We simulat® = 10 realizations of
T = 200 observations. Our performance measure is the
average mean square error (AMSE) between the true state
and the approximation of its conditional expectation.

The results are given in the table below.

M=10 | M =50 | M =100 | Particle filter
] AMSE | 0.321 0.218 0.183 0.142

Remark: Notice that the computational complexity of
the used particle filter is equivant to computational com-
plexity corresponding td0000 quantization levels.
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