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Abstract— We study the change detection problem in partially
observed nonlinear dynamic systems. We assume that the change
parameters are unknown and the change could be gradual (slow) or
sudden (drastic). For most nonlinear systems, no finite dimensional
filters exist and approximation filtering methods like the Particle
Filter are used. Even when change parameters are unknown, drastic
changes can be detected easily using the increase in tracking (output)
error or the negative log of observation likelihood (OL). But slow
changes usually get missed. We propose in this paper, a statistic
for slow change detection which turns out to be the same as the
Kerridge Inaccuracy between the posterior state distribution and the
normal system prior. We show asymptotic convergence (under certain
assumptions) of the bounding, modeling and particle filtering errors
in its approximation using a particle filter optimal for the normal
system. We also demonstrate using the bounds on the errors that our
statistic works in situations where observation likelihood (OL) fails
and vice versa.

I. INTRODUCTION

Change or abnormality detection is required in many practical
problems arising in quality control, flight control, fault detection
and in surveillance problems like abnormal activity detection [1].
In most cases, the underlying system in its normal state can be
modeled as a parametric stochastic model (which may be linear or
nonlinear). The observations are usually noisy (making the system
partially observed) and the transformation between the observation
and the state may also be linear or nonlinear. Such a system,
in the most general case, forms a Partially Observed Non-Linear
Dynamical (PONLD) system and in general can be tracked/filtered
(approximately) using a finite dimensional Particle Filter (PF) [2].
We study here the change detection problem in PONLD systems
when change parameters are unknown and the change could be
slow or drastic.

If the change is drastic, the likelihood of observations under the
normal (unchanged) model will reduce (OL which is its negative
log will increase) or equivalently the particle filter, which is
optimal for the normal system, will lose track. Thus OL can be
used to detect this change. But due to asymptotic stability [3], the
particle filter is able to track slow changes and hence these get
missed by OL. We propose, in this work, a statistic for slow change
detection, called ELL, which in fact can be estimated correctly for
the changed system (using a particle filter optimal for the normal
system) only because of asymptotic stability.

ELL or Expected (negative) Log Likelihood at time t, is the
expectation w.r.t. the posterior distribution, of the negative log of
the prior likelihood of the state, under the no change hypothesis
(H0). In [4], the Kerridge Inaccuracy [5] between the empirical
distribution of a set of N i.i.d. observations and their actual pdf is
shown to be the same as the average negative log-likelihood. We
show here the equivalence between ELL and Kerridge Inaccuracy
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between the posterior and prior state distributions. We study the
errors in ELL approximation (bounding error, model error and
PF error) and show their asymptotic convergence to zero (as the
bound, time and number of particles go to infinity). The error upper
bounds are then used to show complementary behavior of ELL and
OL for slow and drastic changes. Thus for changes where the rate
of change could be anywhere from slow to drastic, we propose to
use a combination of ELL and OL.

A. Related Work

Online detection of changes for partially observed linear dy-
namical systems has been studied extensively. For known changed
system parameters, the CUSUM [6] algorithm can be used di-
rectly. For unknown changed system parameters, the Generalized
Likelihood Ratio Test can be used whose solution for linear
systems in well known [6]. When a nonlinear system experiences
a change, linearization techniques like Extended Kalman Filtering
and change detection methods for linear systems are the main tools
[6]. Linearization techniques are computationally efficient but are
not always applicable (require a good initial guess at each time
step and hence are not robust to noise spikes).

[7] is an attempt to use a Particle Filtering (PF) approach
for sudden change detection in Partially Observed Non-Linear
Dynamical (PONLD) systems without linearization. It assumes
that the parameters of the changed system are known and defines
a modification of the CUSUM change detection statistic that
can be efficiently evaluated using particle filters. Both CUSUM
and [7] are based on the current observation’s likelihood ratio,
given past observations. Tracking error (or output error) [8] which
is the distance (usually Euclidean distance) between the current
observation and its prediction based on past observations can
also be used for sudden change detection and it does not require
knowledge of the changed system parameters. An entirely different
class of approaches (e.g. see [9]) used extensively with particle
filters uses a discrete state variable to denote the mode that the
system is operating in. But this approach also assumes known
change parameters. In this case a change is detected by looking
the expected or most probable value of the state variable.

There has been a lot of recent research on stability of the
optimal nonlinear filter. Asymptotic stability results w.r.t. initial
condition were first proved in [10]. The Hilbert projective metric
has been used to prove stability w.r.t. the initial condition and also
w.r.t. the model [11], [12]. New approaches have been proposed
recently for noncompact state spaces [13], [14]. The results for
stability w.r.t. the model have been used to prove convergence
of the particle filtering estimate of the posterior with number of
particles, N → ∞ [3], [15]. We use in this paper results from [3]
in which the authors have replaced the mixing transition kernel
assumption required for proving stability with a much weaker
mixing unnormalized filter kernel assumption.



