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Abstract

In this paper, we focus on parameter estimation in sys-
tems with output noise. By adding a dead-zone to the
Linear Adaptive Estimator, it is shown that statistically
the bounded output noise can be filtered out and that the
true unknown parameters are estimated exactly. This time-
domain noise filter which applies to systems with unknown
parameters is denoted as filtered deadzone estimator and it
is later extended to situation where the output noise is white
noise. The difference between model disturbance and out-
put noise is discussed and the extension to situation where
both of them exist is proposed.

1 Introduction

Adaptive estimation algorithms have been developed for
dynamic systems where the unknown parameters occur
both linearly and nonlinearly over the past several errors.
While stability properties of these estimators have been
studied in [1]-[4], parameter convergence properties have
been studied in [1]-[8]. In the presence of external distur-
bances and noise, it is well known that for linearly parame-
terized systems, either modifications in the adaptive law or
persistently exciting reference inputs have to be introduced
to establish robustness. The same however has not been
established for nonlinearly parameterized systems thus far,
and is addressed in this paper. In particular, we establish
that when output noise is present, a modified algorithm that
include a deadzone, similar to that in [1], can be used to es-
tablish boundedness. We also show that the deadzone algo-
rithm filters the output noise statistically and guarantees the
asymptotic convergence of the estimates to true unknown
parameters, and is denoted as the filtered deadzone estima-
tor (FDE). The paper is organized as follows. In section
2, problem formulation is proposed and the inability of the
adaptive estimator to deal with output noise, without any
modifications, is discussed. In section 3, the FDE is pro-
posed. Proof of asymptotic convergence is also given. In
section 4, comparison between output noise and model dis-
turbance is discussed and the extension to situation where
both of them exist is made. Section 5 shows simulation re-

sults.

2 Problem Formulation

We consider a nonlinearly parameterized dynamic system
with bounded output noise such as

ẏ = −αy +
N∑

i=0

ci(ω∗)i

yn = y + n(t) (1)

where ci are measurable signals, ω∗ ∈ IR is unknown pa-
rameter, y ∈ IR is inaccessible state variable, output noise
n(t) is a stationary stochastic process and yn is measured
output signal.

We make the following assumptions regarding the station-
ary stochastic process n(t).

Assumption 1: |n(t)| ≤ nmax, ∀ t ≥ 0 where nmax is
a known positive constant.

Assumption 2: n(t1) is independent of y(t2), ∀ t1, t2 ≥ 0.

Assumption 3: n(t1) and n(t2) are i.i.d. if |t1 − t2| > ∆
for any ∆ > 0.

Assumption 4: n(t) is piece-wise differentiable.

Assumption 4 implies that ṅ(t) exists almost everywhere
except on a set D of measure zero.

In what follows, we refer to ṅ(t) only at points in the real
line not including D.

Assumption 5: |ṅ(t)| ≤ mmax.

Assumption 6: ∆2mmax ≤ η for any ∆ > 0, η > 0.



It can be shown that a typical measurement noise due to
effects of quantization satisfies assumptions 1-6.

2.1 Polynomial Adaptive Estimator (PAE)
In this section, we examine the properties of a N th order
PAE with N auxiliary estimates ω̂i, .., ω̂N that was pro-
posed in [8] for (1) in the absence of noise.

Suppose the Lyapunov function candidate is chosen as

V = y2
n/2 +

N∑
i=1

pi(ω̃i), ω̃i = ω̂i − ω∗ (2)

where

pi(ω̃i) =
1

i + 1
ω̃i+1

i if i is odd;

pi(ω̃i) =
1
i
ω̃i

i +
ki

i + 1
ω̃i+1

i if i is even (3)

for i = 1, .., N , and ki is to be chosen appropriately as in
[8]. The corresponding gi is the derivative of pi w.r.t. ω̃i as
of

gi(ω̃i) = ω̃i
i if i is odd;

gi(ω̃i) = ω̃i−1
i + kiω̃

i
i if i is even. (4)

