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Monotonic Regression Filters for Trending Deterioration Fauts

Dimitry Gorinevsky

Abstract— This paper describes optimal nonlinear filtering
algorithms for recovering trends of system performance vari-
ables (fault intensities) from noisy sensor data.

A key underlying assumption for the algorithms is that
the performance can only deteriorate with time, never im-
prove. This assumption describes accumulating damage to
the system components. Mathematically, the trend is obtained
as a maximum likelihood estimate of an orbit in a hidden
Markov model from the noisy output data. The empirical
signal model and the overall problem setup are very close
to optimal Kalman filtration. The main difference is that
instead of a gaussian noise driving the random model of the
fault a one sided exponentially distributed noise is assumed.
Such a statistical model leads to a nonlinear batch filter.
The trend is estimated by solving a quadratic programming
problem. Unlike Kalman filters that can be implemented
through recursive computations, the developed algorithms run
in a batch mode. Though being more complex computationally,
the developed trending algorithms demonstrate performance
superior to Kalman filters in the fault trending applications.

. INTRODUCTION

provides a tradeoff between noise rejection and a delay in
detecting a trend. Low-pass filtering is ao hocapproach
and it does not allow for incorporating a prior understagdin
of how the faults develop with time. When the filtering
is heavy enough to reject the noise, the trend estimation
would have a significant phase lag meaning a fault-caused
deterioration might not be detected early enough.

A more sophisticated approach to the trending is to use
a Kalman Filter approach. Kalman filtering formulation
defines easy-to-understand statistical model handleaiieov
ances of various gaussian noises) and provides an optimized
way for incorporating the prior information about the fault
evolution into the filtering framework. The Kalman Filter
approach was demonstrated to be sufficiently practical in
many industrial applications. For instance, most modern
navigation systems routinely use Kalman Filters with first
or second-order dynamical models for trending motion of
mobile platforms.

The prior information about fault variable being mono-

The focus of this work is on trending fault parametet,nic non.increasing can be utilized in the framework of

estimates for system health management applications,
particular for predictive maintenance. The specific proble

Mbnotonic regression. Monotonic regression is an advanced
statistical regression method that has been extensivadly st

statement considered herein follows from this applicatiof,q ang applied for some time, e.g., see [6], [7]. The existin
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but is quite fundamental. The health state estimates agg,nstonic regression methods, provide ad hoc solutions to
computed from the data collected in a serviced equipmef{e prohlem. These solutions are guaranteed to be mono-
unit. So far, the applications have been in the aerospags,ic phyt are not guaranteed to be optimal in some sense.
area but the methodology should be applicable to healifere js no regular way of incorporating additional infor-
management of ground vehlslgs, process plants, and otheLiion about the data model and fault evolution with these
complex and maintenance-critical systems. _ monotonic regression methods into the framework. For an
li is assumed that the collected data is stored in gyiima| solution developed herein, additional assumgtion
computer memory and processed by a trending COMpUtEL, pe aiways consistently incorporated by changing the
between the usage cycles. Since the processing is done Qffgels constraints. or optimality index.
!ine, comquatipnaI complexity of the processing algarith In this paper, the trend is determined as a maximum
IS no.t a major ISsue. ) L likelihood estimate of the orbit in a hidden Markov model
This paper describes algorithms for estimating the trenggs, .y, the noisy output data. The empirical signal model

of system performance variables (fault intensities) fromy¢ i\ trend and the overall problem setup are very close

noisy sensor data. A key assumption in the basis of thg onimal Kalman filtration. The main difference is that

algorithms is that the performance can only deterioratgieaq of 4 gaussian noise driving the random model of
with time, never improve. This assumption is reasonaplfhe fault (performance variable) a one-sided exponewtiall
for the performance losses associated with accumulatingsipted noise is assumed. Such a statistical modeslead
mechanical damage to the system components. The paper, nonjinear filter, different from the Kalman least square
shows that trending algorithms based on this monOton'C'%gression solution. The trend is estimated by the filter
assumptions allow reliable detection and estimation Oﬂ“"’eathrough a solution of a QP (quadratic programming) prob-
trends In very noisy data. L lem. Unlike the Kalman filter that can be implemented
The slmplest approach to trendlng is to perform th‘i’hrough recursive computations, the developed algorithm
estimation of the fault parameters independently at ea‘a?ocesses the data in a batch mode. The formulation of
cycle and then perform a low-pass filtering of the data, €.y maximum likelihood estimate in a hidden Markov model
see [2]. In this approach a single parameter (filter facmrﬁresented herein is a special case of one found in [1].