B. The PONLD Model

We assume that we have a <nx valued state process X = {Xt}
and an <ny valued observation process Y = {Yt}1. The system
(or state) process {Xt} for the original system is assumed to
be a Markov process with state transition kernel Qt(xt, dxt+1)
and the observation process is defined by Yt = ht(Xt) + wt

where wt is an i.i.d. noise process and ht is, in general, a
nonlinear function. The prior initial state distribution, denoted
by π0(dx), the conditional distribution of observation given

state, Gt(xt, dyt), with pdf given by gt(x, Yt)
4
= ψt(x), and the

state transition kernel, Qt(xt, dxt+1), are known and assumed
absolutely continuous2. A non-linear filter estimates the posterior
probability distribution of the state at time t given the observations

up to time t, Pr(Xt ∈ dxt|Y1:t)
4
= πt(dxt). We assume that the

normal (original/unchanged) system has state transition kernel
Q0

t . A change in the system model begins to occur at some time
tc and lasts till a final time tf . In the time interval, [tc, tf ], the
state transition kernel is Qc

t and after tf it again becomes Q0
t .

Both Qc
t and the change start and end times tc, tf are assumed

unknown. The aim is to detect the change, with minimum delay.

The paper is organized as follows: ELL, its relation with
Kerridge Inaccuracy and the motivation for using it for gradual
change detection is discussed in Section III. In Section IV,
we study the errors in approximating the ELL and state our
asymptotic convergence theorems. In Section V, we analyze
the implications of our results from Section IV for finite time
and finite number of particles and discuss situations where ELL
would detect changes better than OL and vice versa. We present
simulation results and results on a real abnormal activity detection
problem in Section VI and give conclusions and future work in
Section VII.

II. PRELIMINARIES

We briefly discuss below some notation and definitions of terms
used in the rest of the paper. We then explain in Section II-B, the
optimal nonlinear filter and its approximation using a particle filter.

A. Notation and Definitions

We use H0 to denote the original or unchanged system hy-
pothesis and Hc to denote the changed system hypothesis. Also,
the superscript c is used to denote any parameter related to the
changed system, 0 for the original system and c,0 for the case
when the observations of the changed system are filtered using
a filter designed for the original system3. Thus the posteriors,
π0,0

t (dx) = Pr(Xt ∈ dx|Y 0
1:t, H0) (also denoted by π0

t ),
πc,c

t (dx) = Pr(Xt ∈ dx|Y c
1:t, Hc) (also denoted by πc

t ) and
πc,0

t (dx) = Pr(Xt ∈ dx|Y c
1:t, H0) where

Y c
1:t = (Y 0

1:tc−1, Y
c

tc:t), ∀t ≤ tf

= (Y 0
1:tc−1, Y

c
tc:tf

, Y 0
tf +1:t), ∀t > tf . (1)

The prior state distribution at time t, (Q0
t , ...Q

0
1π0)(dx) has

pdf pt(x) while the changed system’s prior state distribution,
(Q0

t , ...Q
c
tf
, ..Qc

tc
...Q0

1π0)(dx) has pdf pc
t(x). In a lot of cases

1We use the subscript ‘t’ (e.g. Xt, Yt) instead of ‘n’ for (discrete) time
instants, to avoid confusion with N used for number of particles in Particle
Filtering

2Note that for ease of notation, we denote the pdf either by the same
symbol or by the lowercase of the probability distribution symbol

3Even if 0 is omitted, but there is no c, it denotes the original system.

(for example if the system model is linear Gaussian with Gaussian
initial state pdf) it is possible to define the pdfs pt(x) and pc

t(x)
in closed form. In cases where it cannot be defined closed form,
it can be approximated by a single or a mixture of Gaussians
(depending on whether it is unimodal or multimodal).

Note that throughout the paper, “event occurs a.s.” refers to the
event occurring almost surely w.r.t. the measure corresponding to
the probability distribution of Y1:t. Also, Eµ denotes expectation
under the measure µ, for example Eπt is expectation under the
posterior state distribution. EY denotes expectation under the
distribution of the random variable Y , for example EY1:t denotes
expectation under the distribution of the observation sequences.
Finally, Ξpf denotes averaging over different realizations of the
particle filter each of which produces a different random measure
πN

t
4.