We note that ω̃i = ω̂i −ω∗ and gi is a ith order polynomial
function of ω∗ and it can be expressed as

gi =
i∑

j=0

dij(ω̂i)(ω∗)j . (5)

The PAE is of the form

˙̂y = −αŷ + φ∗
0

˙̂ωi = −ỹnφ∗
i , i = 1, ..., N

ỹn = ŷ − yn

φ∗ = A−1C (6)

where φ∗ = [φ∗
0, φ∗

1, ..., φ
∗
N ]T , sat(.) denote the saturation

function, A is a non-singular (N + 1)× (N + 1) matrix as
of

A =


d00 * * .. *
0 d11 * .. *
0 0 d22 .. *
: : : :: :
0 0 0 .. dNN

 (7)

and
C = [c0 c1 ...cN ]T . (8)

The element of ith row and jth column of matrix A in (7)
is

Aij =
{

0 i > j;
d(j−1)(i−1) i ≤ j

where dji is defined as in (5).

Combining (1), (6) and (2), using the same derivation as in
[8], the derivative of V follows as

V̇ = ỹn(−αỹ − ṅ)

and hence
V̇ = −αỹỹn − ỹnṅ.

Since V cannot be guaranteed to be nonpositive in a com-
pact set, it follows that V need not be bounded. Therefore
modifications in the adaptive law are needed.

3 Filtered Deadzone Estimator

The result of no convergence of PAE with output noise in
section 2.1 raises a problem for its application. To over-
come this difficulty, we introduce a filtered deadzone esti-
mator (FDE) as

˙̂y = −αŷ + φ∗
0

˙̂ωi = −ỹnεφ
∗
i , i = 1, ..., N

ỹn = ŷ − yn

ỹnε = ỹn − nmaxsat

(
ỹn

nmax

)
φ∗ = A−1C

n̂ = yn − ŷ (9)

where n̂ is the filted out output noise, φ∗ =
[φ∗

0, φ∗
1, ..., φ

∗
N ]T , A and C are defined as in (7) and (8),

and sat(.) denotes the saturation function and is given by
sat(x) = sign(x) if |x| ≥ 1 and sat(x) = x if |x| < 1. In
fact, the relationship between ỹnε and ỹn is of

ỹnε =


ỹn − nmax if ỹn > nmax;
0 if −nmax ≤ ỹn ≤ nmax;
ỹn + nmax if ỹn < −nmax

(10)
and we use the Lyapunov function candidate

V = ỹ2
nε/2 +

N∑
i=1

pi(ω̃i), ω̃i = ω̂i − ω∗ (11)

where pi() are the same as in (3).

The following properties can be derived for the FDE:

Property 1

(i) ỹnε > 0 ⇒ ỹ > ỹnε

(ii) ỹnε < 0 ⇒ ỹ < ỹnε



Proof of Property 1: First, let us consider case (i) in Prop-
erty 1. ỹnε > 0 implies from (10) that

ỹn > nmax and ỹnε = ỹn − nmax. (12)

Because ỹn = ỹ + n and |n| ≤ nmax, it follows from (12)
that

ỹ > ỹnε

which proves Case (i). Case (ii) of Property 1 can be
proved in a similar manner. •

Property 2

ŷ(t) is independent of ṅ(t). (13)

Proof of Property 2: We note that n comes into the esti-
mator by affecting ω̂ first and ŷ later. Consider the effects
of n on ŷ(t1), it follows from Assumption 2 that y(t1) is
independent of n(t2), t2 < t − ∆. It follows from [8]
that φ∗

i is bounded by Bφ and thus the maximum effects of
n(t), t ∈ [t1 − ∆, t1] on ω̂i is bounded by

Bφnmax∆. (14)

φ∗
0(t) is related with ω̂i(t) through a non-singular matrix,

therefore, the maximum effects of n(t), t ∈ [t1 −∆, t1] on
ŷ(t1) is bounded by

Bnmax∆2 (15)

where B is some bounded constant which is independent
of noise. It follows from Assumption 3 that (15) can be
arbitrarily small which proves Property 2. •

Property 3 E[ṅ(t)] = 0.