To the best of the author's knowledge and literature
search ability, the monotonic regression ideas - though
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simple - have not been considered in system health manages a baseline, next subsection considers a classical random
ment, diagnostics, prognostics, and performance trendingalk model. An optimal estimation of the trend in this
areas. The main contributions of this work are in (i)case is given by a Kalman Filter. The following subsection
formulating specific nonlinear monotonic regression filterconsiders a non-standard model of the random walk driven
ing problems that are simple and especially suitable fdry a random sequence with an exponential distribution for
performance (fault) trending applications, (ii) demoastrg each term. This second model leads to the nonlinear optimal
practically acceptable solutions of these problems thHmougestimator implementing the monotonic regression.

use of QP technology. The results of this work were
practically implemented and are used in aerospace syste@%s
health management applications. One of established approaches to probabilistic modeling
of an unknown data sequenadt) in (1) is given by a

Gaussian noise and Kalman Filter

II. DATA MODEL Random Walk model
Consider a univariate case of trending an estimate of a
single fault. The trending algorithms described belowvallo z(t+1) = z(t) + (1), (5)

a strmghtforward extension towards acase of mU|t'pla$aU|where§(t) in an uncorrelated gaussian noise sequence with
and multiple measurements. The single fault case here(':'&varianceE

affords for better clarity of presentation. Since the random variable§(t) are independent, the

_ Let 2(8) be a scalar performance ?Tfég'sora“on (gradualyopapiiisiic model (1), (5) describes a Markov chain. The
ault parameter at the usage cycle nu ONe exampi€ yistribution of the chain state(t) at timet¢ fully defines its

the performance paramete(t) can describe aerodynamic future statistics evolution. As usual, to complete the nhode

efficiency of a turbomachine stage. Lgitt) be an estimate yo e ig 4 need to describe the probabilistic propertiehef t
of the parameter:(¢) calculated from the data collected at.

) X initial conditions. The initial state is assumed to be ndiyna

this usage cyc_:lg. The estimate could be b_ased on data abaiéttributed with the meam, and covariance),

ambient conditions as well as data from internal sensors In

the equipment unit. z(t =1) ~ N(z0,Qo) (6)
Because of the modeling errors, sensor noise, and ambi-

ent condition variation, the estimatgt) contains an error

and differs fromz(t)

Given the model (1)—(6), the problem is to estimate
the underlying trend:(¢) from the noisy datay(t). This
problem is known as an estimation of thebit x(¢) of the
y(t) = x(t) + (1), (1) Markov chain. Since variables are gaussian, a Maximum A
osteriori Probability (MAP) estimate af(¢) can be found

where~(¢) is a scalar ‘noise’ variable. The data model (1 ) ]
gsolvmg the batch least square problemn, |y, — max.

is used as a basis for the estimation and trending algorith

in this paper. : er_10te_J = —logpx,|vy- Then the problem is (see [1] for
Consider the data sequence§), y(¢) in (1), on the erivation)
intervalt =1, ..., N and denote them as (1) — )2 i\’: (2(t) — (0]
J = +
Yv = {y), ..., y(n)} (2) 2Qo pur 2r
Xy = {z(1), ..., z(n)} (3) N (w(t) — 2(t — 1)]2 | ]
The fault trending problem is to build an estimate of the +§ 2= 7 min )

underlying fault parameter sequen&gy (3) based on the i .
observed data sequent@ (2). This is the main problem In trending, the decisions are usually made based on most
studied in the paper. recent estimate (V). Instead of solving the orbit estimation