With any nonnegative kernel, J , defined on the state space, E, is
associated a nonnegative linear operator denoted by J and defined

by Jµ(dx′)
4
=

∫

E
µ(dx)J(x, dx′) for any nonnegative measure

µ. Also, (., .) is the inner product notation.
Definition 1: The unnormalized kernel describing the op-

timal filter for a system with state transition kernel Qt and
probability of observation given state ψt, is given by Rt(x, dx

′) =
Qt(x, dx

′)ψt(x
′). So R0

t = Q0
tψ

0
t is the unnormalized opti-

mal filter for original system observations, Rc
t = Qc

tψ
c
t is the

unnormalized optimal filter for the changed system observations
while Rc,0

t = Q0
tψ

c
t is the unnormalized filter (not optimal) for

the changed system observations using original system transition
kernel (this is what is done in practice since Qc

t is assumed
unknown).

Definition 2: A nonnegative kernel J defined on E is mixing
if there exists a constant, 0 < ε ≤ 1 and a nonnegative measure λ
s.t. ελ(A) ≤ J(x,A) ≤ 1

ε
λ(A) ∀x ∈ E and for any Borel subset

A ⊂ E. A (time) sequence of mixing kernels {Jt} is said to be
uniformly mixing if ε = supt εt > 0.

Definition 3: The Birkhoff’s contraction coefficient of
any kernel J is, τ(J) = sup0≤h(µ,µ′)<∞

h(Jµ,Jµ′)
h(µ,µ′)

=

tanh[ 1
4

supµ,µ′ h(Jµ, Jµ′)]. h here denotes the Hilbert metric
which is defined and explained in [3]. τ(J) ≤ 1 always and if

J is mixing, τ(J) ≤ τ̃(J) < 1 where τ̃(J)
4
= 1−ε2

1+ε2
< 1. We

denote τ(Rt) by τt and ε(Rt) by εt. Note that Rt depends on
Yt and hence τt and εt are, in general, random variables. So a
correct statement would be that Rt is a.s. mixing (εt > 0, a.s.
and τt < 1, a.s.).

B. Non-linear Filtering

The problem of nonlinear filtering is to compute at each time t,
the conditional probability distribution, of the state Xt given the
observation sequence Y1:t = (Y1, Y2, ...Yt), πt(dx) = Pr(Xt ∈
dx|Y1:t). The transition from πt−1 to πt is defined using the Bayes
recursion as follows:

πt−1 —-> πt|t−1 = Qtπt−1 —-> πt =
ψtπt|t−1

(πt|t−1, ψt)

Now if the system and observation models are linear Gaussian,
the posteriors would also be Gaussian and can be evaluated in
closed form (Kalman filter). For nonlinear or nonGaussian system
or observation model, except in very special cases, the filter is
infinite dimensional. The Particle Filter [15] is a sequential monte

4expectation under the probability distribution of the random measure
πN

t or equivalently of the random particles, {x(i)
t }N

i=1.



carlo method for nonlinear filtering which was first introduced in
[2] as Bayesian Bootstrap Filtering.
Particle Filtering: A particle filter (PF) [15] is a recursive algo-
rithm which produces at each time t, a cloud of N particles {x(i)

t }
whose empirical measure, πN

t (which is a random measure),
closely “follows” πt. It starts with sampling N times from π0

to approximate it by πN
0 (dx)

4
= 1

N

∑N

i=1 δx
(i)
0

(dx). The Bayes
recursion then runs as follows:

πN
t−1

4
=

1

N

N
∑

i=1

δ
x
(i)
t−1

(dx) —–> πN
t|t−1

4
=

1

N

N
∑

i=1

δ
x̄
(i)
t

(dx)

—–> π̄N
t

4
=

1

N

N
∑

i=1

w
(i)
t δ

x̄
(i)
t

(dx) —–> πN
t

4
=

N
∑

i=1

δ
x
(i)
t

(dx)

where x̄
(i)
t ∼Qt(x

(i)
t−1, dx),

x
(i)
t ∼Multinomial({x̄(i)

t , w
(i)
t }N

i=1)

w
(i)
t

4
=

ψt(x̄
(i)
t )

(πN
t|t−1, ψt(x̄

(i)
t ))

(2)

Note that the last step is aimed at reducing degeneracy of the
particles. The samples x̄(i)

t are resampled assuming a multinomial
distribution proportional to their weights, w(i)

t , so that particles
with very low weights get eliminated while those with higher
weights get repeated in proportion to their weights.

III. THE ELL STATISTIC

“Expected (negative) Log Likelihood” or ELL at time t, is the
expectation w.r.t. the posterior distribution (πt), of the negative log
of the prior likelihood of the state, under the no change hypothesis
(H0), i.e.