Proof of Property 3: Since |n(t)| ≤ nmax, it follows that

lim
T→∞

1
T

∫ T

τ=0

ṅ(τ)dτ = lim
T→∞

n(T ) − n(0)
T

= 0. (16)

Now that n(t) is a stationary process, therefore

E[ṅ(t)] = 0.

•

Property 4 Prob[
∫∞
0 ỹnεṅ(t)dt < ∞] = 1.

Proof of Property 4 can be found is [9].

In the following Theorem, we will show that the output er-
ror ỹnε will converge to zero with propability 1.

Theorem 1 For problem formulation in (1) and FDE as in
(9), it follows that

Prob[ lim
t→∞ ỹnε = 0] = 1. (17)

Proof of Theorem 1: For the FDE algorithm as in (9), and
Lyapunov function candidate V as in (11), using the same
derivation as in [8] the derivative of V follows as

V̇ = −αỹnεỹ − ỹnεṅ. (18)

It follows from (18) that

V (0) − V (∞) =
∫ ∞

0

αỹnεỹdτ +
∫ ∞

0

ỹnεṅdτ. (19)

From Property 1, we have

αỹnεỹ ≥ αỹ2
nε ≥ 0. (20)

Property 4 implis that

Prob[
∫ ∞

0

ỹnεṅdτ < ∞] = 1. (21)

Now that V (0) is bounded and V (∞) > 0, it follows from
(19), (20), and (21) that∫ ∞

t0

αỹ2
nεdτ < ∞ (22)

with probability 1. Since derivative of ỹnε is bounded, it
follows from (22) and Barbalat’s lemma that

lim
t→∞ ỹnε = 0 (23)

Hence,
Prob[ lim

t→∞ ỹnε = 0] = 1,

which proves the Theorem. •

We note here that probability 1 implies that

lim
t→∞ ỹnε = 0.

3.1 Parameter Convergence of FDE
Theorem 1 established that output error ỹnε will converge
to zero and parameter estimate is steady. What remains is
whether ω̂ will converge asymptotically to ω∗. First, we
note that once Lyapunov function V , which is defined as in
(11), reaches zero, it will rest there and never left. This is
different from PAE where the noise will drive V away from
zero. In this section, we will discuss if (17) implies V = 0
and under what conditions.

In the system in (1), we have no assumption about the sta-
tistical properties of the output noise n(t). Now we assume
n(t) is of

n(t) = U [nL, nH ] ∀ t (24)



where U [nL, nH ] is the uniform distribution in region
[nL, nH ]. Of course it will satisfy

|nL| ≤ nmax |nH | ≤ nmax nH > nL. (25)

We define a signal x which is a function of ỹ = ŷ− y when

x =


ỹ − nmax + nH if ỹ > nmax − nH ;
0 if − nmax − nL ≤ ỹ ≤ nmax − nH ;
−ỹ − nmax − nL if ỹ < −nmax − nL.

(26)

About x, we have the following lemma.

Lemma 1 For problem formulation in (1), FDE in (9) and
output noise as in (24), it follows that

Prob[ lim
t→∞x = 0] = 1. (27)

Proof of Lemma 1: If (27) does not hold, it implis that

Prob[x(t) �= 0] > 0 (28)

as t → ∞. x(t) �= 0 implies that

ỹ > nmax − nH or ỹ < −nmax − nL. (29)

Combining (24), (28) and (29), it follows that

Prob[ỹnε �= 0] > 0 (30)

as t → ∞ which contradicts Theorem 1. Therefore, lemma
1 must hold. •

Lemma 1 implies that

−nmax − nL ≤ ỹ ≤ nmax − nH (31)

if (24) and (25) hold.

In what follows, we will discuss the convergence of esti-
mates for several cases.