In most practical applications of trending the contribatio ProPIem, the last estimate can be found as a solution of
of the noise~(¢) in the model residual (1) is significant a filtering problem. In this case a Kalman Filter provides
compared to the faults that need to be estimated. Th e recursion for the optimal estimate. A derivation of the

carefully designed statistical estimationzft) is required. aiman Filter is well-known and can be found in [4]. A
Riccati equation describing the filter gain evolution con-

[1l. FIRST-ORDER TRENDING FILTER verges to a steady state solution relatively quickly after a
In what follows, it is assumed thai(t) is an uncorrelated initial transient process and a stationary Kalman Filter ca
(white) noise sequence, where variabjeis zero mean be used with little loss of performance. For the system (1)

gaussian distributed with the covariance (6), the stationary Kalman Filter equation can be presented
in the form
7~ N(0,T) 4)
pt+1) = 20)+ K. [y(t) —2@)], ®)

To formulate a filtering problem, the statistical model
of the observation noise (4) should be complemented hwhere K., is the filter gain. Since the noises are scalars,
a statistical model of the underlying trend sequer¢8. the stationary Ricatti equation can be solved analytically
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yield the steady state gain Applying the Bayes’ rule for conditional probabilities
yields (see [1])
K.,=vVa?+2a—«a; a=E/2T), C)] N

wherea has the meaning of the signal to noise rafiois  Pxxvy = po(z(1)) - [[ P+ (w(t) — 2(®))d(x(t);2(t — 1)), (14)
the covariance of the noisgdriving the signak:(¢) andT =1
is the covariance of the measurement noejs&or smallc,
the filter gain K approaches zero. Fer — oo, the filter
gain K approaches unity.

The steady-state Kalman Filter (8) is a simple exponential
filter. An example of using such a filter for trending engine (1) <z(2) < ... <z(N) (15)
data can be found, for instance, in [2].

where po(z(1)) is the probability density function of the
initial condition andp, () is the gaussian probability density
of the noise (1).

The second inequality in (12) leads to the constraint

If the monotonicity condition (15) is violated, then at leas
B. Monotonic regression one of the multiplierss(x(¢); (¢ — 1)) (12) contributing to
Consider now the random walk model of the form (5)the expression fopy |y, in (14) is zero. By substituting
where £(t) in an uncorrelated noise sequence with eactf), (10), and (12) into (14) we get the problem of mini-
£(t) distributedexponentially. In statistics, the exponential mizing the loss index/ = —logpx, |y, that needs to be
distribution is used to model the behavior of units thagolved for finding the sequencet):
have a constant failure rate. This is the only memoryless 9 9
random distribution. In that regard, one can think about the J= M + Z M

performance fault evolution as a process of accumulating 2Qo =1 2r
independent microscopic failures. N
: z(t) —x(t —1) :
Note that accumulation of the fault related damage + Z 3 — min, (16)
described by (5) follows the spirit of Palmgren—Miner’s t=2

cumulative damage theory, which is well known in theyhere (15) should be taken into account as a hard constraint.
analysis of fatigue damage for mechanical elements [3], [SNote that all termsz(¢) in the last sum (16) cancel out,
The exponential distribution depends on single parametgkcept forz(1) andz(V).

that has meaning of the average failure rate. The problem (16) subject to (15) is a QP (Quadratic

L i Programming) problem and very efficient computational
E~EQ): pla) = ¢ (10) methods, such as interior point methods, are available for
The same probability distribution of the initial conditeon SUCh problems. A few QP-related codes are a part of Matlab
(6) as in the previous subsection is assumed. Optimization Toolbox. _ L
Consider now a problem of estimating the orbit) of In case when no apriori information abaty is available,
the Markov chain (1), (4), (5), (6), (10). The orbiy in one can assume the |n_|t|al condition covariarigg — oo
(3) should be estimated from the observed déta(2). and drop the first term in the r.h.s of (16). In that case, the

Let us find a Maximal Likelihood (ML) estimate of the MAP estimate of the orbit(t) becomes a ML estimate and
orbit (t). The Markov chain model is stationary — thed€Pends on the single tuning knob parametes; A/T').