ELL(Y1:t)
4
= Eπt [− log p0

t (x)]. (3)

For systems where exact filters do not exist and a PF is used to
estimate πt, the estimate of ELL using the empirical distribution
πN

t becomes ELLN = 1
N

∑N

i=1[− log p0
t (x

(i))].
It is interesting to note that ELL as defined above is also the

Kerridge Inaccuracy [5] between the posterior and prior state
pdf. The Kerridge inaccuracy (KI) between two pdfs p, q, i.e.
K(p, q) =

∫

p(x)[− log q(x)]dx is a measure of inaccuracy
between distributions (used in statistics) and was first defined
by Kerridge in [5]. We have ELL(Y1:t)

4
= Eπt [− log p0

t (x)] =

K(πt : p0
t )

5. Henceforth, we denote ELL(Y 0
1:t) = K(π0

t : pt)
4
=

K0
t and ELL(Y c

1:t) = K(πc
t : pt)

4
= Kc

t .

A. Motivation for ELL

The use of ELL (or equivalently KI) for partially observed
systems is motivated by the use of log likelihood for hypothesis
testing in the fully observed case. For a fully observed system
(assuming ht invertible), one could evaluate Xt = h−1

t (Yt) from
the observation Yt and then log pt(Xt) would be the log likelihood
of state taking value Xt under H0 (proportional to likelihood
of Yt under H0). Thus if Yt = Y 0

t , then its likelihood, and
so also the likelihood of the state Xt, under H0 will be larger
than if Yt = Y c

t
6. But for partially observed systems, Xt is not

deterministic given Y1:t. It is a random variable with distribution

5it is actually K( dπt
dx

: p0
t ) but as mentioned earlier, we denote the

density dπt
dx

by the same symbol as the distribution
6In this case observation likelihood and state likelihood (ELL) are

proportional.

πt. Hence we propose to replace log likelihood of the state by its
expectation under πt which is the ELL.

B. Why ELL (KI) works?

Taking expectation of ELL(Y 0
1:t) = K(π0,0

t : p0
t ) over normal

observation sequences, we get

EY 0
1:t

[ELL(Y 0
1:t)]=EY 0

1:t
Eπ0

t
[− log p0

t (x)]

=Ep0
t
[− log p0

t (x)] = K(p0
t : p0

t )
4
= EK0

t

Similarly, for changed system observations, EY c
1:t

[ELL(Y c
1:t)] =

K(pc
t : p0

t )
4
= EKc

t , i.e. the expectation of ELL of changed system
observations is actually the KI between the changed system prior,
pc

t , and original system prior, p0
t , which will be larger than KI

between p0
t and p0

t [4]. EKc
t can be used as a measure of the

change magnitude at time t (and dividing by the change duration
until t gives a measure for the rate of change).

Now, ELL (KI) will detect the change when EKc
t is “sig-

nificantly” larger than EK0
t . Setting the change threshold to

κt
4
= EK0

t +3
√

V K0
t , where V K0

t = V arY1:t(K
0
t ), will ensure

a false alarm probability less than 0.11 (0.05 if unimodal)7. By
the same logic, if Kc

t is such that EKc
t − 3

√

V Kc
t > κt then

the miss probability will also be less than 0.11 (0.05 if unimodal).
Now evaluating V K0

t or V Kc
t analytically is not possible without

having an analytical expression for π0
t or πc

t . But we can bound
V K0

t (and similarly V Kc
t ) as follows (apply Jensen’s inequality

on z2, which is a convex function, with z = [− log pt(x)]):

K0
t

2
=(Eπt [− log pt(x)])

2 ≤ Eπt [[− log pt(x)]
2]

So, V K0
t =V arY 0

1:t
(K0

t ) = EY1:t [K
0
t

2
] − (EK0

t )2

≤EY1:t [Eπt [[− log pt(x)]
2]] − (EK0

t )2

=Ep0
t
[[− log p0

t (x)]
2] − (EK0

t )2 (4)

Example 1: Consider as an example the case where Q0
t , Q

c
t

and π0 are linear Gaussian, so that p0
t and pc

t are also Gaussian.
Assume scalar state and observation and let the pdf of Qt(x, dx

′)
is N (x, σ2

noise) and pdf of Qc
t(x, x

′) is N (x+∆a, σ2
noise). Thus

p0
t is N (0, σ2

t ) and pc
t is N (at, σ

2
t ) where at = t∆a, σ2

t =
tσ2

noise. The non-linearity (if any) is in the mapping from state to
observation space. Then, it is easy to see that

EK0
t =K(p0

t : p0
t ) = 0.5 log 2πσ2

t + 0.5

EKc
t =K(pc

t : p0
t ) = 0.5 log 2πσ2

t + 0.5
σc

t
2 + a2

t

σ2
t

=0.5 log 2πσ2
t + 0.5 + 0.5

a2
t

σ2
t

, since σc
t
2 = σ2

t (5)