Case 1: nL = −nmax, nH = nmax

It follows from (26) that x = |ỹ| and Lemma 1 states that

lim
t→∞ ỹ = 0.

Thus, just the input signals satisfy the Nonlinear Persis-
tent Condition established in [8], ω̂, which is derived from∑N

i=0 ciω̂
i = φ∗

0, will converge to ω∗ asymptotically. In
case 1 of the simulation results in section 5, the asymptotic
convergence is illustrated.

Case 2: nL > −nmax, nH = nmax

It follows from Theorem 1 that ỹnε will converge to zero
as t → ∞ and hence ω̂ come to some steady value ω̂ c. It

follows from Lemma 1 that when t → ∞, ỹ will always
be nonpositive. Instead of the NLPE condition, if for any t,
there exists time constant T , ε0 such that∫ t+T

τ=t

(
N∑

i=0

ci(ωi − (ω∗)i)

)
dτ ≥ ε0‖ω − ω∗‖, (32)

it will guarantee the asmptotic convergence of ω̂ to ω ∗. The
reason is that for any ω̂c �= ω∗, if the input satisfies (32), ỹ
will always become significantly positive. Hence, ω̂ must
convege to ω∗. In case 2 of the simulation results in section
5, the asymptotic convergence with biased output noise is
illustrated.

Case 3: White Noise

When n is white noise which is not bounded, for a given
nmax we can decompose n into 2 components

n = n1 + n2

where

n1 = n n2 = 0 |n| ≤ nmax

n1 = nmax n2 = n − n1 n > nmax

n1 = −nmax n2 = n − n1 n < −nmax.

For white noise, n can be very large however just at very
small measure in time. Choosing approprite threshold value
nmax to make

lim
T→∞

1
T

∫ T

t=0

|n2|dt

small, we can treat the effects of additional n2 as a distur-
bance which will perturb the convergence of ω̂. We note
that FDE does not depend on the initial value of ω̂ and will
correct the disturbance. Thus, ω̂ is not steady but perturbed
at some amplitude. Choosing nmax which makes ω̂ per-
turbed in the desired precision and we are done. The trade-
off here is just if we want higher precision of ω̂, we need to
set the value of nmax bigger and therefore the time needed
for convergence is longer.

3.2 Output Noise Filter
After ω̂ converges to ω∗, ỹ converges to zero as well and
the output noise can be evaluated exactly. We introduce the
concept of the Filterd Deadzone Estimator as what follows.

Definition 1 In dynamic system with unknown parameters,
the Filterd Deadzone Estimator (FDE) is the method which
applies the deadzone adaptive estimator to estimate the un-
known parameters and then filter out the output noise at the
same time when parameter estimation converges.

In FDE, the estimation of output noise n is simply

n̂ = yn − ŷ



and it follows that

n̂ − n = y − ŷ

which means that the errors of ŷ and n̂ to y and n are of
the same amplitude and different sign. The convergence of
them happens at the same time. Now that both y and n are
not accessible, the indication of the convergence of ŷ and n̂
is that ỹnε converges to 0 and ω̂ keeps steady.

Another information which can be derived from the FDE is
the derivative of y. Now that ω̂ → ω∗ and ŷ → y, it follows
naturally that the estimation of ẏ is of

ˆ̇y = −αŷ + φ∗
0.

It is noted that this estimation will converge to the true
derivative ẏ and it is stable and free of noise. If we want
to calculate the derivative directly from measured yn, the
uncertainty always exists and the derivative could be very
noisy.

4 Model Disturbance

In [1], same structure of FDE is used to deal with model
disturbance, which is

ẏ = −αy +
N∑

i=0

ci(ω∗)i + o (33)

where |o| ≤ O.

For systems where both output noise and model disturbance
exist, i.e.