update equations and the probability distributions do not '"€ main difficulty with the problem (15), (16) is in
depend ont. Hence, the Markov process in question idhe presence of the of the monotonicity constraints (15).

homogeneous and its statistical properties are completdNPte, that the third term in the performance index (16)

defined by theransition density function provides a penalty—![x(N)—x(1)] for the overall increase
of the fault estimater through the observation time. The
O(r35) = Pa(t)a(t—1) (75 5), (11)  weight at this penalty is essentially a ratio of the obséovat

noise covarianc& to the fault driving noise covariance

The parametes has the same essential meaning as the

¢ Parametera in the Kalman filter gain (9) and could be
ned empirically to achieve the desired performance of the

ilter, similar to how an exponential filter gain is tuned in

practice.

where p,4)z(t—1)(7, 5) is the conditional probability den-
sity and the functiorj(-, -) (11) is the same for ang From
(5), it follows that the conditional probability density i
defined by the probability density (10) of the update nois
and can be presented in the form
Le=(r=9)/A" >3
Pris)=q A e s (12)  c. Filter performance simulation and comparison
The developed monotonic regression trending algorithm

The conditional expectatiopx |y, can be calculated : . X : . .
through the conditional probability density for the sevas validated in extensive simulations. A random noise

quences (2), see [1] for more detail. The MAP estimat/as added to systematic trends and the algorithm attempted

N . . . recovering the underlying trend.
of the orbitz(¢) is obtained by solving the problem In addition to the source data, the trending results depend

—logpxylyy — min,  pxyjyy #0 (13) on the single tuning parameter of the algorithm. This
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parameter3 = X/T" depends (i) on the covariancE Figure 1 shows the raw data and the underlying trend.
of the gaussian observation noise and (ii) on the widtithe monotonic regression estimate is much closer to the
(covariance)\ of the exponentially distributed innovation underlying trend than the result of the exponential filtgrin
noise in the Markov chain model for the underlying trend.
In the simulations, the observation noise was uniformly . .
distributed, not gaussian; the underlying trend was a detef Second-order Kalman Filter, linear trend
ministic function, not a Markov chain realization. Thus, The Random Walk model (5) of the unknown signal se-
was considered just as a tuning parameter of the algorithguencez(t) in (1) does not adequately describe systematic
without assigning to it any other special meaning. trends in the data. In fault diagnostics and prognostiash su
An intuitive explanation of how3 influences the results trends can be an important indication of impending failure
can be obtained by considering a case where the last datad might be used for evaluating the need for preventive
value is much larger than the second last trend value. Foraintenance.
large 3, the algorithm will draw a monotonic regression A systematic way of modeling regular trends in the data
that jumps up in the end to accommodate this last dafar filtering, is through a second-order model
oint. For small3, the algorithm assumes that the observed
ﬁ]crease in the data isga random outlier and follows an nt+l) = =) +a), (17)
average monotonic regression trend observed through many za(t+1) = ami(t) + 22(t) + &2(1) (18)

previous data points. Thugj is essentially a smoothing  |n (18), « is scalar parameter. The model (17)—(18) is
parameter similar to the (inverse) time constant of ag generalization of (5). The first equation, (17) describes

IV. SECOND-ORDER FILTER PROGNOSTICS

exponential filter. the evolution of the fault growth rate. In the absense of the
MONOTONIC REGRESSION VS. KALMAN FILTER random EXCItatIOIfl (t) thls rate IS assumEd to be ConStant
W o — e SR The second equation, (18) describes the evolution of the
L5l | EWNAFLTER a0 e e | fault itself. o
~ HRREREYNE TRERD Jeoo M - In the absense of the random excitatigy(t) the fault

parameterrs(t) grows at the rate (t).

The uncorrelated gaussian white noise sequeg¢és
and&,(¢) in (17)—(18) are assumed to be independent and
have covarianceS; and =, respectively.