V K0
t ≤Ep0

t
[[− log p0

t (x)]
2] − (EK0

t )2 = 0.5

V Kc
t ≤Epc

t
[[− log p0

t (x)]
2] − (EKc

t )2 = 0.5 +
a2

t

σ2
t

(6)

Thus the above analysis shows that the mean distance of Kc
t from

threshold is

γt
4
= EKc

t − κt ≥ 0.5
a2

t

σ2
t

− 3
√

0.5 (7)

Now the miss probability at time t will be less than 0.11 (0.05
if unimodal) if γt > 3

√

V Kc
t which in this case simplifies to

70.11 follows by Chebyshev inequality [16]. But if the pdf of K0
t (Y1:t)

is unimodal, Gauss’s inequality [16] can be applied to show that the
probability is less than 0.05



0.5r2 − 3
√

0.5 > 3r with r = at/σt. This of course is obtained
using very loose bounds (loose variance bound and the loose
Chebyshev or Gauss’s inequality bound) and in practice changes
get detected much faster.

IV. ERRORS IN ELL APPROXIMATION

Now the above analysis assumes there are no errors in esti-
mating K0

t and Kc
t which is true only if exact finite dimensional

filters exist for a problem and correct models for the transition
kernel and conditional probability of observation given state are
used. For example the estimation of K0

t in the linear Gaussian
case (Kalman filter). But in all other cases there are three kinds
of errors: When we are trying to estimate Kc

t using the tran-
sition kernel for the original system, what we really evaluate

is Kc,0
t

4
= E

π
c,0
t

[− log p0
t (x)] instead of Kc

t (model error).
We can use the asymptotic stability result from [3] to show
(under certain assumptions) that this error goes to zero for large
time instants, for posterior expectations of bounded functions of
the state. But Kc,0

t = E
π

c,0
t

[− log p0
t (x)] and [− log p0

t (x)] is
an unbounded function. Considering its bounded approximation
introduces bounding errors which go to zero as the bound goes
to infinity. Also, when we use a particle filter with finite number
of particles to approximate the optimal filter, PF approximation
error is introduced. This error goes to zero as the number of
particles goes to infinity.

Now, we quantify our claims. Our aim is to either show a result
of the type
limM→∞(limN→∞ Ξpf [|K(π0

t : pt)−K(π0,N
t : pM

t )|]) = 0 and
limM→∞(limt→∞(limN→∞ Ξpf [|K(πc

t : pt) − K(πc,0,N
t :

pM
t )|])) = 0, a.s., where pM

t (x)
4
= max {pt(x), e

−M}8. Or
show that under certain assumptions, [− log pt(x)] is uniformly
bounded for all t so that the outermost convergence with M
follows trivially. We use the following two theorems from [3]:

Theorem 1: (Model error bound, Theorem 4.6 of [3])- If for all
k, the kernel Rk is a.s. mixing ( =⇒ εk > 0, a.s. & Birkhoff’s
contraction coefficient τk ≤ τ̃k(εk) < 1, a.s.), then the weak norm
between the correct optimal filter density µt and the incorrect one
µ′

t is upper bounded as follows:

sup
φ:||φ||∞≤1

|(µt − µ′
t, φ)| ≤ δt +

δt−1

ε2t
+

t−2
∑

k=1

τ̃t:k+3
δk

ε2k+1ε
2
k+2

4
= θt(δk, εk, 0 ≤ k ≤ n), a.s. (8)

where δk
4
= sup

φ:||φ||∞≤1

|(µ′
k − R̄kµ

′
k−1, φ)| ≤ 2 (9)

Theorem 2: (PF error bound, Theorem 5.7 of [3])- If for all
k, the kernel Rk is a.s. mixing (εk > 0, a.s. & τk ≤ τ̃k(εk) <
1, a.s.), and supx∈Ex,y

ψk(x) < ∞, a.s., then the weak norm
between the correct optimal filter density µt and the approximation
µN

t (evaluated using the PF) is upper bounded as follows:

sup
φ:||φ||∞≤1

Ξpf [|(µt − µN
t , φ)|]

≤
2(ρt +

ρt−1

ε2t
+

∑t−2
k=1 τ̃t:k+3

ρk

ε2
k+1

ε2
k+2

)
√
N

4
=
βt(ρk, εk, 0 ≤ k ≤ n)√

N
, a.s. (10)

8Note pM
t is not a pdf.

where ρk
4
=

supx∈E ψk(x)

infµ∈P(E)(Qkµ, ψk)
<∞, a.s. (11)

Now we can claim the following three results under
progressively weaker assumptions (see author’s website for
proofs, http://www.cfar.umd.edu/∼namrata/accproof.pdf, which
have been omitted here due to lack of space)