ẏ = −αy +
N∑

i=0

ci(ω∗)i + o

yn = y + n

o ≤ O

n ≤ nmax, (34)

the modified FDE is of

˙̂y = −αŷ + φ∗
0 − a∗

maxsat

(
ỹn

nmax

)
˙̂ωi = −ỹnεφ

∗
i i = 1, .., N

ỹnε = ỹn − nmaxsat

(
ỹn

nmax

)
ỹn = ŷ − yn

φ∗ = A−1C

amax = O, (35)

where φ∗ = [φ∗
0, φ∗

1, ..., φ
∗
N ]T , A and C are defined as in

(7) and (8), and sat(.) denotes the saturation function and

is given by sat(x) = sign(x) if |x| ≥ 1 and sat(x) = x if
|x| < 1.

Choosing Lyapunov candidate V as

V = ỹ2
nε/2 +

N∑
i=1

pi(ω̃i) (36)

where pi() is defined as in (3), it follows that

V̇ = −αỹnεỹ − ỹnεṅ + ỹnε

(
−o − a∗

maxsat

(
ỹn

nmax

))
.

(37)
It can be checked easily that

ỹnε

(
−o − a∗

maxsat

(
ỹn

nmax

))
≤ 0 (38)

since |o| ≤ a∗
max. It follows from (37) and (38) that

V̇ ≤ −αỹnεỹ − ỹnεṅ. (39)

Substituting (18) with (39) and using the same derivation as
in Theorem 1, we have

Prob[ lim
t→∞ ỹnε = 0] = 1. (40)

Therefore,
lim

t→∞ ỹnε = 0

for problem formulation in (34) and modified FDE in (35).

We note that the difference of (35) from the FDE in (9)

is the additional item −a∗
maxsat

(
ỹn

nmax

)
which is used to

balance the model disturbance.

5 Simulation Results

We consider a simple example

ẏ = −4y + uω∗ + (u2 − u)(ω∗)2

where ω∗ = 1 and input u = sin(0.2 ∗ t). For the following
two cases

Case 1 n(t) = U [0.5, 0.5]
Case 2 n(t) = 0.1 + 0.01U [−1, 1]

where U [a, b] is uniformly distributed random variable in
[a, b], we run simulations for both PAE and FDE and com-
pare the results. We note here that in Case 1, the mean
value of noise is zero however in Case 2, it is a biased noise
with mean at 0.1. In the simulation, we choose initial val-
ues of [ω̂1, ω̂2] as [ω̂1, ω̂2] = [0.9, 0.9]. Figures 1 and
2 show simulation results for case 1 and 2 respectively. In
each figure, for both PAE in (6) and FDE in (9), it plots the
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Figure 1: Comparison of PAE and FDE in Case 1 - Unbi-
ased Noise. Figures (a)-(c) show the trajectories of es-
timates ω̂1 and ω̂2, Noise filter error as of n̂ − n, and
Lyapunov function V in PAE. Figures (d)-(f) show the
trajectories of estimates ω̂1 and ω̂2, Noise filter error
as of n̂ − n, and Lyapunov function V in FDE
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Figure 2: Comparison of PAE and FDE in Case 2 - Biased
Noise. Figures (a)-(c) show the trajectories of esti-
mates ω̂1 and ω̂2, Noise filter error as of n̂ − n, and
Lyapunov function V in PAE. Figures (d)-(f) show the
trajectories of estimates ω̂1 and ω̂2, Noise filter error
as of n̂ − n, and Lyapunov function V in FDE

trajectories of parameter estimates ω̂1 and ω̂2, noise error
which is defined as

−ỹ = y − ŷ = n̂ − n,

and Lyapunov function V which is defined as in (2) for PAE
and (11) for FDE. The simulation results show clearly that
for both cases, the FDE leads to asymptotic convergence

of ω̂, ỹ, V and ỹnε. For PAE, none of these variables con-
verges.

The ability that FDE can filter out biased measurement or
noise is extremely useful in practical applications. In the
on-line measurement of dynamic systems, unlike the unbi-
ased measurement uncertainty which is always unavoidable
and restricted by measurement precision, measurement off-
set often means a quality problem and it is important that it
can be detected on-line without perturbing the normal pro-
cess of the plant.
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