The signal model (17)—(18) should be complemented by a
: . measurement model explaining the observed data sequence
I I L ‘ . ‘ y(t). This model is similar to (1) and has the form

[ 20 40 60 80 100 120
SAMPLE NUMBER
y(t) = 22(t) + (1), (19)
Fig. 1.  Monotonic regression vs. exponential filtering. t@dt line - . . . . .
underlying trend. Solid line - monotonic regression with= 1/2. Dashed WhereV(t) is a Gaussian white noise described by (4)

line - exponential filtering with the filter factor 0.85. Dotsaw data. Update equations (17)—(18) and observation equation
(19) make a data model in the form suitable for Kalman

For 3 — oo, the regularization penalty given by the lastfiltering. A model of that form (constant velocity model)

term in (16) vanishes. In that case the trending becomes vagy commonly used in navigation, motion estimation, and

sensitive to outliers, especially those coming as a firsher t tracking applications.

last point in the data batch. Consider a data sequence wherén order to formulate Kalman Filter equations similar to

y(1) < y(t) or y(IN) > y(t). Then, forA — oo (which is  (8), consider the matrix form of (17)—(19). With an overload

the same ag — oo) the minimum in (16) is achieved at of notation, denote:(¢) = [z1(t) x2(¢)]?, then

z(1) = y(1) or z(N) = y(N) respectively. The filter does _ B

not have any smoothing action. v(t+1) = Ax{t) +£() (20)
For 5 — 0 we have\ — 0 and the regularization penalty y(t) = Cux(t) ++() (21)

given by the last term in (16) dominates the optimizatioqvheref(t) = [61(t) &(1)]T is a noise vector. With further

problem. In that case one can prove that an optimal €gyerioad of notation, the initial conditions and state Bois
timate of the trend is given by a constant valuef) = e distributed as

mear{Yy) = const. The value off = 1/2 was selected for .
the problem in hand. In Figure 1, this monotonic regression #(t =1) ~ N(z0,Qo) : Qo = diag{Qo1, Qo2},(22)
trend is compared against the exponential filtering results &~ N(0,2): = =diag{Z1,Z2} (23)

By trial and error, the exponential filter factor of 0.85 For the system (4), (20)~(23), the stationary Kalman

was sel_ected. This corrgsponds to thg OAin = 0.15 n Filter is a second-order filter that gives an estimate of the
the stationary Kalman filter (8). By using (9), the S'gnal'underl ing trendj(t) — C:i(¢) for the datay(#) as
to-noise ratio parameten = =/(2I') can be found as ying a d

a =9/68 ~ 0.132. In addition to the two estimated trends, §=C[lz—A—-K.0] 'K,y (24)
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The stationary Kalman filter gaii’, can be found from From (17)—(18), (25), it follows that the transition degsit
an algebraic Riccati equation. The filter gdif and, hence, can be presented in the form
the transfer function (24) depend on the following four 1 1

. . . — L o) — —(ri—s1)/M\1 —(r2—as1—s2)/A2

design parameters: noise covarians =», I' and the ¢r;s) = e e (26)
dynamic model parameter. Note that only three parame- ! _ 2 )
ters here are independent because of the possible variaffle 71 = s1, 72 = s2; and ¢(r;s) = 0 if v < s or
changer; — az1, & — a&,. This variable change leads to "2 < 52 . ) o )
the parameters scaled as— 1, =; — a2Z;. The second- The conditional expectation for MAP estimation yields

order linear filter (24) can be applied to fault data trending® 108s index/ = —logpx vy

in a straightforward way. N 9
1 _ t) —xzo(t
B. Second-order monotonic regression, secondary damage =1
The stochastic model (4), (20)—(23), allows modeling & z1(N) — z1(1) n zo(N) —a2(1) = az(b) 7
a regular trend in the data. This is expecially useful for A1 Ao A2

t=1

prognostics applications of predictive trending. Yet,sthi o
tyyhere it is assumed that for=1,..., N — 1

model does not take into account inherent monotonici
(irrev.ersibili.ty) of tht_a fault damage accumulatiqn. a1 —ai(t) 20, @a(t+ 1) — xo(t) — azi(t) > 0 (28)
This section considers the model (17)—(18) with the initial ) . ] .