Theorem 3: Assuming (i) Change occurs for only a finite time
period [tc : tf ] and starting time tc ≤ T ∗ < ∞; (ii) Rc

k is
mixing (with parameter εck), for all k 9, R0

k is mixing (with

ε0k) for all k, and Rc,0
k

4
= Q0

k(x, dx′)ψc
k(x′) is mixing (with

εc,0
k ), for all k; (iii) supx∈Ex,y

ψk(x) < ∞, a.s., ∀k 10 and
(iv)(a) The posterior state space is uniformly compact for all

t, i.e. Ex,y
4
= {x ∈ E : {ψ(y0

t |x) > 0} or{ψ(yc
t |x) >

0} for some t} is a compact set, and (b) there exists α > 0,
s.t. pt(x) > α, ∀x ∈ Ex,y, ∀t; then the following result holds:

lim
N→∞

Ξpf [|K(π0
t : pt) −K(π0,N

t : pt)|]=0, a.s.

lim
t→∞

( lim
N→∞

Ξpf [|K(πc
t : pt) −K(πc,0,N

t : pt)|])=0, a.s.

Now assumption (iv) in the theorem above ensures that
[− log pt(x)] is uniformly bounded ∀t, so that theorems
1 and 2 can be applied to prove the result. But one can
relax this assumption by defining a sequence of functions
{[− log pM

t (x)]} with pM
t (x) = max {pt(x), e

−M}, s.t.
limM→∞[− log pM

t (x)] = [− log pt(x)]. Then by a simple
extension of Monotone Convergence Theorem ([17], page 87) to
functions which could be negative but are bounded from below,
we have limM→∞K(πc

t : pM
t ) = K(πc

t : pt). We then have the
following result.

Theorem 4: Assuming (i), (ii), (iii) as in Theorem 3, and (iv)
being replaced by the weaker assumption (iv)′: Convergence of
K(πc

t : pM
t ) to K(πc

t : pt) is uniform in t, we have

lim
M→∞

( lim
N→∞

Ξpf [|K(π0
t : pt) −K(π0,N

t : pM
t )|])=0, a.s.

lim
M→∞

( lim
t→∞

Ξpf [( lim
N→∞

|K(πc
t : pt) −K(πc,0,N

t : pM
t )|]))=0, a.s.

Theorem 5: If neither of (iv) or (iv)′ is assumed, then for normal
observations, Theorem 4 still holds but for changed observations
we are currently able to claim only the following finite time result:
Given any ∆ > 0, there exists an Mt,∆ s.t.

lim
N→∞

Ξpf [|K(πc,0,N
t : p

Mt,∆
t ) −K(πc

t : pt)|]

< ∆/2 +Mt,∆θ
c,0
t , a.s.

Remark 1: But in practice, the decrease in θt with t is much
faster than the increase in Mt,∆ (if at all there is an increase) with
t. Hence it seems that it is possible to prove that Mt,∆θt decreases
with t (converges to zero as t → ∞) even without assuming (iv)
or (iv)′

9Since the change duration is finite, Rc
t can also be said to be uniformly

mixing with εc = mintc≤k≤tf
εk . Consequently the Birkhoff coefficient

τc
k
≤ τc 4

= 1−εc2

1+εc2 .
10Assumptions (ii) & (iii) imply that ρ0

k
< ∞, a.s. (Remark 5.6 of [3]).



V. SLOW AND DRASTIC CHANGES: ELL AND OL

A. The OL Statistic

As discussed earlier, the drastic change detection problem is
well studied in literature and algorithms like CUSUM [6] which
are based on the likelihood ratio of observations can be used wher-
ever it can be evaluated. When change parameters are unknown,
the likelihood ratio can be replaced by negative log likelihood
of current observation given past observations, which we call
observation likelihood (OL), OL = − logP (Yk|Y1:k−1, H0).
A change is declared if OL exceeds a threshold. OL is evaluated
using a PF for the given PONLD model (Section I-B) as OLN

k =
− log(Q0

kπ
N
k−1, ψk).

Now, if the change is drastic, the likelihood of observations
under the normal (unchanged) model will reduce (OL which is
its negative log will increase) or equivalently the particle filter,
which is optimal for the normal system, will lose track. Thus OL
can be used to detect this change. But due to asymptotic stability
[3], the particle filter is able to track slow changes and hence
these are missed by OL. We show below using the theorems from
the previous section, that such slow changes are picked up by
ELL, which in fact can be estimated correctly for the changed
system (using a PF optimal for the normal system) only because
of asymptotic stability.

B. Comparing ELL and OL Performance

Consider the finite time situation (fix t ≤ T for some large
T ) and apply theorem 5. Set M = max1≤t≤T Mt,∆, N =
max1≤t≤T Nt,Mt,∆,∆. Then we have

Ξpf [|K0
t −K0,M,N

t |]<∆/2 +
Mβ0

t√
N

Ξpf [|Kc
t −Kc,0,M,N

t |]<∆/2 +
Mβc,0

t√
N

+Mθc,0
t (12)

where β0
t = βt(ρ

0
k, ε

0
k, 0 ≤ k ≤ t), θc,0

t = θt(δ
c,0
k , εck, tc ≤

k ≤ t), and βc,0
t = βt(ρ

0
k, ε

0
k, 0 ≤ k ≤ tc, ρ

c,0
k , εc,0

k , tc ≤ k ≤
t) and θt, βt defined in (8), (10) respectively. First consider the
PF error. Although theoretically, it can be made to decrease to
zero, with N → ∞, in practice it is the most dominant source
of error. For normal system observations, it is the only source of
error and for changed system observations, this is because it is not
possible to fix a value of N to ensure a certain maximum error
(βc,0

t is not known). We can only choose N large enough to have
the error small for normal observations (H0). But when tracking
observations coming from Hc using model H0, a much larger N
is required. Now the PF error coefficient βc,0

t depends on past
values of εc,0

k and ρc,0
k . Using Remark 5.10 of [3], we have the

following upper and lower bounds on ρk which can be expressed
in terms of OLc,0

k :

supx∈Ex,y
ψc

k(x)

(Q0
kπ

c,0
k−1, ψ

c
k)

≤ρc,0
k ≤

supx∈Ex,y
ψc

k(x)

(εc,0
k )2(Q0

kπ
c,0
k−1, ψ

c
k)

=⇒
supx∈Ex,y

ψc
k(x)

e−OL
c,0
k

≤ρc,0
k ≤

supx∈Ex,y
ψc

k(x)

(εc,0
k )2e−OL

c,0
k

(13)

Now consider the model error, θc,0
t . It depends on past values of

δc,0
k and εck. εck is a constant which depends only on the mixing

properties of Rc
k. Using a slightly modified version of theorem 3

of our recent work [18], we can bound δc,0
k in terms of OLc,0

k :

δc,0
k ≤ 2DQ,k

e−OL
c,0
k

(14)

where DQ,k = supx

∫

E
ψt,Y c

t
(x′)|Qc

t(x, x
′) − Q0

t (x, x
′)|dx′ is

defined in [18] as a metric for the rate of change (change magni-
tude per time step). Now we have the following observations:

• For a small change magnitude per time step (small DQ,k),
OLc,0 will not be significantly larger than OL0 and hence
OL may not be able to detect the change or may take long to
detect it. But by (13) and (14), this also implies that the upper
bounds on ρk and δk are smaller or that the PF and model
error in approximating ELL are small. Thus, in this case, ELL
will be able to detect the change. Assuming negligible errors,
with probability greater than (1−0.11) = 0.89, ELL detects
the change at or before time t for which γt > 3

√

V Kc
t (from

Section III-B).
• From (13), the upper bound on ρk is inversely proportional

to (εc,0
k )2 and by theorem 2, βt is also inversely proportional

to past values of (εc,0
k )2. Thus PF error upper bound is

inversely proportional to (εc,0
k )4. Now, the magnitude of

εc,0
k depends inversely on the total magnitude of change.

For example, in Example 1, assume that ψk(x) has finite
support, i.e. ψk(x) = 0, ∀|Yk − h(x)| > B. This can be
achieved for example if the observation noise is a truncated

zero mean Gaussian truncated at
+
− B. This assumption

makes the kernels R0
k, R

c
k, R

c,0
k mixing (Example 3.10 of

[3]). Also let h(x) = x2, then (using Example 3.10 of [3])
εc,0
k = e−2(max(Y c

k−1,Y c
k )+B). Now E[Y c

k ] = a2
k+σ2

k, so that
as the change magnitude, ak, increases, the random variable
εc,0
k decreases (stochastically) and consequently the PF error

increases (stochastically).

Usually when using a PF, one of the following happens: Either the
change is slow enough so that the PF does not “completely lose
track” until γt is large enough for the change to get detected. Or,
if the change is not slow enough, the PF “completely loses track”
but in that case, OL will detect the change. Thus, we propose
to use a combination of ELL and OL for change detection in
PONLD systems (when the rate of change can be slow or fast and
change parameters are unknown). A change should be declared
when either exceeds its respective threshold.