conditions (22). The observation noisein (19) is again 1" MAP estimate of the orbit:(#) is obtained by
assumed to be gaussian distributed white noise (4). TI@!ving the optimization problend — min as defined by
state noises; (¢) and & (¢) are now assumed to have one(27) with 'Fhe constraints (28). This is a QP (Quadratlc
sided distributions. At each, the random variableg, (1) ~Programming) problem. Note that unlike the first-order
and &(t) are independent and exponentially distributed ifnenotonic regression problem (16), (28), the second-order

accordance with (10) as monotonic regression problem (27), (28), is ill-defined
(underspecified). That is, the Hessian of the quadratic form
&1(t) ~ E(N\), &(t) ~ E(X2) (25) (27) has onlyN nonzero singular values out @fV total.

Not every QP solver can deal with such problems.

The described model can be best explained as a primarysimilar to the first-order monotonic regression problem,
and secondary damage model. It is based on a practicalty most cases there is no information about the initial value
reasonable assumption that the system operates normajlyof the trend. Thus, the initial condition covariance can be
till an onset of fault condition. This condition shows upassumed infiniteQ), = oo, and the second term in the loss
as a systematic deterioration trend of the performanggdex (27) disappears. Consider now the variable change
variabley(t). The systematic deterioration ratezis(t) and 5, — gz, & — a&;. It leads to the parameter change-
it can only increase with time. The rate (t) must be 1 X\, — g);. With that in mind, the Maximum Likelihood
watched and defines prognostics of the trend. In addition &xtimate of orbit (assumin@gl = 0) can be multiplied
the systematic and accelerating trend, the random variallgough byT and shown to depend on two tuning knob
&2(t) describes monotonic accumulation of the damage thghrameters only:
follows the Palmgren—Miners rule.

The deterioration rate:; (t) could include a systematic Pio= a\/T, Ba=X/T (29)

average performance loss for the cycle. The model canThe parametef, provides a penalty of the fault estimate
be conveniently used for describing the accumulation of through the observation time and is essentially similar
secondary damage in the system caused by a primary fatihe parametes in the first-order monotonic regression
condition. In that caseg;(¢) corresponds to the intensity problem of previous section. The parametkrprovides a

of the primary fault condition andrs(¢) describes the penalty for the linear trend in the data and characterizes
secondary _damage accumulating because of this primagys amplitude of the driving noisg in (17). If 81 — 0,

fault condition. the second-order monotonic regression estimate coincides

Having described and explained the second order mongjith the first-order monotonic regression. 4 — oo, an
tonic regression model, let us consider the problem Qfyerage linear trend only is estimated.

estimating the orbit(¢) = [x1(¢) z2(¢)]T (3) of the Markov

chain (4), (17)—(18), (22), (25) from the observed dat&- Filter performance smulation

sequencey(t) (2). The derivation of the nonlinear filter The described second-order monotonic regression trend-

largely repeats (and extends) the derivation for the firsing algorithm was validated in simulation. The data set was

order monotonic regression filter in the previous section. similar to one used for testing the first-order monotonic
To find a MAP estimate of the orbit(¢), consider the regression trending and included 80 points. The underlying

transition density function (12p(7; s) = pas)=t—1)(r,5),  trend held a constant value for 15 samples, then stepped up

wherep, ) |z(:—1)(7, 5) is the conditional probablity density. by 0.4 then was constant for 35 more samples, then started
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MONOTONIC REGRESSION VS. KALMAN FILTER

ramping up with the slope of 0.04 per sample. In the data ,_ : ‘

. . . . . 8 « RAW DATA o* 7

set this underlying trend (the orbit) was distorted by addin - - MONOTONIC REGRESSION, B,~1, £,205 .
. . . . - - . |

an uncorrelated random noise uniformly distributed on the ?| - uwoeriyie Tren . .

[-1, 1] interval. The noise was produced by Matlab random 1s
number generator functionand. 1

The trending results depend on the tuning parameters |
of the algorithm: 8; and §,. These parameterg; = '

/T, 7 = 1,2 are defined by the covariandg of the 0

gaussian observation noise and the parametersf the -05

exponential distribution for innovation noises in the seto G e ‘ ‘ ‘ ‘ ‘

order Markov model of the trend. In the test data set, the ° Y oo TP

observation noise is uniformly distributed, not gaussian.