VI. SIMULATION RESULTS

We simulated Example 1 with ψ(x) having compact support
(truncated Gaussian) and taking ht(x) = x2. We tested for
increasing magnitudes of ∆a. We tested for ∆a = rσnoise with
r = 0 (no change) and r = 0.5, 1, 2, 5. We show in Figure 1, plots
for detecting the changes using ELL and OL. As can be from these
graphs all changes are detected by either OL or ELL. The “slow”
changes (r = 0.5, 1) are missed by OL but detected by ELL11.
The “faster” change (r = 2) gets detected by both although ELL
detects it faster. The “drastic” (r = 5) change gets missed by ELL
but OL detects it immediately. Also note that when OL takes the
value infinity (due to overflow), ELL starts to fail. The r = 5
(cyan-square) ELL plot in Figure 1(a) almost coincides with that
of r = 0 (normal system). This is because when PF loses track, the
posterior starts following the normal system model, i.e. Rc

t ≈ Q0
t .

Now we also show application of our change detection strategy
to a computer vision problem of abnormal activity detection [1],
in which we modeled the normal activity using a PONLD system.
In [1], we proposed a (stochastic) shape dynamical model for

11The change with r = 0.5 and duration only 10 time units (tc =
5, tf = 15) is too small for ELL to detect and in many of the realizations
that we simulated, this change was not detected at all.
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Fig. 1. Simulated example: In (a) and (b), we show ELL and OL (negative log of observation likelihood) plots for the no change case (blue
-o), and for changes with ∆a = rσnoise for r=0.5 (red-*), r=1 (magenta -4), r=2 (green -x) and r=5 (cyan -square). In all cases change was
introduced at time tc = 5 and lasted till tf = 15. For the case r = 5 (drastic change), the OL plot goes to infinity after t = 5 (computer
overflow) and hence the change is detected immediately using OL while ELL completely fails for it. The r = 2 (“faster change”) gets detected
at t = 9 using OL but ELL detects it at t = 6 itself. The slower changes r = 0.5, 1 get detected by ELL but are missed by OL. In (c), we
plot 0.5a2
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standard deviation) for a change with ∆a = σnoise.
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Fig. 2. We show in (a) and (b), plots of ELL and OL for normal activity and increasing walk away velocities (abnormal behavior) as a
function of time. Abnormality is introduced at t = 5. The vel = 32 (“drastic change”) plot of OL goes to infinity (overflow) at t = 5 and
hence abnormality gets detected immediately, and for vel = 4 (“faster change”), the OL plot goes to infinity at t = 24. For all changes except
vel = 32, ELL detects faster.

modeling the changing configuration of a group of moving objects.
The observations of the object locations obtained using an auto-
mated motion detection algorithm are noisy, making the system
partially observed. In the specific application we considered, we
modeled the “normal activity” of a group of passengers deplaning
and moving towards the terminal in an airport (See [1] for images
of the normal and abnormal activity). The shape and motion at
time t constituted the state vector, Xt. Abnormality detection was

formulated as a change detection problem with change parameters
unknown. We studied the problem of detecting the change in the
shape due to one person walking away from his normal path in
some other direction. The speed at which the person walked away
decided the rate of change. We show in Figure 2, the plots of
ELL and OL to detect the abnormality for increasing rates of
change (walk-away velocities). As before, velocity=1 was a slow
change which got detected by ELL much faster than OL, while



for velocity=32, ELL failed and OL detected immediately.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a change detection statistic, ELL, for slow
change detection in PONLD systems tracked using particle filters
and have studied errors in its approximation (modeling error in
tracking changed observations using original system transition
kernel and PF approximation error). We have proved in Section
IV, the asymptotic convergence of the errors to zero as M, t,N →
∞. Slow changes are missed by tracking error or observation
likelihood (OL) because the PF is able to track the slow change due
to asymptotic stability. But on the other hand, we have shown that
ELL is able to detect slow changes because of asymptotic stability.
We have discussed in Section V, this complementary behavior of
ELL and OL for change detection, using the results from Section
IV. Simulation results on a one dimensional problem and a real
abnormal activity detection application have been presented to
support our theoretical claims.

As part of future work, we hope to prove convergence of Mt,∆θt

to zero as t → ∞, using only the assumptions of theorem 5.
We also intend to study practical examples of non-linear systems
which satisfy the assumptions required for applying theorems 3,
4 and 5. Also, in the analysis in this paper, the error in the
approximation of Kc

t by Kc,0,N
t is much larger than that of K0

t

because we are using a filter which is optimal for the original
system. But if one were to make the transition kernel used in
the filter less specific, for example in the case of Example 1,
use σ2

noise larger than the true variance of Q0
t , it will make

Rc,0
t more mixing and thus reduce the approximation error of

Kc
t without significantly increasing error in estimating K0

t . This
has been observed experimentally. We have analyzed this problem
in a recent work [18] where we show that the model and PF
errors in estimating any function of the state are upper bounded by
increasing functions of the system model error per time step (here
rate of change). Finally, we also intend to study the performance
of a CUSUM [6] like algorithm applied to ELL (use ELL of a
subsequence of past states).
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