In reality a trend is a deterministic function. Thus, we9- 2. Comparison of second order Kalman Filter and the seocoter
! monotonic regression filter. Solid line - Kalman filtering rksuDashed

considered’; and 3, as tuning parameter of the algorithMiine - monotonic regression. Dash-dotted line - underlyirend.
without assigning to them any other meaning. As explained
above,3; and 3, are smoothing parameters similar to the
(inverse) time constant of the exponential filter. is used for the prognostics of the fault condition. The

For small 32, the solver fits a concave piece-wise lineaideveloped algorithms have similarity with basic Kalman
trend into the data. For largé,, the second-order mono- filtering methods. Unlike linear Kalman filters that are lihse
tonic regression yields a piece-wise constant trend, wisich on gaussian noise models, the developed filters are nonlinea
similar to a first-order monotonic regression solution & thand are based on exponential one-sided noise statistics.
previous section. This is because large corresponds to Comparison with Kalman filters shows superiority of the
large covariance\, in the state noise model (10), (25). Indeveloped trending approaches. They are suitable for a
turn, large state equation noise means slower filterings- thbroad use in the trend monitoring applications.
is well recognized in Kalman filtering. A slow filter for the
coordinater, means a piece-wise constant solution that is
not very responsive to Changes in the data. S|m||ar|y, smalill Brocke(, J., Parlitz, U., Ogorzalek, M. “Nonlinear neiseduction,”
(2 corresponds to smal, and this leads to the part of the 2] gﬁ?ﬁggj OEF?eAEtEnEA,YOk?O'M’\}l,?arg'svl\vﬂ:%fog% F:\lpv.v:oslyi?);z)lds
filter that follows the model for the coordinatg providing “Model-based diagnostics for an aircraft auxiliary poweitfi |EEE
the dominant (slow) dynamics yielding a piece-wise linear fgnzfgfegg% <23n Control Applications, Glasgow, Scotland, September
concave function. [3] Miner,v M. A. “Cumulative damage in fatigueJournal of Applied

Based on experimentation, the tuning knob values were = Mechanics, vol. 12, 1945, pp. 159-164
selected as3; = 1, B = 1/2_ Figure 2 compares the [4] Oppenheim, AV Sch_afer, R.W., and Buck, J.Riscrete-Time
designed second-order monotonic regression filter agaings Signal Processing, Prentice Hall, 1999 o

] Palmgren, A. “Die Lebensdauer von KugellagerZgitschrift des

the result for the stationary Kalman Filter described edrli Vereins Deutscher Ingenieure, Vol. 68, 1924, pp. 339-341.,

in this section. By trial and error, the noise covariances®l $95‘rep0'gA” aJB‘;,Vik’ A C'\;I]O zfnysmonf;%rgc reg;sgsgogg%

_oand = - _ : rans. on Sgnal Processing, Vol.41, Sept. , Pp. — ,
= 10% -1 = L, =2 = 50 were found_to provide the 7] Sidiropoulos, N.D., Bro, R. “Mathematical programming @iighms
best trending quality for the Kalman Filter. In addition for regression-based nonlinear filtering RYV,” IEEE Transactions

to the two estimated trends, Figure 2 shows the raw data ©on Signal Processing, Vol. 47, No. 3, March 1999, pp. 771-782
and the underlying trend. As one can see, the second-order

monotonic regression estimate recovers the underlyimgltre

with by far superior quality of estimation compared to the

second-order Kalman Filter.
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Nonlinear filtering algorithms have been developed for
trending fault estimate sequence. The fundamental statist
model used for the nonlinear filtering in obtaining trends is
based on the assumption of monotonic increase of the fault
parameters. The faults can only accumulate, and the fault
condition would never improve unless a maintenance action
is taken. The two fault models were discussed including
a first-order model describing fault accumulation and a
second order-model describing secondary damage caused by
accumulating primary fault. The deterioration rate caused
by the secondary damage can be assumed sustained and
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